RSC Advances

PAPER

Cite this: RSC Adv., 2014, 4, 6761

Synthesis and biological evaluation of XB-1 analogues as novel histamine H₃ receptor antagonists and neuroprotective agents[†]

Xiaofeng Bao, ** Yanyan Jin, * Xiaolu Liu, * Hong Liao, $^{\rm bc}$ Luyong Zhang $^{\rm bc}$ and Tao Pang * $^{\rm bc}$

A novel class of H₃ receptor antagonists, **XB-1** analogues based on benzophenone or oxydibenzene scaffolds were synthesized, and their biological activities were evaluated to determine their *in vitro* neuroprotective effects against $A\beta_{25-35}$ -induced damage in primary cortical neurons and against glutamate-induced neuronal injury in primary cerebellar granule neurons. The results indicated that all of the tested analogues displayed neuroprotective activity at 0.1 μ M or 1 μ M. These findings may provide new insights into the development of novel promising H₃ receptor antagonists with potential neuroprotective activity.

Received 4th November 2013 Accepted 19th December 2013

DOI: 10.1039/c3ra46392c

www.rsc.org/advances

Introduction

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of β -amyloid peptide $(A\beta)$ in brain areas associated with learning and memory functions.^{1,2} Aß is the major component of senile plaques, and extensive A_β deposition in AD brain plays a critical role in the development and pathogenesis of AD.3 The neurotoxicity of AB appears to depend on its ability to aggregate, and the active portion of the A β molecule appears to be the fragment of amino acids 25 to 35.4,5 Many lines of evidence have confirmed that AB exhibits neurotoxicity and induces apoptosis.6,7 Glutamateinduced excitotoxicity has also been implicated in Alzheimer's disease.8-10 H3 receptor antagonists are currently being evaluated for their potential use in a number of central nervous system disorders, including AD.¹¹⁻¹⁵ Histamine subtype 3 (H₃) receptor, one of the four G-protein coupled receptors of the histamine receptor family, is mainly located presynaptically on histaminergic neurons in the central nervous system (CNS), where it regulates histamine biosynthesis and the release of histaminergic neurons.16 The knowledge of histamine H3 receptors suggests the potential therapeutic applications of histamine H₃ receptor antagonists for several CNS diseases, such as Alzheimer's disease.¹⁷ Several studies using genetic mouse models of AD have shown that treatment with an H₃ receptor antagonist attenuates learning and memory deficits.^{12,14,18} Therefore, the H₃ receptor is expected to be a promising therapeutic target for the treatment of AD. Several H₃ receptor antagonists have been demonstrated to have promising neuroprotective activity. For example, the H₃ antagonist clobenpropit was shown to have significant neuroprotective activity against Aβ-induced neurotoxicity in PC12 cells,¹⁹ and the H₃ antagonist thioperamide was indicated to exert a neuroprotective effect.²⁰

HEMISTRY

View Article Online

View Journal | View Issue

Interest in the development of H_3 antagonists as drugs for the treatment of a variety of CNS disorders has recently grown dramatically. Several H_3 receptor antagonists, such as thioperamide,²¹ ciproxifan,²² GT-2331,²³ FUB-181,²⁴ iodoproxyfan,²⁵ and SCH-79876,²⁶ have been reported (Fig. 1), but almost all of these compounds contain an imidazole ring in their structures and have been found to exhibit some disadvantages, such as significantly binding discrepancies across species²⁷ and undesired affinity for cytochrome P450.²⁸ To avoid these drawbacks, scientists are now focusing on exploring new classes of non-imidazole H_3 receptor antagonists. Several new classes of non-imidazole H_3 receptor antagonists, such as BF-2.649,²⁹ ABT-239,³⁰ A-349821 (ref. 32) and JNJ-5207852 (ref. 34) (Fig. 2), have

Fig. 1 Imidazole-based H₃ receptor antagonists.

^aDepartment of Biochemical Engineering, Nanjing University of Science and Technology, Chemical Engineering Building B308, 200 Xiaolinwei, Nanjing, P. R. China. E-mail: baoxiaofeng@mail.njust.edu.cn; Tel: +86-2584315945

^bNew Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, P. R. China. E-mail: tyne_pang@hotmail.com; Tel: +86-2583271042

^cState Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c3ra46392c

Fig. 2 Non-imidazole-based H₃ receptor antagonists.

been reported to show promising results in animal experiments. To date, however, few molecules are successfully progressing through to advanced stage trials because of poor drug-like properties, such as poor selectivity and poor brain permeability.^{32,34,39}

Recently, several new non-imidazole-based compounds, such as CEP-26401 and its analogues,33 have been described in the literature as excellent H₃R antagonists with high affinity for both hH₃Rs ($K_i = 2.0$ nM) and rH₃Rs ($K_i = 7.2$ nM) (Fig. 3). Reports showed that substitution of N-pyridazin-3-one nitrogen with methyl, ethyl, isopropyl, benzyl, and phenyl group could not affect its binding affinity and had essentially equivalent binding affinity for both hH₃R and rH₃R compared to CEP-26401.³³ On the other hand, incorporating an alcohol on the (R)-2-methyl pyrrolidine or substituting it with piperidine side chain significantly reduced its binding affinity in 7-fold and 15-fold respectively.33 GlaxoSmithKline has also reported a compound (GSK189254,³¹ Fig. 3) as a novel H₃R antagonist with high binding affinity for human H_3R ($K_i = 0.26$ nM). We previously reported the successful preparation of two new nonimidazole H₃ receptor antagonists:^{35,36} XB-1 and its nitro analogue 2 (Fig. 3). Both XB-1 and 2 were found to have high affinity and selectivity to the human H_3 receptor ($K_1 = 1.9$ nM and 0.4 nM respectively), and 2 was further developed as a PET radioligand, denoted $[^{18}F]$ **XB-1**, for the imaging of brain H₃ receptors. Inspired by these encouraging results, in this study, we aimed to synthesize a novel class of H₃ receptor antagonists, XB-1 analogues, based on benzophenone or oxydibenzene scaffolds. We hypothesize that these analogues of XB-1 might also behave as promising H3 receptor antagonists with potential neuroprotective activity.

Fig. 3 Chemical structures of H₃R antagonists.

