

Figure 1. NMR spectra recorded at -93 °C of a 0.3 M solution of lithiated imine 5 in toluene- d_8 containing 2.0 equiv of THF/lithium: (A) ¹⁵N NMR spectrum (30.42 MHz); (B) ⁶Li NMR spectrum (44.19 MHz) observed via the ²H lock channel as described in the text; (C) ⁶Li NMR spectrum observed via the 2 H lock channel with concomitant irradiation of the upfield (major) 15 N resonance in spectrum A; (D) 6 Li NMR spectrum observed via the ²H lock channel with concomitant irradiation of the downfield (minor) ¹⁵N resonance in spectrum A.

Chart I

we were unable to unequivocally exclude trimer 8. The inability to distinguish dimers from higher oligomers has haunted subsequent structural and mechanistic studies of N-lithiated species.49

The hardware modifications needed to achieve single-frequency decoupling of ¹⁵N are straightforward. The ¹⁰⁹Ag-³¹P broadband probe of a Bruker AC300 NMR spectrometer equipped with an X-nucleus decoupler is modified by the addition of a variable capacitor in the ²H lock circuitry. This allows the ²H lock channel to function as a ⁶Li observe (or decoupling) channel operating at 44.19 MHz.⁵ A proton filter in the ²H lock circuitry was removed to improve sensitivity. Substantial noise introduced by the X-nucleus decoupler necessitates inclusion of quarter wavelength coaxial cable filters at the frequency ranges of ⁶Li and ¹⁵N. A decoupling power of 30-50 μ W proved sufficient to achieve decoupling without perturbing resonances ≥ 50 Hz away.

The results of single-frequency irradiations are illustrated in Figure 1C,D. Irradiation of the major ¹⁵N quintet centered at

134.6 ppm causes clean collapse of the major ⁶Li resonance to a singlet. Similarly, irradiation of the minor ¹⁵N quintet causes the minor ⁶Li triplet to collapse to a singlet. The decouplings are consistent with two chemically distinct isomeric dimers 6 and 7.10 Furthermore, if cis, trans trimer 8 had been the predominant aggregate in solution, irradiation of the major ¹⁵N resonance would have caused the major and minor ⁶Li triplets to collapse to a doublet and singlet, respectively. Similarly, irradiation of the minor ¹⁵N resonance would have caused collapse of the major ⁶Li triplet to a doublet without change in the minor ⁶Li triplet. Thus, the results of the single-frequency decouplings are consistent with stereoisomeric dimers 6 and 7 and inconsistent with a trimer structure

⁶Li and ¹⁵N resonance correlations, when placed in the context of the stereochemical consequences of aggregation, provide a direct probe of aggregate structure. The exclusion of cyclic trimers in this specific case strengthens the dimer assignments for other solvated lithium amide species as well. As we continue to uncover lithium amide aggregates and mixed aggregates of increasing complexities,¹¹ such ⁶Li-¹⁵N resonance correlations will become essential components of solution structure determinations.

Acknowledgment. We thank Jim Simms of MIT and Brian Andrew of Bruker for several very helpful discussions. We acknowledge the National Science Foundation Instrumentation Program (CHE 7904825 and PCM 8018643), the National Institutes of Health (RR02002), and IBM for support of the Cornell Nuclear Magnetic Resonance Facility. D.B.C. and J.H.G. thank the National Institutes of Health for support of this work.

Registry No. 5, 101773-95-9; 6Li, 14258-72-1.

(10) In contrast to the irradiations of the ¹⁵N multiplets separated by 55 Hz, irradiation of each of the narrowly spaced (11 Hz) ⁶Li triplets failed to afford fully selective decoupling.

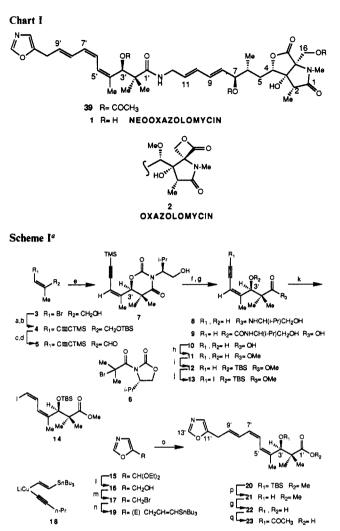
(11) Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624.

