Antibacterial Activity of 6,8-Disubstituted-Quinolone-3-Carboxylic Acids

RAGHAVAN KRISHNAN AND S. A. LANG, JR.[×]

Received July 17, 1986, from the American Cyanamid Company, Medical Research Division, Lederle Laboratories, Pearl River, NY 10965. Accepted for publication October 14, 1986.

Abstract
Twelve 6,8-disubstituted-1-ethyl-1,4-dihydro-4-oxoquinolone-3-carboxylic acid derivatives were prepared and evaluated for their antibacterial activity. Among these, only the 6,8-difluoroquinolone-3carboxylic acid showed moderate activity.

The third generation nalidixic acid derivatives (such as norfloxacin, ciprofloxacin, pefloxacin, and enoxacin)¹ exhibited potent antibacterial activity.² We initiated the synthesis of structural variants which bear the 6,8-substitution pattern.

Substitution at the C-7 position in the quinolone system of 1 has been thoroughly investigated and the antibacterial activity of these compounds documented.³ Contrary to this, substitution at the C-6 position of 1 with a fluorine at the C-8 position has not been previously reported. A series of compounds with substituents at the C-6 and C-8 positions in the aromatic ring system were prepared and the antibacterial spectrum determined.

The requisite 6,8-disubstituted-1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acid was prepared by the usual route.

Aniline 2 was heated with diethyl ethoxymethylenemalonate to give the malonate 3 which, without purification, was cyclized to the 4-hydroxyquinoline-3-carboxylic acid ethyl ester (4; Scheme I). Alkylation of the ester by treatment with ethyl iodide and anhydrous potassium carbonate gave the 1alkyl-1,4-dihydro-4-oxoquinoline ester 5. The 1-alkyl ester was hydrolyzed with dilute HCl to produce the carboxylic acid 6 whose structure was confirmed by spectral data.

The 6,8-difluoro-4-quinolinone 6 was treated with N-methylpiperazine to yield the desired 6-piperazinyl-8-fluoro-4quinoline 7a. Evidence for the replacement of the 6-fluoro substituent was established by NMR. If the 8-fluoro substituent was replaced, the C-7 proton would appear as a doublet at δ 7.6 ppm ($J_{\text{H-F}}$ = 8.2 Hz) along with the doublet of the C-5 proton at δ 7.8 ppm ($J_{\text{H-F}}$ = 8.3 Hz). However, the appearance of the C-7 proton as a doublet at δ 7.8 ppm ($J_{\text{H-F}}$ = 8.2 Hz) with a singlet at δ 7.6 ppm corresponding to the C-5 proton confirmed the substitution of the C-6 fluorine by N-methylpiperazine.

The difluoroquinolinone was treated with a variety of piperazines to obtain the derivatives (7b-j) listed in Table I.

Experimental Section

All melting points were taken on a Mel-Temp apparatus and are uncorrected. Samples for elemental analysis were dried for 1–24 h under reduced pressure. The ¹H NMR spectra were obtained on a Varian model FT-80 spectrometer and chemical shift values are reported in δ downfield from the internal standard (Me₄Si). All spectra were taken in deuterated solvents. The analyses were within $\pm 0.4\%$ of the calculated value. The IR spectra were obtained using a Perkin Elmer 1310 spectrophotometer. Mass spectra were obtained on a Finnegan MAT model CH7 mass spectrometer.

Ethyl 6,8-Difluoro-4-hydroxyquinoline-3-carboxylate (4)—A mixture of 2,4-difluoroaniline (2; 25 g; 0.19 mol) and diethyl ethoxymethylenemalonate (48 g; 0.22 mol) was heated at 120–130 °C. After

Scheme I

0022-3549/86/1200-1185\$01.00/0 © 1986, American Pharmaceutical Association Journal of Pharmaceutical Sciences / 1185 Vol. 75, No. 12, December 1986