Results and discussion

Synthesis of cyclized benzophenone XB-1 analogues 5a-d

The preparation of the targeted cyclized benzophenone H₃ receptor antagonists required several distinct synthetic routes, which are depicted in Scheme 1. (R)-2-Methylpyrrolidine was alkylated with 3-butynnyl p-toluenesulfonate to yield (R)-1-(3butynyl)-2-methylpyrrolidine. For the preparation of the target analogues 5a-d, compounds 1b-d were converted to 2b-d through Friedel-Crafts acylation with anisole at yields of 33%, 81%, and 95%, respectively. The selective demethylation of 2b-d to 3b-d was readily achieved with the use of the non-nucleophilic Brønsted acid HBr in AcOH; these compounds were obtained at yields of 51%, 92%, and 80%, respectively. The treatment of 3a-d with 0.5 eq. of iodine and potassium iodine selectively produced 4a-d, which contain iodine in the ortho position to the hydroxyl group, at yields of 94%, 35%, 70%, and 49%, respectively. The use of a substoichiometric amount of iodine reduced the unwanted diiodination that we observed with the use of a stoichiometric amount of iodine. The Pd-catalyzed reaction of 4a-d with (R)-1-(3-butynyl)-2-methyl pyrrolidine solution in CH₃CN (0.1 M) gave the target products 5a-d at isolated yields of 19%, 16%, 21%, and 18%, respectively.

Synthesis of noncyclized benzophenone XB-1 analogues 7a–f and 7a'–f'

A different synthetic route was used to produce the targeted noncyclized benzophenone **XB-1** analogues **7a–f** and **7a'–f'**, as shown in Scheme 2. Compounds **6a–f** and **6a'–f'** were obtained at high yield through the alkylation of **3a–f** with 1-bromo-3-chloropropane or 1-bromo-2-chloromethane in the presence of K_2CO_3 in CH₃CN. Lower yields of **6a,b** and **6a',b'** were achieved through the alkylation of **3a,b** with 1,3-dibromopropane or 1,2-dibromopropane. The coupling of **6a–f** and **6a'–f'** with (*R*)-2-methyl pyrrolidine in the presence of KI and K_2CO_3 in CH₃CN yielded the targeted compounds **7a–f** and **7a'–f'**, respectively. The detailed experimental procedures and the characterization of the new compounds are described in the experimental section.

Scheme 1 Synthesis of 5a–d. Reagents and conditions: (i) 3-butynyl p-toluenesulfonate, K_2CO_3 , CH_3CN , 50 °C, 24 h; (ii) AlC1₃, CH_2Cl_2 , rt, 4 h; (iii) HBr, AcOH, reflux, 24 h; (iv) NH₄OH, I₂, KI, rt, 18 h; (v) (a): Pd(OAc)₂, (p-tol)₃P, Cul, CH₃CN, (R)-1-(3-butyny1)-2-methyl-pyrrolidine, rt, 10 min; (b): iPr₂NH, 60 °C, 20 h. **3a** was purchased from Sigma Aldrich (China).

Scheme 2 Synthesis of 7a-f, 7a'-f. Reagents and conditions: (vi) 1bromo-3-chloropropane/1-bromo-2-chloroethane, K_2CO_3 , CH_3CN , reflux, 24 h; (vii) (*R*)-2-methyl pyrrolidine, KI, K_2CO_3 , CH_3CN , reflux, 24 h.

Synthesis of cyclized oxydibenzene XB-1 analogues 5B-5F

The preparation of the targeted cyclized oxydibenzene **XB-1** analogues **5B–5F** required different synthetic routes from **5a–d**, which are depicted in Scheme 3. Compounds **1B–F** were converted to **2B–F** through their coupling with 4-methoxyphenol in the presence of KOH, CuI, *n*-Bu₄NBr, and K₃PO₃ in DMF at yields of 84.9%, 31.6%, and 77.8%, respectively, followed by procedures analogous to those used to prepare **5a–d**. The detailed experimental procedures and characterization of the new compounds are described in the ESI.†

Synthesis of noncyclized oxydibenzene XB-1 analogues 7B-F and 7B'-F'

The syntheses of the targeted noncyclized oxydibenzene **XB-1** analogues **7B**, **7E**, **7F**, **7B'**, **7E'**, and **7F'** are shown in Scheme 4. The synthetic procedures are analogues to those used to prepare **7a–f**. Compounds **6B–F**, **6B'** and, **6E'–F'** were obtained at high yield through the alkylation of **3B–F** with 1-bromo-3-chloropropane or 1-bromo-2-chloromethane in the presence of K_2CO_3 in CH₃CN. The coupling of **6B–F** and **6B'–F'** with (*R*)-2methyl pyrrolidine in the presence of KI and K_2CO_3 in CH₃CN formed the target compounds **7B–F** and **7B'–F'** at high yields. Details of the reaction procedures and the characterization of the new compounds are described in the ESI.†

Scheme 3 Synthesis of 5B, 5E, and 5F. *Reagents and conditions*: (viii) 4-methoxyphenol, KOH/Cul, *n*-Bu₄NBr, K₃PO₄, DMF; (ix) HBr, CH₃CCOOH; (x) MeNH₂, I₂, KI; (xi) Pb(OAC)₂, (*p*-to1)₃P, Cul, iPr₂NH, (*R*)-1-(but-3-yn-1-yl)-2-methylpyrrolidine, CH₃CN.

Scheme 4 Synthesis of 7B, 7E, 7F, 7B', 7E' and 7F'. Reagents and conditions: (xii) 1-bromo-3-chloropropane/1-bromo-2-chloro-ethane, K_2CO_3 , CH_3CN ; (xiii) (*R*)-2-methylpyrrolidine, KI, K_2CO_3 , CH_3CN .

Preliminary evaluation of biological activity

Primary cortical neurons cultures were obtained from fetal Sprague Dawley rats at embryonic day 18 (E18).37 Cerebellar granule neuronal cells (CGCs) were isolated from 8-day-old Sprague Dawley rat pups, as described previously.³⁸ The cortical neurons and CGCs were cultured in complete Neurobasal culture medium supplemented with 2% B27 and 0.5 mM GlutaMax, and the cultures were incubated in a humidified atmosphere of 5% CO2 and 95% air at 37 °C. The cortical neurons cultured at DIV4 were pretreated with the compounds for 24 h and then incubated with 5 μ M A β_{25-35} for an additional 24 h. The CGCs cultured at DIV6 were pretreated with the compounds for 24 h and then incubated with 100 µM glutamate for an additional 24 h. The cell viability was evaluated by incubating with 0.5 mg mL⁻¹ 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) for 4 h under 5% CO₂/95% air at 37 °C. The media were replaced with 100 μ L of DMSO, and the absorbance was read at 570 nM. The data are expressed as the means \pm SD.