Enantioselective Total Synthesis of Neooxazolomycin

Andrew S. Kende,* Kuniaki Kawamura, and Robert J. DeVita

> Department of Chemistry, University of Rochester Rochester, New York 14627 Received January 10, 1990

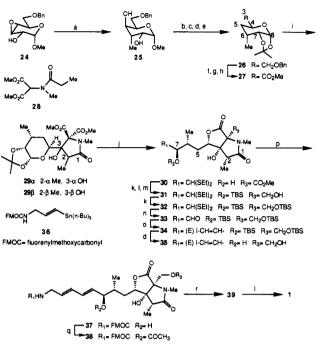
Neooxazolomycin (1) is a structurally novel $C_{34}H_{47}N_3O_9$ oxazole polyene lactam-lactone antitumor antibiotic isolated from several *Streptomyces* strains.^{1a,b} The structures and absolute configurations of this compound^{1a} and its β -lactone congener, oxazolomycin (2),^{1c} were described in 1985. Neooxazolomycin (1) is an acid-, base- and light-sensitive molecule that may be regarded as an amide formed between a Z, Z, E oxazole triene acid left half (22) and a highly functionalized lactam-lactone amino diene (37, $R_1 = H$) right half (Chart I). We now report the first enantioselective total synthesis of neooxazolomycin.²


The oxazole triene acid left half of the antibiotic was synthesized from the known³ (Z)-3-bromo-2-methyl-2-propenol (3), converted to the Z aldehyde 5 in 84% yield by a four-step sequence (Scheme I): (1) O-silylation, (2) Pd-catalyzed coupling⁴ with (trimethylsilyl)acetylene to produce the enyne 4, (3) selective O-

⁽⁹⁾ In several other instances wherein N-lithiated species display a concentration-independent pair of ⁶Li resonances,^{2,3} ratios closer to 1:1 further argue against cyclic trimers.

 ⁽a) Takahashi, K.; Kawabata, M.; Uemura, D.; Iwadare, S.; Mitomo, R.; Nakano, F.; Matuzaki, A. Tetrahedron Lett. 1985, 26, 1077.
 (b) Kawai, S.; Kawabata, G.; Kobayashi, A.; Kawazu, K. Agric. Biol. Chem. 1989, 53, 1127.
 (c) Iwadare, S.; Shizuri, Y.; Mitomo, R.; Nakano, F.; Matsuzaki, A. Tutakedara Lett. 1986, 36, 1072. Tetrahedron Lett. 1985, 26, 1073

⁽²⁾ All new compounds showed NMR, IR, and C,H or mass spectrometric


<sup>analyses consistent with the assigned structures.
(3) Fischetti, W.; Mak, K. T.; Stakem, F. G.; Kim, J.-I.; Rheingold, A. L.; Heck, R. F. J. Org. Chem. 1983, 48, 948.
(4) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 3313.</sup>

^aReagents: (a) TBSCl, imidazole, DMF, 0 °C, 5 min; (b) TMSC=CH, Pd(Ph₃P)₄, Cul, *n*-BuNH₂, PhH, 23 °C, 18 h; (c) AcOH/THF/H₂O, 23 °C, 18 h; (d) basic MnO₂, hexane (L_{12} CH₂Cl₂, hexane (L_{12} CH₂CH₂Cl₂, hexane (L_{12} C ACOH/1HF/H₂O, 23 °C, 16 n; (d) basic MinO₂, nexane/CH₂Cl₂, 23 °C, 2 h; (e) SnCl₂, LiAlH₄, THF, 20 °C, 20 min, then **6** in THF, 20 °C, 45 min, then **5** in THF, 20 °C, 16 h; (f) 30% H₂O₂, LiOH, THF/H₂O, 20 °C, 24 h; (g) LiOH (3 equiv), THF/MeOH/H₂O, 23 °C, 24 h; (h) CH₂N₂, Et₂O, 0 °C; (i) TBSOTf, 2,6-lutidine, CH₂Cl₂, 23 °C, 0.5 h; (j) *n*-BuLi, THF, -78 °C, 1 h, then I₂ in THF, 1 h; (h) H₂ (5 equiv), CuSO (5 H, O (1 equiv)) 95% E1OH 23 °C, air NH2NH2 (5 equiv), CuSO4.5H2O (0.1 equiv), 95% EtOH, 23 °C, air (bubbled), 16 h; (1) THF/H2O/concentrated HCl (cat.), 23 °C, 17 h, then saturated NaHCO₃, 10 min; NaBH₄, 0 °C; (m) NBS, Ph₃P, THF, 23 °C, 1 h; (n) (E)-Bu₃SnCH=CHSnBu₃, *n*-BuLi, THF, -78 ^aC → -40 °C, 0.5 h; then addition to CuC=CPr, THF, -40 °C, 0.5 h; addition to 17, THF, -78 °C → -10 °C; (o) 14, 3 mol % PdCl₂-(MeCN)₂, DMF, 23 °C, 91 h; (p) 50% HF/MeCN, 23 °C 4 h; (q) Ac₂O, pyr, 23 °C, 20 h; saturated NaHCO₃, MeOH/H₂O, 23 °C, 1 h.