Compound	R	R ₁	Yield, %	Recrystn. Solvent	mp, °C	Formula
7a 7b 7c	CH ₃ H H	Н Н СН ₃	69 70 68	DMF DMF EtOH	218–220 195–197 175–177	C ₁₇ H ₁₉ FN ₃ O ₃ C ₁₆ H ₁₈ FN ₃ O ₃ C ₁₇ H ₁₉ FN ₃ O ₃
7d	_c_&	н	72	DMF	260–262	$C_{21}H_{20}FN_{3}O_{5}$
7e	—(CH ₂) ₃ —NMe ₂	н	69	DMF	185–187	C21H29FN4O3
7f	–CH₂–⊘ Ci	н	75	DMF	188–190	C ₂₃ H ₂₃ FCIN ₃ O ₃
7g	-@	н	78	DMF	263–265	$C_{22}H_{22}FN_{3}O_{3}$
7h	— CH₂⊘	н	63	DMF	118-120	$C_{23}H_{24}FN_3O_3$
71	CH₂_∕⊘	н	80	DMF	192194	$C_{24}H_{26}FN_3O_4$
	OMe					
7j	—(CH₂)₄O{Ô	н	80	EtOH	168-170	$C_{26}H_{30}FN_{3}O_{4}$
8		—	90	EtOH	253-255	C ₁₆ H ₁₇ FN ₂ O₄

4 h, the resulting EtOH had evaporated and the residual solid material was used in the successive reaction without further purification, mp 75–77 °C; ¹H NMR (Me₂SO-d₆): δ 1.2–1.4 (6, m, CH₃), 4.1–4.3 (4, m, CH₂), 7.2–7.65 (2, m, ArH), 8.3 (1, dd, J_{H-F} = 8 Hz), and 10.81 ppm (1, d, J_{H-F} = 13.0 Hz, NH); IR (KBr): 1685 cm⁻¹ (ester); MS (70 ev): m/z 299 (M⁺).

The aforementioned malonate (3; 29 g; 0.097 mol) was added to diphenyl ether (280 mL) and refluxed for 1 h. After the solution was cooled, the precipitate was removed by filtration, washed with hexane, dried and recrystallized from ethanol, mp 275–277 °C; ¹H NMR (Me₂SO-d₆): δ 1.34 (3, t, $J_{\text{H-H}} = 7.0$ Hz, CH₃), 4.3 (2, q, $J_{\text{H-H}} = 8.1$ Hz, CH₂), 7.56 (1, d, $J_{\text{H-F}} = 8.0$ Hz, ArH), 7.68 (1, dd, $J_{\text{H-F}} = 8.1$ Hz, ArH), and 8.38 ppm (1, s, ArH); IR (KBr): 1690 cm⁻¹ (ester); MS (70ev): m/2 281 (M⁺).

Ethyl 6,8-Difluoro-1-ethyl-1,4-dihydro-4-oxoquinoline-3-carboxylate (5)—A mixture of (4; 5 g; 0.0197 mol), K₂CO₃ (5.5 g; 0.039 mol), EtI (12.3 g; 0.078 mol), and dimethylformamide (60 mL) was heated at 80–90 °C with stirring. After 24 h, the mixture was evaporated to dryness and washed with ice-cold water. The crude ester was used in the successive reaction without further purification. The residue was recrystallized from ethanol to yield 5, mp 168–170 °C; ¹H NMR (Me₂SO-d₆): δ 1.3–1.5 (6, m, CH₃), 4.15–4.3 (4, m, CH₂), 7.7 (1, d, J_{H-F} = 8.0 Hz, ArH), 7.85 (1, dd, J_{H-F} = 8.1 Hz, ArH), and 8.62 ppm (1, s, ArH); IR (KBr): 1720 (ester), 1615 (C=O) cm⁻¹; MS (70 ev): *m/z* 281 (M⁺).