H₃ antagonists have been shown to exhibit neuroprotective roles in Alzheimer's disease. To determine their biological activities, all of the compounds were evaluated for their in vitro neuroprotective effects against $A\beta_{25-35}$ (the toxic fragment of Aβ)-induced damage in primary cortical neurons and glutamate-induced neuronal injury in primary cerebellar granule neurons. The results are shown in Table 1 and 2. Compared with the parent compound 2, all of the compounds displayed neuroprotective activity at 0.1 µM or 1 µM. Notably, compound 7B at 0.1 μ M exhibited a somewhat better protective effect compared to parent compound 2 against glutamate-induced neuronal injury. The SAR trend showed that the oxydibenzene moiety series exhibited a little better protective effects compared to benzophenone moiety series at 0.1 µM against glutamate-induced neuronal injury. Decreasing the rigidity by substitution of noncyclized oxydibenzene moiety with cyclized oxydibenzene moiety had no significant affect on the neuroprotective activity against glutamate-induced neuronal injury at 0.1 µM or 1 µM. Pallas software was also used to predict the lipophilicity for these compounds and their computed cLogP values are calculated to be between 3.0 and 5.0. Particularly,

Table 1 Neuroprotective effects of all of the compounds against A β_{25-35} -induced neurotoxicity in primary rat cortical neurons

No.	Compound	Cell viability ^a (%)	
		0.1 μΜ	1 μΜ
1	2	57.7 ± 3.6	80.8 ± 7.2
2	7a′	73.0 ± 4.1	62.2 ± 3.6
3	7b	58.2 ± 4.0	$\textbf{77.7} \pm \textbf{6.4}$
4	7 b ′	66.6 ± 5.1	69.3 ± 1.8
5	7 c	74.7 ± 7.2	73.0 ± 2.4
6	7 d	69.5 ± 6.8	72.7 ± 3.8
7	7e	62.1 ± 2.1	80.6 ± 2.0
8	7 e ′	66.9 ± 4.9	$\textbf{78.1} \pm \textbf{4.1}$
9	7 f	68.1 ± 5.1	$\textbf{76.4} \pm \textbf{3.5}$
10	7 f ′	$\textbf{70.3} \pm \textbf{6.1}$	72.5 ± 3.4
11	5B	60.3 ± 1.5	73.6 ± 1.3
12	5E	62.4 ± 4.2	$\textbf{76.8} \pm \textbf{1.0}$
13	5F	59.7 ± 2.8	75.0 ± 1.0
14	7 B	59.5 ± 2.8	$\textbf{76.2} \pm \textbf{1.7}$
15	$7\mathbf{B}'$	57.7 ± 1.0	76.1 ± 1.1
16	7E	58.9 ± 1.8	$\textbf{75.1} \pm \textbf{1.6}$
17	$7\mathbf{F}$	57.9 ± 2.5	$\textbf{76.9} \pm \textbf{2.9}$
18	$\mathbf{7F}'$	60.8 ± 1.5	74.1 ± 1.6
19	Thioperamide	N.T. ^{<i>b</i>}	67.3 ± 3.0

^{*a*} The neuroprotective effects of these compounds against $A\beta_{25-35}$ induced neurotoxicity in cortical neurons. The cell viability obtained with the control was considered 100%, and the average cell viability after $A\beta_{25-35}$ exposure was 54.6% \pm 4.0. The positive control is thioperamide. ^{*b*} N.T. means not tested.

 Table 2
 Neuroprotective effects of all of the compounds against glutamate-induced neurotoxicity in primary rat cerebellar granule neuronal cells (CGCs)

No.	Compound	Cell viability ^a (%)	
		0.1 µM	1 µM
1	2	76.7 ± 4.3	86.6 ± 4.5
2	7a′	75.5 ± 5.2	84.9 ± 4.7
3	7 b	76.6 ± 4.7	75.9 ± 2.9
4	7 b ′	73.4 ± 4.0	79.1 ± 4.4
5	7c	75.2 ± 4.3	75.3 ± 7.9
6	7 d	74.8 ± 9.3	75.6 ± 7.6
7	7e	72.2 ± 4.8	75.9 ± 5.2
8	7e'	77.3 ± 6.5	71.5 ± 7.1
9	7 f	73.5 ± 2.2	82.7 ± 7.7
10	7 f ′	76.1 ± 1.5	85.9 ± 9.5
11	5B	79.2 ± 7.4	77.7 ± 4.4
12	5E	83.8 ± 7.2	79.7 ± 7.4
13	5F	79.5 ± 2.2	71.7 ± 3.4
14	7 B	92.7 ± 3.5	$\textbf{79.9} \pm \textbf{4.6}$
15	7B'	78.0 ± 2.8	75.7 ± 3.4
16	7E	79.0 ± 4.7	75.0 ± 2.4
17	7F	82.2 ± 2.2	72.9 ± 3.8
18	7 F ′	75.0 ± 5.5	69.4 ± 6.0
19	Thioperamide	N.T. ^b	92.8 ± 5.7

 a The neuroprotective effects of these compounds against glutamateinduced neurotoxicity in cerebellar granule neurons. The cell viability obtained with the control was considered 100%, and the average cell viability after glutamate exposure was 63.3%. The positive control is thioperamide. b N.T. means not tested. compound 7B has low computed cLogP value of 3.16 \pm 0.44. It has been reported that the cLogP value for parent compound 2 is 4.34 \pm 0.34 and it can penetrate into the brain to show good PET imaging in the specific brain area.³⁶ So these analogues may have the penetration ability of blood–brain barrier to show biological activity. These data indicate that these compounds may have the potential as H₃ receptor antagonists for the treatment of Alzheimer's disease.

Experimental section

All of the reagents and organic solvents were ACS grade or higher and used without further purification. Unless otherwise noted, all of the chemicals were purchased from J&K Scientific (China) and Sigma Aldrich (China). The reactions were performed under an argon atmosphere with standard Schlenk techniques. Thin-layer chromatography was performed on a HAIYANG silica gel F254 plate, and the compounds were visualized under UV light ($\lambda = 254$ nm). Column chromatography was conducted using HAIYANG silica gel (type: 200-300 mesh ZCX-2). The ¹H (500 MHz), ¹³C NMR (126 MHz), and ¹⁹F NMR (470 MHz) spectra were recorded on an Avance 500 spectrometer (Bruker; Billerica, MA, USA). The chemical shifts are reported in δ units (ppm) downfield relative to the chemical shift for tetramethylsilane. The GC-MS spectra were obtained on a Trace DSQ GC-MS instrument (Thermo Fisher Scientific Corp., Waltham, MA, USA), and the ESI-MS were obtained on a TSQ Quantum ESI-MS (Thermo Fisher Scientific Corp., Waltham, MA, USA).

(2-Fluorophenyl)(4-hydroxy-3-iodophenyl)methanone (4a)

A solution of 1.0 g (4.6 mmol) of **3a** in 60 mL of NH₄OH (25–28%) was stirred at 25 °C for 15 min and then treated with a solution of KI (3.74 g, 22.5 mmol) and I₂ (1.17 g, 4.62 mmol) in 10 mL of H₂O. After stirring at 25 °C for 18 h, the reaction mixture was adjusted to pH 7, extracted with EtOAc, washed with H₂O and brine, dried with MgSO₄, and filtered. The filtrate was concentrated under vacuum. The residue was purified by flash chromatography and eluted with 98% CH₂Cl₂/2% MeOH to give **4a** (1.5 g, 94.3%). ¹H NMR (DMSO-d₆): δ 11.56 (s, 1H), 8.06 (d, 1H, *J* = 3.6 Hz), 7.63 (m, 2H), 7.52 (m, 1H), 7.35 (m, 2H), 7.01 (m, 1H). ¹³C NMR (DMSO-d₆): δ 189.30, 161.32, 159.32, 157.35, 140.19, 132.66, 131.53, 129.53, 126.03, 124.25, 115.71, 114.18, 84.38.