desilylation, and (4) oxidation to the aldehyde 5.

Diastereoselective Reformatsky-type condensation of 5 with the tin(II) enolate derived from chiral acyloxazolidinone 6 (1.2 equiv) by use of $SnCl_2$ (2 equiv) and $LiAlH_4$ (1 equiv) in THF⁵ proceeded in 95% yield to give the anticipated⁶ 1,3-oxazine-2,4dione 7 [mp 95-96 °C, $[\alpha]_{D}$ +8.1° (c 0.6, CH₂Cl₂)] having the desired 3'R configuration (neooxazolomycin numbering) in >99% de and complete retention of the alkene Z geometry.⁷ Mild removal of the chiral auxiliary and C-silyl group had to be performed via the following two-step procedure. Reaction of 7 with 30% H₂O₂ (6 equiv) and LiOH (2 equiv)⁸ produced 13% of the Scheme II^a

^aReagents: (a) MeLi, MeMgCl, THF/Et₂O, 23 °C, 16 h; (b) *i*-Pr₃SiOTf, 2,6-lutidine, THF, -78 °C $\rightarrow 23$ °C, 16 h; (c) S=C(Im)₂, $(CH_2Cl)_2$, Δ ; *n*-Bu₃SnH, xylene, Δ , 6 h; (d) *n*-Bu₄NF, THF, 23 °C; (e) FeCl₃, acetone, 23 °C, 4 h; (f) H₂, Pd(OH)₂, MeOH, 23 °C, 4 h; (g) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 20 min, then 0 °C, 1 h; KMnO₄, *t*-BuOH/5%NaH₂PO₄, 23 °C, 0.5 h; (h) CH₂N₂, Et₂O, 0 °C; (i) **28** (1.06 equiv), *t*-BuLi (2.12 equiv), TMEDA (2.12 equiv), THF, -78 °C, then addition to **27** in THF, -78 °C; (j) EtSH, concern trated HCl (cat.); (k) TBSOTf, 2,6-lutidine, CH2Cl2, 23 °C; (l) LiOH, thated HCl (cat.); (k) HBSOTI, 2,6-fullille, CH₂Cl₂, 23 °C, (l) ElOH, THF/H₂O, 23 °C, 1 h, then 1 N HCl; (m) $[Me_2N=CHCl]^+Cl^-$, MeCN/THF, 0 °C, 1 h; NaBH₄, DMF, -78 °C \rightarrow 23 °C, 16 h; (n) HgCl₂, CaCO₃, MeCN/H₂O, 23 °C, 1 h; (o) CHI₃, CrCl₂, THF, 23 °C, 1.5 h; (p) 36, 5 mol % PdCl₂(MeCN)₂, DMF, 23 °C, 24 h; (q) Ac₂O, pyr, 23 °C, 24 h; (r) DBU, CH₂Cl₂, 23 °C, 0.5 h; addition to the mixed anhydride [23, N,N-bis(2-oxo-3-oxazolidinyl)phosphorodiamidic chloride, Et₃N, CH₂Cl₂, 23 °C, 3 h], then 23 °C, 0.5 h.

diol amide 8 and 87% of the desired carboxylic acids 9 and 10 in a 24:1 ratio. The acid mixture was then hydrolyzed with LiOH to give 85% of 10, along with 69% of the recovered homochiral Evans oxazolidinone. Diazomethane on 10 gave the ester 11 $[[\alpha]_D$ -26.6° (c 0.94, CH₂Cl₂), 81%], shown to be enantiomerically homogeneous (>99%) by use of Eu(hfc), employing racemic 11 as standard.

