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ABSTRACT: The hydroazulene core of the bioactive sesquiterpenoid (−)-dehydrocostus lactone was generated by domino
enediyne metathesis. A triple hydroboration/oxidation of the resultant conjugated triene installed three out of four stereogenic
centers of the target in a single step. The enantiopure acyclic metathesis substrate was readily available by an asymmetric anti aldol
reaction. Masking of the γ-lactone as an acetal allowed for an efficient completion of the synthesis through late-stage double carbonyl
olefination.

Over the recent years, the sesquiterpenoid (−)-dehydro-
costus lactone (1) has drawn much attention, especially

as a potential agent for the treatment of various cancer types
such as breast cancer,1 liver cancer,2 lung cancer,3 or leukemia4

(Figure 1). A large number of studies have identified diverse

modes of action ranging from antiproliferation1b,c,4b and
inhibition of metastasis and invasion,5 over induction of
apoptosis,1c,3a to even reversing multidrug resistance.6 It is
assumed that the α-methylene-γ-butyrolactone moiety plays a
crucial role in the observed biological activities. Although these
studies are very promising for potential therapeutic applica-
tions, there is still a lack of systematic evaluation, making 1 an
interesting target for total synthesis.7

Sometimes a synergetic effect between 1 and (+)-costuno-
lide (2), another sesquiterpenoid bearing an α-methylene-γ-
butyrolactone, was reported.7 These two compounds usually
co-occur in plants, for example in Saussurea costus, a plant
endemic to the sub-alpine region of India and China, which is
well-known for its use in traditional medicine.8 (−)-Dehy-

drocostus lactone (1) was isolated from this plant as one of the
main sources of 1 for the first time in 1939 by Ukita.9 Since the
use of S. costus for commercial and medical purposes has
increased rapidly, this species is listed in Appendix I of
Convention on International Trade in Endangered Species of Wild
Fauna and Flora (CITES), and it is furthermore banned from
export by the government of India.10

Although this circumstance mandates the development of
synthetic approaches to 1 even more, only two syntheses are
known to date (Scheme 1). Ando and co-workers published
the first enantioselective access to (−)-dehydrocostus lactone
(1) in 1984.11 Starting from the naturally occurring
eudesmanolide (−)-α-santonin (3), mesylate 4 was prepared
by a multistep sequence. In the key step, a solvolytic
rearrangement of 4 to (+)-mokkolactone (5) along with
other olefin isomers was realized to establish the guaianolide
framework. Finally, 1 was prepared from 5 by α-selenenylation
and oxidative syn elimination.
The second approach was published later in 1984 by Rigby

and co-workers.12 Their strategy for racemic 1 was based on
the annulation of a five-membered onto a seven-membered
ring by acid catalyzed cyclization of diene 6. This compound
was obtained as a diastereomeric mixture via 1,8-addition of a
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Figure 1. Sesquiterpenoids (−)-dehydrocostus lactone (1) and
(+)-costunolide (2).
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Grignard reagent to tropone. The cyclic ether 7 was further
transformed to diketone 8 by a multistep route. However,
ketone olefination of 8 was found to be inefficient owing to the
competing opening of the γ-butyrolactone by β-elimination
and proceeded at best13 in only 15% yield. Finally, racemic
dehydrocostus lactone (1) was isolated after α-methylenation
of the lactone using Eschenmoser’s salt.
Due to our interest in the synthesis of hydroazulene natural

products by domino metathesis,14 we developed a new
approach to (−)-dehydrocostus lactone (1) by an enediyne
strategy. Noteworthy, there are only a few examples for
domino metathesis reactions with substrates bearing more than
one triple bond.14e,15 As depicted in Scheme 2, our synthesis
was based on the disassembly of guaianolide 1 to a
hydroazulene core structure, which should allow facile
functionalization in the desired stereochemical fashion. We
assumed triene 9 to be a suitable intermediate that might
undergo exhaustive hydroboration/oxidation to give triol 10 in
a substrate-induced diastereoselective manner. Blocking of the
concave face by a bulky substituent at C-10 should increase the
preference for attack on the convex face. Compound 10 would
be transformed to diketone 11 by acetal formation, cleavage of
the silyl ether, and twofold oxidation. Since Rigby and co-
workers encountered severe difficulties during methylenation
of the diketo-γ-lactone 8,12 we decided to mask the lactone
unit as the corresponding methyl acetal.16 This should disfavor
cleavage of the C-6 oxygen bond by β-elimination upon
introduction of the methylene unit at C-4. Finally, unmasking
the lactone and subsequent α-methylenation would complete
the synthesis of 1.
We envisioned enediyne 12 as a suitable substrate for the

key metathesis event to give triene 9. Compound 12 in turn
was traced back to aldehyde 13 revealing an anti aldol pattern
that might be generated according to the procedure by
Masamune and Abiko.17 Thus, aldehyde 13 should emerge
from the anti aldol adduct 14 after C-desilylation/O-silylation
and reductive removal of the auxiliary. Ester 14 can be
disconnected to the known aldehyde 16,18 hex-5-enoic acid,
and the commercially available chiral auxiliary 15.