(R)-(2-Fluorophenyl)(2-(2-(2-methylpyrrolidin-1-yl)ethyl)benzofuran-5-yl)methanone (5a)

(*R*)-1-(3-Butynyl)-2-methylpyrrolidine (52 mL of 0.1 M solution in CH₃CN, 5.2 mmol) and compound **4a** (1.5 g, 4.38 mmol) were mixed in a 100 mL round bottom flask. Pd(OAc)₂ (30 mg, 0.12 mmol), tri(4-methylpenyl)phosphine (80 mg, 0.25 mmol), and CuI (125.3 mg, 0.66 mmol) were then added to the reaction mixture. After stirring at 25 °C for 10 min, the reaction mixture was treated with i-Pr₂NH (6.3 mL, 44.25 mmol) and then heated at 60 °C under N₂ for 16 h. The reaction mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified on silica gel and eluted with 98% CH₂Cl₂/2% MeOH to yield 5a (290 mg, 19%). ¹H NMR (CDCl₃): δ 7.94 (s, 1H), 7.75 (m, 1H), 7.59 (m, 1H), 7.51 (m, 2H), 7.32 (td, 1H, *J*₁ = 0.8 Hz, *J*₂ = 7.5 Hz), 7.24 (m, 1H), 6.63 (s, 1H), 3.23 (m, 2H), 3.02 (m, 2H), 2.46 (m, 2H), 2.25 (m, 1H), 1.98 (m, 1H), 1.76 (m, 2H), 1.43 (m, 1H), 1.13 (d, 3H, *J* = 6.2 Hz); ¹³C NMR (CDCl₃): δ 194.81, 160.85, 160.28, 159.16, 134.29, 133.92, 131.59, 130.61, 126.86, 125.64, 124.72, 117.40, 117.22, 112.04, 104.47, 61.64, 54.73, 52.91, 33.64, 28.49, 22.48, 18.71; ¹⁹F NMR (CDCl₃): δ –114.13. ESI-MS (M⁺ + 1): found 352.95; calculated for C₂₁H₂₄FNO₂, 352.17.

(4-Methoxyphenyl)(2-nitrophenyl)methanone (2b)

2-Nitrobenzoyl chloride (4 g, 21.56 mmol) and 3.45 g of anhydrous aluminum chloride were suspended in 160 mL of toluene. Anisole (2.331 g, 21.56 mmol) was gradually added to the mixture. The reaction mixture was slowly heated to 40 °C, stirred for 24 h, cooled to room temperature, and extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After the removal of the organic solvent under vacuum, the residue was purified through column chromatography and eluted with 20% EtOAc/hexane to provide **2b** (1.885 g, 33%) as a yellow powder. ¹H NMR (CDCl₃): δ 8.23 (dd, 1H, $J_1 = 0.80$ Hz, $J_2 = 8.2$ Hz), 7.76 (td, 1H, $J_1 = 1.1$ Hz, $J_2 = 7.5$ Hz), 7.73 (d, 2H, J = 8.8 Hz), 7.66 (m, 1H), 7.48 (dd, 1H, $J_1 = 1.3$ Hz, $J_2 = 7.5$ Hz), 6.93 (d, 2H, J = 8.9 Hz), 3.87 (s, 3H).

(4-Hydroxyphenyl)(2-nitrophenyl)methanone (3b)

(4-Methoxyphenyl) (2-nitrophenyl)methanone (1.885 g, 7.33 mmol) was suspended in hydrobromic acid (75 mL, 40%) and acetic acid (63 mL, 99.7%). The reaction mixture was refluxed for 24 h, concentrated under vacuum, and then extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 80% hexane/20% EtOAc to yield **3b** (909 mg, 51%) as a grey solid; mp: 122 °C. ¹H NMR (CDCl₃): δ 8.24 (d, 2H, J = 8.2 Hz), 7.77 (m, 2H), 7.68 (m, 3H), 7.48 (dd, 2H, J₁ = 1.1 Hz, J₂ = 7.5 Hz), 6.87 (d, 2H, J = 8.8 Hz).

(4-Hydroxy-3-iodophenyl)(2-nitrophenyl)methanone (4b)

A solution of 3.0 g (12 mmol) of **3b** in 180 mL of NH₄OH (25–28%) was stirred at 25 °C for 15 min and then treated with a solution of KI (10.1 g) and I₂ (1.4 g) in 10 mL of H₂O. After stirring at 25 °C for 48 h, the reaction mixture was adjusted to pH 7, extracted with EtOAc, washed with H₂O and brine, dried, and filtered, and the filtrate was concentrated under vacuum. The residue was purified by flash chromatography and eluted with 98% CH₂Cl₂/2% MeOH to give **4b** (1.6 g, 35.2%). ¹H NMR (DMSO-d₆): δ 8.25 (dd, 1H, J_1 = 8.2 Hz, J_2 = 0.8 Hz), 8.16 (d, 1H, J = 2.0 Hz), 7.79 (t, 1H, J_1 = 7.5 Hz, J_2 = 1.1 Hz), 7.70 (m, 1H), 7.59 (dd, 1H, J_1 = 8.5 Hz), 5.88 (s, 1H); ¹³C NMR (DMSO-d₆): δ 189.82, 161.46, 145.79, 139.67, 134.49, 134.24, 131.23, 130.67, 128.36, 128.27, 124.21, 114.30, 84.78. ESI-MS (M⁻ + 1): found 367.79; calculated for C₂₁H₂₄FNO₂, 367.94.