To construct the (Z,Z,E)-triene system, the acetylenic terminus of 11 was stereoselectively converted to the (Z)-vinyl iodide 14 by the following sequence: (1) O-silylation, (2) iodination of the silvl ether 12 by metalation followed by I_2 quenching, and (3) diimide reduction⁹ of the iodoacetylene 13, to give, on silica gel TLC, a 72% overall yield of 14, along with 10% of recovered alkyne 12. The oxazole stannane 19 required to complete the left-hand chain was synthesized in five steps as follows. The oxazole acetal 15 was prepared in 86% yield from ethyl diethoxyacetate and lithiated MeNC by Schöllkopf condensation.¹⁰ Hydrolysis of 15 and then NaBH₄ reduction gave the oxazole methanol 16, mp 27-28 °C, in 68% yield. NBS/Ph₃P transformed 16 to the unstable bromide 17 (44%), which was immediately reacted with the cuprate 18^{11} (1.2 equiv) to produce the (E)-vinyl stannane 19 in 49% yield. The critical Stille coupling¹² of 19 with

⁽⁵⁾ Harada, T.; Mukaiyama, T. Chem. Lett. 1982, 161.
(6) Kende, A. S.; Kawamura, K.; Orwat, M. J. Tetrahedron Lett. 1989, 30, 5821.

⁽⁷⁾ Observation of the positive NOE (22.5%) between vinylic and methyl protons strongly indicated the retention of the Z geometry of 7 under the strongly acidic conditions; see ref 6.

⁽⁸⁾ Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141

⁽⁹⁾ Ohno, M.; Okamoto, M. Organic Syntheses; Wiley: New York, 1973;
Collect. Vol. V, p 281.
(10) Schöllkopf, U.; Schröder, R. Angew Chem., Int. Ed. Engl. 1971, 10,

³³³

⁽¹¹⁾ For a similar coupling reaction, see: Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 4630 and references therein.

the polyfunctional vinyl iodide 14 gave the desired triene ester 20 in 79% yield with complete retention of all alkene stereochemistries. Deprotection of 20 with HF gave the free alcohol **21** [mp 100–102 °C, $[\alpha]_D$ +102.1° (*c* 1.0, CH₂Cl₂), 92%] without any isomerization of the triene.¹³ Hydrolysis of **21** gave 94% of the hydroxy acid 22;14 acetylation of 22 followed by hydrolysis of the resulting mixed anhydride gave the acetoxy acid 23 (99%), presenting the left half of the target in suitably protected form.

To construct a chiral synthon corresponding to C-3 through C-8 of the right-half amino diene, we employed the readily available anhydrogalactoside 24¹⁵ as a chiral source (Scheme II). The stereogenic center at C-6 was generated by trans-diaxial epoxide opening of 24 using 10 equiv of Me₂Mg,¹⁶ to yield 95% of the diol 25. This was converted to deoxy acetonide 26 in 64% overall yield by the following sequence: (1) selective silulation of equatorial hydroxyl group, (2) conversion of the axial hydroxyl group to the imidazole thiocarbamate followed by radical deoxygenation, 17 (3) *n*-Bu₄NF desilylation, and (4) condensation with acetone/FeCl₃.¹⁸ Hydrogenolytic debenzylation of 26 and then Swern oxidation followed by buffered KMnO4 and diazomethane gave ester 27 [mp 47-49 °C, [α]_D-25.4° (c 1.6, CH₂Cl₂)] in 70% yield over four steps from 26.