With our synthetic strategy set, we initially focused on the
asymmetric aldol reaction. The donor component 17 was
readily prepared by DCC/DMAP-mediated esterification19 of
auxiliary 15 and hex-5-enoic acid (Scheme 3). Aldol addition
of the dicyclohexylboron enolate derived from 17 to aldehyde
1618 led to a mixture of the two anti diastereomers with good
diastereoselectivity (dr = 9:1). The isomers were separated by
flash chromatography to give the pure diastereomer (S,S)-14 in
90% yield. The aldol product (S,S)-14 was then transformed
into aldehyde 13 in four steps. After C-desilylation of the
alkyne with TBAF and TBS protection of the hydroxyl group,
the resulting ester 18 was cleaved using an excess of DIBAL to
give alcohol 19 and the reisolated auxiliary 15 in high yields.
Subsequently, alcohol 19 was smoothly oxidized to aldehyde
13 using TEMPO/PIDA.20 For conversion of 13 to the
metathesis substrate 12, alkynylation with Wu’s reagent
(20)21a performed best from a variety of conditions21 screened
and gave enediyne 12 quantitatively.
With enediyne 12 in hand, the stage was set to investigate

the domino metathesis to give 9 as the key step of our
synthesis (Scheme 4). Earlier we applied both the Grubbs II
(for dieneyne14b,d and trieneyne14c,e metathesis) and the
Grubbs I catalysts (for dienediyne metathesis)14e for related
domino transformations. Whereas reaction of 12 with the
Grubbs II catalyst always delivered mixtures of the desired
triene 9 and its isomer 9′, enediyne 12 was converted to the
pure triene 9 by treatment with the more chemoselective
Grubbs I catalyst in 86% yield (calculated from 1H NMR data
of 9 still containing some pentane). We assume that the
formation of 9′ is triggered by initiation of the domino process
at the alkyne carbon C-7 rather than at C-5. Initiation at C-5
would first lead to the monocyclic compounds A or B, and we
found that A could not be transformed to 9 by treatment with
the Grubbs II catalyst.22

As hydroazulene 9 tended to oligomerize under neat
conditions, it had to be subjected to the following hydro-

Scheme 1. Previous Approaches to (−)-1 (a) and Racemic 1
(b) by the Groups of Ando and Rigby

Scheme 2. Synthetic Strategy for (−)-Dehydrocostus
Lactone (1)
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boration reaction immediately (Scheme 5). Gratifyingly, we
found that treating 9 with an excess of borane in THF at 0 °C
and subsequent oxidative workup with H2O2/NaOH effected a
selective formation of triol 10 along with three additional
diastereomers in 65% yield (dr = 69:9:8:14) over two steps.
While the relative configuration of the minor three
diastereomers could not be determined unequivocally, the
relative configuration of the major diastereomer 10 isolated as
a pure compound in 45% yield over two steps was
characterized unambiguously. This confirmed our prediction
of a favored attack on the convex face of the molecule leading
to the desired configurations at C-5/C-6/C-7.
In order to install the acetal unit, we first planned a

chemoselective oxidation with TEMPO/NaOCl of the primary
alcohol allowing a spontaneous formation of a five-membered
lactol.23 However, regardless of the amount of oxidizing agent
used, the lactol was always further oxidized to the
corresponding lactone 21. Therefore, we optimized the
conditions for this oxidative lactonization24 to yield 21 and
subsequently treated this lactone with DIBAL. The resultant
crude lactol was then refluxed in MeOH with p-toluenesulfonic
acid.16 Under these conditions, desilylation took place as well

to afford a mixture of C-12 epimers (dr = 5.5:4.5) of diol acetal
22 in 89% yield over two steps. Oxidation of this mixture with
the Dess-Martin periodinane (DMP) then provided the
diketone 11 (dr = 1:1) efficiently.
Much to our delight, double carbonyl olefination of 11 was

cleanly achieved with Tebbe’s reagent (24)25 to give diene 23
in good yield without competing β-elimination or epimeriza-
tion α to the ketone functions.26 For α-methylenation, the γ-
butyrolactone needed to be reinstalled. Following a procedure
by Srikrishna,27 acetal 23 was treated with Jones’ reagent and
briefly sonicated. After workup and purification by column
chromatography, lactone 25 was directly obtained as a
colorless solid in 90% yield. While 25 can be converted to 1
using Eschenmoser’s salt,12 application of Ziegler’s method-
ology was superior in our hands.28 Thus, α-methylenation by
condensation of 25 with Bredereck’s reagent (26)29 and
subsequent reduction with DIBAL gave (−)-dehydrocostus

Scheme 3. Synthesis of Enediyne 12 via Asymmetric Aldol Reaction

Scheme 4. Formation of Hydroazulene 9 and Decalin 9′ via
Enediyne Metathesis

Scheme 5. Final Steps to (−)-Dehydrocostus Lactone (1)
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lactone (1) in 86% yield over two steps.14c,28 The analytical
data of 1 were in full agreement with those reported in the
literature.11

In summary, we have completed a highly efficient
asymmetric total synthesis of the bioactive sesquiterpenoid
(−)-dehydrocostus lactone (1) in 17 steps with an overall yield
of 12%. A domino metathesis of an enediyne prepared in
enantiopure form by an anti aldol reaction served as the key
step. Triple hydroboration/oxidation of the resultant triene set
up three out of four stereogenic centers of the target molecule
in a single operation. Masking of the γ-lactone as an acetal was
crucial for installing the exocyclic alkenes of the hydroazulene
fragment by a double carbonyl olefination.
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