(R)-(2-(2-(2-Methylpyrrolidin-1-yl)ethyl)benzofuran-5-yl)(2nitrophenyl)methanone (5b)

(R)-1-(3-Butynyl)-2-methylpyrrolidine (51 mL of 0.1 M solution in CH₃CN, 5.1 mmol) and compound 4b (1.5 g, 4.08 mmol) were mixed in a 100 mL round bottom flask. Pd(OAc)₂ (27 mg, 0.12 mmol), tri(4-methylpenyl) phosphine (73 mg, 0.24 mmol), and CuI (231 mg, 1.6 mmol) were then added to the reaction mixture. After stirring at 25 °C for 10 min, the reaction mixture was treated with i-Pr₂NH (5.7 mL, 80.3 mmol) and then heated at 60 °C under N2 for 16 h. The reaction mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified on silica gel and eluted with 98% CH2Cl2/2% MeOH to provide 5b (246 mg, 16%). ¹H NMR (CDCl₃): δ 8.25 (d, 1H, J = 8.0 Hz), 7.87 (d, 1H, J = 1.2 Hz), 7.78 (m, 1H), 7.70 (m, 2H), 7.52 (m, 1H), 7.46 (d, 1H, J = 8.4 Hz), 6.48 (s, 1H), 3.20 (m, 2H), 3.0 (m, 2H), 2.50 (m, 1H), 2.40 (m, 1H), 2.22 (m, 1H), 1.93 (m, 1H), 1.72 (m, 2H), 1.44 (m, 1H), 1.14 (d, 1H, J = 6.0 Hz); ¹³C NMR (CDCl₃): δ 194.55, 158.99, 156.63, 148.03, 144.36, 137.70, 135.87, 133.34, 130.96, 130.31, 127.10, 126.02, 124.83, 112.89, 106.68, 66.24, 54.74, 51.65, 32.80, 26.52, 22.81, 17.12. ESI-MS (M⁺ + 1): found 379.02; calculated for C₂₂H₂₂N₂O₄, 379.16.

(3-Fluorophenyl)(4-methoxyphenyl)methanone (2c)

3-Fluorobenzoyl chloride (5 g, 31.5 mmol) and 5.04 g of anhydrous aluminum chloride were suspended in 25 mL of dichloromethane. Anisole (3.41 g, 31.5 mmol) was gradually added to the mixture. The mixture was then slowly heated to 40 $^{\circ}$ C, stirred for 24 h, cooled to room temperature, and extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with column chromatography and eluted with 80% hexane/20% EtOAc to provide **2c** (5.6 g, 81%) as a white solid. ¹H NMR (CDCl₃): δ 7.84 (m, 2H), 7.52 (m, 1H), 7.46 (m, 2H), 7.28 (m, 1H), 6.99 (m, 2H), 3.90 (s, 3H).

(3-Fluorophenyl)(4-hydroxyphenyl)methanone (3c)

(3-Fluorophenyl)(4-methyloxyphenyl)methanone (4.84 g, 21 mmol) was suspended in hydrobromic acid (160 mL, 40%) and acetic acid (133 mL, 99.7%). The reaction mixture was refluxed for 24 h, concentrated under vacuum, and then extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 80% hexane/20% EtOAc to yield **3c** (4.18 g, 92%) as a white solid. ¹H NMR (CDCl₃): δ 7.93 (m, 2H), 7.68 (m, 1H), 7.62 (m, 1H), 7.60 (m, 1H), 7.44 (m, 1H), 7.11 (m, 2H).

(3-Fluorophenyl)(4-hydroxy-3-iodophenyl)methanone (4c)

A solution of 1.0 g (2.31 mmol) of **3c** in 39 mL of NH_4OH (25–28%) was stirred at 25 °C for 15 min and then treated with a solution of KI (3.74 g, 22.5 mmol) and I₂ (1.17 g, 4.62 mmol) in 10 mL of H₂O. The reaction mixture was stirred at 25 °C for 18 h. The reaction mixture was adjusted to pH 7, extracted with EtOAc, washed with H₂O and brine, dried, and filtered, and the

filtrate was concentrated under vacuum. The residue was purified by flash chromatography and eluted with 98% CH₂Cl₂/2% MeOH to give **4c** (1.1 g, 70%). ¹H NMR (CD₃OD): δ 8.17 (d, 1H, *J* = 2.1 Hz), 7.67 (dd, 1H, *J*₁ = 2.2 Hz, *J*₂ = 6.4 Hz), 7.54 (m, 1H), 7.49 (m, 1H), 7.41 (m, 1H), 7.36 (m, 1H), 6.92 (d, 2H, *J* = 8.5 Hz).

(R)-(3-Fluorophenyl)(2-(2-(2-methylpyrrolidin-1-yl)ethyl)benzofuran-5-yl)methanone (5c)

(R)-1-(3-butynyl)-2-methylpyrrolidine (30 mL of 0.1 M solution in CH₃CN, 3 mmol) and compound 4c (1 g, 3.08 mmol) were mixed in a 100 mL round bottom flask. Pd(OAc)₂ (21 mg, 0.09 mmol), tri(4-methylpenyl)phosphine (56 mg, 0.19 mmol), and CuI (88 mg, 0.5 mmol) were then added to the reaction mixture. After stirring at 25 °C for 10 min, the reaction mixture was treated with i-Pr₂NH (4.6 mL, 32.3 mmol) and then heated at 60 °C under N₂ for 16 h. The reaction mixture was allowed to cool and was filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified on silica gel and eluted with 98% CH₂Cl₂/2% MeOH to yield 5c (224 mg, 21%). ¹H NMR (CDCl₃): δ 7.95 (s, 1H), 7.74 (dd, 1H, J_1 = 1.0 Hz, *J*₂ = 8.6 Hz), 7.57 (d, 1H, *J* = 7.6 Hz), 7.49 (m, 2H), 7.45 (m, 1H), 7.28 (m, 1H), 6.53 (s, 1H), 3.22 (m, 2H), 3.02 (m, 2H), 2.49 (m, 1H), 2.38 (m, 1H), 2.22 (m, 1H), 1.94 (m, 1H), 1.81 (m, 1H), 1.72 (m, 1H), 1.45 (m, 1H), 1.14 (d, 3H, J = 6.1 Hz); ¹³C NMR (CDCl₃): δ 195.21, 163.49, 161.52, 159.94, 157.23, 140. 57, 133.99, 132.01, 129.96, 129.01, 125.99, 123.54, 119.13, 118.96, 116.85, 116.67, 110.84, 103.02, 60.04, 53.91, 51.85, 32.81, 28.25, 21.81, 19.09; ¹⁹F NMR (CDCl₃): δ -112.11. ESI-MS (M⁺ + 1): found 352.10; calculated for C₂₂H₂₂FNO₂, 352.17.

(3-Iodophenyl)(4-methoxyphenyl)methanone (2d)

Dichloromethane (178 mL) was cooled in an ice bath and treated portionwise with AlCl₃ (2.52 g, 18.9 mmol). 3-Iodobenzoyl chloride 1d (4.7 g, 17.64 mmol) in dichloromethane was then added to the mixture while ensuring that the temperature did not exceed 10 °C. The reaction mixture was stirred at 0 °C for 10 min, and anisole (1.78 g, 16.48 mmol) was added dropwise such that the temperature did not exceed 10 °C. The solution was allowed to warm to room temperature overnight. The mixture was concentrated under vacuum and then extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with column chromatography and eluted with 90% hexane/10% EtOAc to obtain 2d (5.66 g, 95%) as a white powder. ¹H NMR (CDCl3): δ 8.08 (s, 1H), 7.9 (d, 1H, *J* = 7.8 Hz), 7.81 (d, 2H, *J* = 8.2 Hz), 7.70 (d, 1H, *J* = 7.6 Hz), 7.21 (t, 1H, J = 7.7 Hz), 6.98 (d, 2H, J = 5 Hz), 3.90 (s, 3H).