With the six carbons of 27 corresponding to neooxazolomycin C-3 through C-8 as marked, we used the ester group of 27 as the electrophile in a cyclocondensation¹⁹ with the dianion of amidomalonate 28. Formation of the dianion of 28 and reverse addition at -78 °C to 27 in THF gave a mixture of 29α and 29β (1:1.4 ratio) in 82% yield based on recovered ester (49%).20 After chromatographic separation, the desired lactam 29α was rearranged to the thioacetal ester 30 in nearly quantitative yield. This was converted by O-silylation at C-7, saponification, Fujisawa reduction²¹ to the carbinol $31,^{22}$ and silylation of the new hydroxyl group to the fully elaborated thioacetal 32, mp 118-120 °C, in 59% overall yield from 30.

Hydrolysis of 32 to the aldehyde 33 (99%), mp 138-139 °C, paved the way for completion of the right half. Treatment of 33 with $CHI_3/CrCl_2$ gave a 70% yield of the (E)-vinyl iodide 34 (mp 134-136 °C).²³ Quantitative desilylation²⁴ gave the triol 35, which was condensed with our FMOC-amino propenylstannane reagent **36** (1.1 equiv)²⁵ under Stille conditions,¹² to afford cleanly the (E,E)-dienylamide **37** (mp 95–98 °C, 84%). Double O-acetylation gave 96% of the diacetate 38.

Our synthesis culminated in the reaction of the protected acid 23, N,N-bis(2-oxo-3-oxazolidinyl)phosphorodiamidic chloride (1.1 equiv), and Et₃N (2.2 equiv) to give the activated anhydride,²⁶

(12) Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813

(13) Deprotection using other conventional reagents (Bu₄NF, Py-HF, CsF, KF) failed.

(14) Hydrolysis of ester 21 requires assistance from the β -hydroxyl group via hydrogen bonding; silyl-protected ester 20 could not be hydrolyzed. (15) Buchanan, J. G.; Fletcher, R. J. Chem. Soc. 1965, 6316.

(16) Parker, K. A.; Babine, R. E. Tetrahedron Lett. 1982, 23, 1763. No product from Payne rearrangement was observed. Treatment of the TBS ether of 24 with excess Me₂CuLi gave an 8:1 mixture of the undesired regioisomer.

Reaction of 24 with excess Me₂CuLi gave a 1:1 mixture of regioisomers. (17) For this modified Barton deoxygenation, see: Rasmussen, J. R.; Slinger, C. J.; Kordish, R. J.; Newman-Evans, D. D. J. Org. Chem. 1981, 46, 4843

(18) Dasgupta, F.; Singh, P. P.; Srivastava, H. C. Indian J. Chem. 1980, 19B, 1056.

(19) Kende, A. S.; DeVita, R. J. Tetrahedron Lett. 1988, 29, 2521.

(20) This is contrary to the stereochemical outcome in the chiral acyclic model ester (S)-MOM lactate, suggesting that the use of a more conformationally flexible acyclic ester synthon could preferentially give the desired α -isomer 29 α (see ref 19); however, direct formation of the acyclic dithioacetal ester from 27 failed.

(21) Fujisawa, T.; Mori, T.; Sato, T. Chem. Lett. 1983, 835

(22) To confirm the structure, intermediate 31 was converted to the known triacetate which had been prepared from 39 by Uemura et al.; see ref 1a. (23) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408.

(24) Deprotection at this stage was necessary, because removal of TBS groups from the synthetic disilyl ether of 37 or trisilyl ether of 1 under all conventional methods proceeded poorly.

(25) The vinylstannane 36 was prepared from propargylamine by the sequence following: (1) FMOCCl/Py/CH₂Cl₂; (2) Bu₃SnH/AIBN (Kende, A. S.; DeVita, R. J. *Tetrahedron Lett.* 1990, 31, 307).

(26) Cabré, J.; Palomo, A. L. Synthesis 1984, 413.

to which was added a CH₂Cl₂ solution of the free amine prepared by DBU (2 equiv) deprotection²⁵ of the FMOC diacetate 38 (1 equiv). Reaction for 1 h produced neooxazolomycin triacetate (39) in 60% yield. The spectroscopic properties of our synthetic triacetate were in full agreement with those reported for naturally derived 39.^{1a} Finally, careful hydrolysis of 39 with LiOH (10 equiv) followed by acidification gave a 67% yield of pure neooxazolomycin (1), identical with an authentic sample by 300-MHz ¹H NMR, IR, TLC (silica gel and reverse phase) in several solvent systems, HPLC, and FAB mass spectrometric comparisons.²⁷

Supplementary Material Available: Spectral data and physical properties for compounds 4-17, 19-23, 25-27, and 29-39 (10 pages). Ordering information is given on any current masthead page.