6,8-Difluoro-1-ethyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (6)—A mixture of 5 (10 g; 0.035 mol) and 1 M HCl (70 mL) was refluxed with stirring. After 3 h, the precipitate was removed by filtration, washed with water, and dried. The solid was recrystallized from ethanol to yield 6 (8.3 g, 92%), mp 210–212 °C; ¹H NMR (Me₂SO-d₆): δ 1.52 (3, t, $J_{H-H} = 7.0$ Hz, CH₃), 4.2 (2, q, $J_{H-H} = 7.0$ Hz, CH₂), 7.82 (1, d, $J_{H-F} = 8.0$ Hz, ArH), 7.93 (1, dd, $J_{H-F} = 8.2$ Hz, ArH), and 8.92 ppm (1, s, ArH); IR (KBr): 1715 (COOH), 1610 (C=O) cm⁻¹; MS (70ev): m/2 253 (M⁺).

1-Ethyl-8-fluoro-1,4-dihydro-4-oxo-6-(N-methylpiperazinyl)quinoline-3-carboxylic acids $(7a_j)$ —A typical procedure is presented. A mixture of 6 (1 g; 0.0039 mol) and N-methylpiperazine (2.5 g; 0.025 mol) was heated at 130–140 °C with stirring. After 5 h, the mixture was cooled, treated with methanol, and then the solid was removed by filtration and recrystallized from dimethylforma-

1186 / Journal of Pharmaceutical Sciences Vol. 75, No. 12, December 1986 mide to give 7a (0.96 g; 69%), mp 218–220 °C; ¹H NMR (Me₂SO- d_6): δ 1.79 (3, t, $J_{\text{H-H}} = 7.0$ Hz, CH₃), 2.1 (3, s, NCH₃), 3.7–4.1 (8, m, piperazine CH₂), 4.4 (2, q, $J_{\text{H-H}} = 7.0$ Hz, CH₂), 7.6 (1, s, ArH), 7.8 (1, d, $J_{\text{H-F}} = 8.2$ Hz, ArH), and 8.9 ppm (1, s, ArH); IR (KBr): 1730 (COOH), 1620 (C=O) cm⁻¹; MS (70ev): m/z 333 (M⁺).

Results and Discussion

Table II summarizes the in vitro antibacterial activity against gram-positive bacteria (*Staphylococcus aureus* VGH 8445), gram-negative bacteria (*Escherichia coli* CLL 0311), and *Pseudomonas aeruginosa* (LLO 1244).

The results show that when a fluorine substituent is

Table II-In Vitro Antibacterial Activity*

	Bacteria					
Compound	<i>S. aureus</i> (VGH 8445)	<i>E. coli</i> (LL 0 311)	P. aeruginosa (LL 0 1244)			
Ciprofloxacin	0.120	0.002	0.250			
Ofloxacin	0.120	0.015	1.00			
Pefloxacin	0.120	0.060	2.00			
6	64	0.120	32			
7a	128	128	128			
7b	128	128	128			
7c	128	128	128			
7d	128	128	128			
7e	>128	>128	>128			
71	32	>128	>128			
7a	128	>128	>128			
7h	64	>128	>128			
71	64	>128	>128			
71	128	>128	>128			
8	128	128	128			

^{*a*} Expressed as μ g/mL (ref 4).

present at the 6-position in 6, moderate antibacterial activity exists, and that replacement of the 6-fluoro substituent by the piperazinyl moiety leads to compounds basically devoid of activity.

This indicates that the presence of a piperazinyl substituent at the 7-position with the fluorine in the 6-position of the aromatic ring is probably essential for the observed potent antibacterial activity of the third generation quinolones.

References and Notes

- Albrecht, R. Prog. Drug Res. 1977, 21, 9.
 Wentland, Mark P.; Cornett, James B. Annu. Rep. Med. Chem. 1985, 20, 145-54.
- Koga, Hiroshi; Itoh, Akira; Murayama, Satoshi; Suzue, Seigo; Irikura, Tsutomu J. Med. Chem. 1980, 23, 1358-1363.
 National Committee for Clinical Laboratory Study: code M7-A;
- 1985, 5, 22.

Acknowledgments

We wish to thank Mr. H. Ferrari and his associates for the microanalytical data, Mr. G. Morton and his associates for the ¹H and ¹³C NMR and his valuable interpretation of these spectra, and Mr. Kenneth Angyal for the EI mass spectra. Finally, we thank Professor Kevin Potts for his valuable discussions.