(4-Hydroxyphenyl)(3-iodophenyl)methanone (3d)

Compound 2d (5.95 g, 17.61 mmol) was suspended in hydrobromic acid (164 mL, 40%) and acetic acid (136 mL, 99.7%). The reaction mixture was refluxed for 24 h. The reaction mixture was allowed to cool and then extracted with EtOAc/brine, EtOAc/ aqueous NaHCO₃, and EtOAc/H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash

chromatography and eluted with 80% hexane/20% EtOAc to yield **3d** (4.57 g, 80%) as a white power. ¹H NMR (CDCl₃/DMSO-d₆): δ 10.36 (s, 1H), 7.92 (m, 2H), 7.62 (m, 3H), 7.29 (m, 1H), 6.88 (d, 2H, *J* = 8.6 Hz); ¹³C NMR (CDCl₃/DMSO-d₆): δ 192.10, 161.77, 139.68, 139.52, 136.70, 131.89, 129.66, 127.78, 126.78, 114.73, 93.87. ESI-MS (M⁻ + 1): found 322.85; calculated for C₂₂H₂₂FNO₂, 322.96.

(4-Hydroxy-3-iodophenyl)(3-iodophenyl)methanone (4d)

A solution of 3.68 g (11.36 mmol) of **3d** in 137 mL of NH₄OH (25–28%) was stirred at 25 °C for 15 min and then treated with a solution of KI (9.42 g, 56.8 mmol) and I₂ (1.447 g, 5.7 mmol) in 15 mL of H₂O. The reaction mixture was stirred at 25 °C for 14 h. The reaction mixture was adjusted to pH 7, extracted with EtOAc, washed with H₂O and brine, dried, and filtered, and the filtrate was concentrated under vacuum. The residue was purified by flash chromatography and eluted with 98% CH₂Cl₂/2% MeOH to give **4d** (2.15 g, 49%) as a yellow solid; mp: 210–212 °C. ¹H NMR (DMSO-d₆): δ 11.45 (s, 1H), 8.07 (d, 1H, *J* = 2.1 Hz), 7.99 (m, 1H), 7.96 (m, 1H), 7.63 (m, 2H), 7.34 (m, 1H), 7.01 (d, 1H, *J* = 8.5 Hz); ¹³C-NMR (DMSO-d₆): δ 191.12, 160.76, 140.52, 139.97, 139.06, 136.71, 131.87, 129.98, 128.70, 127.94, 113.95, 94.36, 84.41; ESI-MS (M⁻ + 1): found 448.68; calculated for C₂₂H₂₂N₂O₄, 448.85.

(R)-(3-Iodophenyl)(2-(2-(2-methylpyrrolidin-1-yl)ethyl)benzofuran-5-yl)methanone (5d)

(R)-1-(but-3-yn-1-yl)-2-methylpyrrolidine (20 mL of 0.1 M solution in CH₃CN, 2 mmol) and compound 4d (612 mg, 1.36 mmol) were mixed in a 100 mL round bottom flask. Pd(OAc)₂ (9 mg, 0.04 mmol), tri(4-methylpenyl)phosphine (24 mg, 0.08 mmol), and CuI (77 mg, 0.4 mmol) were then added to the reaction mixture. After stirring at 25 °C for 10 min, the reaction mixture was treated with i-Pr₂NH (1.9 mL, 13.55 mmol) and then heated at 60 °C under N2 for 20 h. The reaction mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified on silica gel and eluted with 98% CH₂Cl₂/2% MeOH to provide 5d (112 mg, 18%). ¹H NMR (CDCl₃): δ 8.12 (t, 1H, J = 1.5 Hz), 7.94 (d, 1H, J = 1.6 Hz), 7.91 (m, 1H), 7.73 (m, 2H), 7.50 (d, 1H, J = 8.6 Hz), 7.23 (t, 1H, J = 7.8 Hz), 6.55 (s, 1H), 3.27 (m, 2H), 3.06 (t, 2H, J = 7.8 Hz), 2.55 (m, 1H), 2.47 (m, 1H), 2.28 (m, 1H), 1.97 (m, 1H), 1.85 (m, 1H), 1.75 (m, 1H), 1.50 (m, 1H), 1.19 (d, 3H, J = 6.1 Hz); ¹³C NMR (CDCl₃): 196.45, 160.90, 158.70, 142.28, 141.84, 140.00, 133.41, 131.36, 130.50, 130.40, 127.50, 125.02, 112.32, 104.69, 95.45, 61.87, 55.22, 53.16, 34.08, 31.18, 23.19, 20.11. ESI-MS (M^+ + 1): found 459.92; calculated for C₁₂H₂₂INO₂, 460.08.

(4-(3-Chloropropoxy)phenyl)(2-fluorophenyl)methanone (6a)

(2-Fluorophenyl)(4-hydroxyphenyl)methanone (865 mg, 4 mmol) and 1-bromo-3-chloropropane (1.26 g, 8 mmol) were suspended in 10 mL of acetonitrile. Anhydrous potassium carbonate (1.66 g, 12 mmol) was then added to the reaction mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal

of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 80% hexane/20% EtOAc to provide compound **6a** (1.02 g, 87.1%) as a white wax; mp: 61–63 °C. ¹H NMR (CDCl₃): δ 7.84 (d, 2H, *J* = 8.0 Hz), 7.51 (m, 2H), 7.25 (m, 1H), 7.15 (m, 1H), 6.96 (d, 2H, *J* = 8.8 Hz), 4.19 (t, 2H, *J* = 5.8 Hz), 3.75 (d, 2H, *J* = 6.2 Hz), 2.26 (q, 2H, *J*₁ = 6.0 Hz, *J*₂ = 6.0 Hz); ¹³C NMR (CDCl₃): δ 192.02, 163.20, 160.87, 158.87, 132.77, 132.45, 130.58, 127.63, 124.41, 116.38, 114.34, 64.68, 41.41, 32.14 ppm. GC-MS (M⁺): found 292.01; calculated for C₁₆H₁₄ClFO₂, 292.07.