(27) We are grateful to Dr. D. Uemura of Shizuoka University, Japan, for samples of neooxazolomycin and the degradation product triacetate and to Dr. Joseph Wright, Eastman Kodak Co., for determination of mass spectra. Partial support of this research by Grant CA 18846, awarded by the National Cancer Institute, NIH-USPHS, is gratefully acknowledged. R. J. DeVita thanks the Smith Kline and French Co. for an American Chemical Society, Organic Division, predoctoral fellowship.

Allenyl Chloromethyl Sulfones: New Dienophile–Diene Synthons. A Simple Iterative Ring-Growing Procedure¹

Eric Block* and David Putman

Department of Chemistry State University of New York at Albany Albany, New York 12222 Received January 19, 1990

We report the preparation and applications of new organosulfur reagents, allenyl chloromethyl sulfones (1), RR'C=C= CHSO₂CH₂Cl, functioning as potent dienophiles whose Diels-Alder adducts give 1,3-dienes with base, thus allowing two-step "cyclohomologation" of dienes. Examples of this class of reagents include the parent compound, chloromethyl 1,2-propadienyl sulfone (2), H₂C=CCHSO₂CH₂Cl, chloromethyl tetradeca-1,2-dienyl sulfone (3), CH₃(CH₂)₁₀CH=C=CHSO₂CH₂Cl, and chloromethyl 3-methylbuta-1,2-dienyl sulfone (4), $Me_2C=C=$ CHSO₂CH₂Cl. Reagents 1 were developed in the course of seeking new applications of the Ramberg-Bäcklund reaction in which the necessary reaction components, sulfonyl group and α -halogen, are already present in the same reagent.² We describe herein the use of 1 in a novel iterative ring-growing procedure for construction of linear fused carbocycles.

The choice of 1 was suggested by the known high reactivity of sulfonylallenes as dienophiles due to their low LUMO,³ the anticipated susceptibility of the allylic sulfone Diels-Alder adduct toward base-induced elimination, and a simple projected synthesis of 1 via coupling of chloromethylsulfenyl chloride, ClCH₂SCl,⁴ with propargylic alcohols (RR'C(OH)C=CH) giving S-chloromethyl propargyl sulfenates, ClCH₂SOCRR'C=CH (5), [2,3]-sigmatropic rearrangement⁵ of 5 to chloromethyl 1,2-alkadienyl sulfoxides, RR'C=CCHS(O)CH2Cl (6), and oxidation

⁽¹⁾ Presented at the 199th National Meeting of the American Chemical

Presented at the 199th National Meeting of the American Chemical Society, April 24, 1990, Boston, MA.
 (2) (a) Block, E.; Aslam, M.; Eswarakrishnan, V.; Gebreyes, K.; Hutch-inson, J.; Iyer, R.; Laffitte, J.-A.; Wall, A. J. Am. Chem. Soc. 1986, 108, 4568.
 (b) Block, E.; Aslam, M. Org. Synth. 1987, 65, 90.
 (a) Hayakawa, K.; Nishiyama, H.; Kanematsu, K. J. Org. Chem. 1985, 50, 512.
 (b) Barbarella, G.; Cinquini, M.; Colonna, S. J. Chem. Soc., Perkin Trans. 1 1980, 1646.
 (c) Trost, B. M.; Braslau, R. J. Org. Chem. 1988, 53, 532.
 (d) Lindermann, R. J.; Suhr, Y. J. Org. Chem. 1988, 53, 1569.
 (4) Douglass, I. B.; Norton, R. V.; Weichman, R. L.; Clarkson, R. B. J. Org. Chem. 1969, 34, 1803.
 (5) Braverman, S.; Stabinsky, Y. Isr. J. Chem. 1967, 5, 125.