(R)-(2-Fluorophenyl)(4-(3-(2-methylpyrrolidin-1-yl)propoxy)phenyl)methanone (7a)

Compound 6a (522 mg, 1.78 mmol), (R)-2-methylprrodine (303.13 mg, 3.56 mmol), potassium iodide (295.48 mg, 1.78 mmol), anhydrous potassium carbonate (738 mg, 5.34 mmol), and acetonitrile (99.0%, 15 mL) were added to a roundbottom flask. The mixture was heated at reflux for 24 h. The mixture was then cooled to room temperature and concentrated, and the product was purified by column chromatography and eluted with 98% CH₂Cl₂/2% MeOH to give 7a (505 mg, 83.2%) as a yellow oil. ¹H NMR (CDCl₃): δ 7.74 (d, 2H, J = 7.7Hz), 7.45 (m, 2H), 7.20 (t, 1H, J = 7.5), 7.09 (t, 1H, J = 8.6 Hz), 6.88 (d, 2H, J = 7.6 Hz), 4.12 (t, 2H, J = 5.4 Hz), 3.79 (m, 1H), 3.62 (m, 1H), 3.49 (m, 1H), 3.23 (m, 1H), 3.13 (m, 1H), 2.58 (m, 1H), 2.29 (m, 2H), 2.17 (m, 1H), 2.08 (m, 1H), 1.94 (m, 1H), 1.58 (s, 3H); 13 C NMR (CDCl₃): δ 192.02, 162.65, 160.79, 158.79, 132.90, 132.85, 132.37, 130.65, 130.47, 127.37, 127.25, 124.44, 116.38, 116.38, 114.41, 114.15, 65.34, 53.36, 50.41, 31.57, 29.73, 25.38, 21.39, 15.61 ppm. ESI-MS (M⁺ + 1): found 342.04; calculated for C₂₁H₂₄FNO₂, 342.19.

(4-(2-Chloroethoxy)phenyl)(2-fluorophenyl)methanone (6a')

(2-Fluorophenyl)(4-hydroxyphenyl)methanone (1.000 g, 4.6 mmol) and 1-bromo-2-chloroethane (0.766 mL, 9.2 mmol) were suspended in 20 mL of acetonitrile. Anhydrous potassium carbonate (1.908 g, 13.8 mmol) was then added to the mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and extracted with EtOAc and H2O. The organic layer was collected and dried over MgSO4. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 90% hexane/10% EtOAc to provide compound 6a' (660 mg, 51.5%) as a yellow oil. ¹H NMR (CDCl₃): δ 7.81 (d, 2H, J = 7.9 Hz), 7.47 (m, 2H), 7.23 (t, 1H, J = 7.5 Hz), 7.12 (t, 1H, J = 9.0 Hz), 6.94 (d, 2H, J = 9.0 Hz), 4.26 (t, 2H, J = 5.7 Hz), 3.81 (t, 2H, J = 5.8 Hz); ¹³CNMR (CDCl₃): δ 191.93, 162.59, 160.83, 158.84, 132.85, 132.40, 130.79, 127.45, 124.41, 116.35, 114.43, 68.22, 41.87 ppm. GC-MS (M⁺): found 277.93; calculated for C₁₅H₁₂ClFO₂, 278.05.

(R)-(2-Fluorophenyl)(4-(2-(2-methylpyrrolidin-1-yl)ethoxy)-phenyl)methanone (7a')

A mixture of compound **6a**' (560 mg, 2 mmol), K_2CO_3 (829 mg, 6 mmol), KI (332 mg, 2 mmol), and (*R*)-2-methylpyrrolidine (242 μ L, 2.4 mmol) in acetonitrile (25 mL) was heated at 85 °C for 24 h. The reaction mixture was allowed to cool and filtered

through celite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with 99% MeOH/1% CH₂Cl₂ to give compound 7a' (452 mg, 69.0%) as a yellow oil. ¹H NMR (CDCl₃): δ 7.83 (d, 2H, J = 7.80 Hz), 7.50 (m, 2H), 7.25 (t, 1H, J = 7.50 Hz), 7.15 (t, 1H, J = 8.90 Hz), 6.96 (d, 2H, J = 8.90 Hz), 4.19 (m, 2H), 3.25 (m, 2H), 2.60 (m, 1H, J₁ = 6.05 Hz, J₂ = 6.55 Hz), 2.50 (m, 1H), 2.33 (m, 1H), 1.95 (m, 1H), 1.83 (m, 1H), 1.75 (m, 1H), 1.46 (m, 1H), 1.16 (d, 3H, J = 6.10 Hz). ¹³CNMR (CDCl₃): δ 193.43, 164.69, 163.97, 162.24, 160.24, 148.58, 133.79, 132.39, 132.32, 131.93, 128.79, 125.70, 117.89, 117.72, 117.55, 116.17, 115.78, 115.38, 68.92, 61.97, 56.31, 54.05, 33.89, 23.40, 20.46 ppm. ¹⁹F NMR (CDCl₃): δ -111.99 ppm. ESI-MS (M⁺ + 1): 328.02; calculated for C₂₀H₂₃FNO₂, 328.16.

(4-(3-Chloropropoxy)phenyl)(2-nitrophenyl)methanone (6b)

(4-Hydroxy phenyl)(2-nitrophenyl)methanone (848 mg, 3.48 mmol) and 1-bromo-3-chloro propane (1.096 g, 6.96 mmol) were suspended in 10 mL of acetonitrile (99.0%). Anhydrous potassium carbonate (1.443 g, 10.44 mmol) was then added in the reaction mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and then extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 80% hexane/20% EtOAc to provide 7b (1.369 g, 78.3%) as a pale yellow solid; mp: 99–102 °C. ¹H NMR (CDCl₃): δ 8.17 (d, 1H, J = 8.20 Hz), 7.73 (t, 1H, J = 7.5 Hz), 7.70 (d, 2H, J = 8.85 Hz), 7.62 (m, 1H, $J_1 = 1.2$ Hz, $J_2 = 7.25$ Hz), 7.44 (m, 1H, $J_1 =$ 1.05 Hz, $J_2 = 7.5$ Hz), 6.91 (d, 2H, 8.85 Hz), 4.14 (t, 2H, J = 5.85Hz), 3.70 (d, 2H, J= 6.30 Hz), 2.21 (m, 2H, J_1 = 6.00 Hz, J_2 = 6.10 Hz); ¹³C NMR (CDCl3): δ 192.24, 163.40, 146.78, 136.47, 134.29, 131.85, 130.55, 129.20, 128.97, 124.61, 114.66, 64.76, 41.44, 32.06. GC-MS (M⁺): found 318.99; calculated for C₁₆H₁₄ClNO₄, 319.06.

(R)-(4-(3-(2-Methylpyrrolidin-1-yl)propoxy)phenyl)(2nitrophenyl)methanone (7b)

(4-(3-Chloropropoxy)phenyl)(2-nitrophenyl)methanone (639 mg, 2 mmol), (R)-2-methylprrodine (340.6 mg, 4 mmol), potassium iodide (332 mg, 2 mmol), potassium carbonate anhydrous (829 mg, 3 mmol), and acetonitrile (99.0%, 20 mL) were added to a round-bottom flask. The mixture was heated at reflux for 24 h, cooled to room temperature, and concentrated, and the product was purified by column chromatography and eluted with 5% MeOH/CH₂Cl₂ to give 7b (634 mg, 86.1%) as a pale yellow oil. ¹H NMR (CDCl₃): δ 8.23 (d, 1H, J = 8.25 Hz), 7.83 (m, 1H), 7.73 (m, 1H), 7.69 (d, 2H, J = 8.75 Hz), 7.50 (m, 1H), 6.99 (d, 2H, J = 8.80 Hz), 4.10 (t, 2H, J = 5.75 Hz), 3.18 $(m, 1H, J_1 = 3.80 \text{ Hz}, J_2 = 6.60 \text{ Hz}), 3.05 (m, 1H), 2.40 \text{ (dd, } 1H, J_1)$ $= 6.95 \text{ Hz}, J_2 = 7.70 \text{ Hz}), 2.23 \text{ (m, 2H)}, 2.01 \text{ (m, 3H)}, 1.75 \text{ (m, 2H)}$ 2H), 1.42 (m, 1H), 1.12 (d, 3H, J = 6.15 Hz); ¹³C NMR (CDCl₃): δ 192.83, 163.91, 146.97, 136.15, 134.11, 131.65, 130.62, 128.92, 128.80, 124.33, 114.40, 66.53, 60.67, 53.54, 50.60, 32.14, 27.68, 21.03, 17.22. ESI-MS (M⁺ + 1): found 368.99; calculated for C11H24N2O4 369.18.

(4-(2-Chloroethoxy)phenyl)(2-nitrophenyl)methanone (6b')

(4-Hydroxyphen yl)(2-nitrophenyl)methanone (500 mg, 2.06 mmol) and 1-bromo-2-chloroethane (341 µL, 4.12 mmol) were suspended in 30 mL of acetonitrile. Anhydrous potassium carbonate (854 mg, 6.18 mmol) was then added to the mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 90% hexane/10% EtOAc to yield compound **6b**' (460 mg, 72.8%) as a brown oil. ¹H NMR (CDCl₃): δ 8.23 (d, 1H, J = 7.30 Hz), 7.77 (t, 1H, J = 6.40 Hz), 7.73 (d, 2H, J = 8.90 Hz), 7.67 (t, 1H, J = 6.95 Hz), 7.48 (d, 1H, J = 6.15 Hz), 6.95 (d, 2H, J = 8.95 Hz), 4.30 (t, 2H, J = 5.75 Hz), 3.83 (t, 2H, J = 4.70 Hz); ¹³CNMR (CDCl₃): δ 192.28, 162.80, 146.75, 136.36, 134.27, 131.84, 130.55, 129.56, 128.94, 124.60, 114.72, 68.25, 41.77 ppm. GC-MS (M^+): found 305.03; calculated for C₁₅H₁₂ClNO₄, 305.04.

(R)-(4-(2-(2-Methylpyrrolidin-1-yl)ethoxy)phenyl)(2nitrophenyl)methanone (7b')

A mixture of compound 6b' (450 mg, 1.5 mmol), K₂CO₃ (622 mg, 4.5 mmol), KI (249 mg, 1.5 mmol), and (R)-2-methylpyrrolidine (182 μ L, 1.8 mmol) in acetonitrile (25 mL) was heated at 85 °C for 48 h. The reaction mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with 98% $CH_2Cl_2/2\%$ MeOH to give compound 7b' (438 mg, 82.6%) as a brown oil. ¹H NMR (CDCl₃): δ 8.20 (d, 1H, J = 8.25 Hz), 7.74 (t, 1H, J = 7.45 Hz), 7.70 (d, 2H, J = 8.75 Hz), 7.64 (t, 1H, J = 7.60 Hz), 7.46 (d, 1H, J = 7.30 Hz), 6.92 (d, 2H, J = 8.8 Hz), 4.19 (t, 2H, J = 6.00 Hz), 3.25 (m, 2H), 2.63 (m, 1H, J₁ = 5.95 Hz, $J_2 = 6.50$ Hz), 2.54 (m, 1H), 2.36 (q, 1H, J = 8.90 Hz), 1.95 (m, 1H), 1.83 (m, 1H), 1.75 (m, 1H), 1.48 (m, 1H), 1.17 (d, 3H, J = 6.10 Hz); ¹³C NMR (CDCl₃): δ 192.21, 163.42, 146.88, 136.62, 134.18, 131.83, 130.44, 129.19, 129.04, 124.61, 114.76, 67.30, 60.96, 54.90, 52.57, 32.45, 22.02, 18.86 ppm. ESI-MS (M⁺ + 1): found 355.01, calculated for C₂₀H₂₃N₂O₄, 355.16.

(4-(3-Chloropropoxy)phenyl)(3-fluorophenyl)methanone (6c)

(3-Fluorophenyl) (4-hydroxyphenyl)methanone 3c (500 mg, 2.3 mmol) and 1-bromo-3-chloropropane (455 µL, 4.6 mmol) were suspended in 25 mL of acetonitrile. Anhydrous potassium carbonate (954 mg, 6.9 mmol) was then added to the reaction mixture. The reaction mixture was refluxed for 19 h, concentrated under vacuum, and then extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 90% hexane/10% EtOAc to yield compound 6c (663 mg, 98.5%) as a chromatic transparent oil. ¹H NMR (CDCl₃): δ 7.81 (m, 2H), 7.51 (m, 1H), 7.44 (m, 2H), 7.25 (m, 1H), 6.97 (dd, 2H, $J_1 = 6.8$ Hz, J_2 = 2.0 Hz), 4.20 (t, 2H, J= 5.85 Hz), 3.76 (t, 2H, J = 6.3 Hz), 2.27 (q, 2H, $J_1 = 6.0$ Hz, $J_2 = 12.1$ Hz); ¹³C NMR (CDCl₃): δ 193.91, 163.48, 162.70, 161.51, 140.43, 132.60, 130.02, 125.53, 119.01, 116.58, 114.27, 64.68, 41.37, 32.10.

(R)-(3-Fluorophenyl)(4-(3-(2-methylpyrrolidin-1-yl)propoxy)phenyl)methanone (7c)

(4-(3-Chloropropoxy)phenyl)(3-fluorophenyl)methanone 6c (250 mg, 0.85 mmol), (R)-2-methylprrodine (103 µL, 1.02 mmol), KI (141 mg, 0.85 mmol), anhydrous potassium carbonate (235 mg, 1.7 mmol), and acetonitrile (25 mL) were added to a roundbottom flask. The mixture was heated at reflux for 30 h, cooled to room temperature, and concentrated, and the product was purified by column chromatography and eluted with 98% CH₂Cl₂/2% MeOH to yield compound 7c (229 mg, 78.9%) as a primrose yellow transparent oil. ¹H NMR (CDCl₃): δ 7.80 (m, 2H), 7.51 (d, 1H, J = 7.7 Hz), 7.43 (m, 2H), 7.24 (m, 1H), 6.96 (d, 2H, J = 8.8 Hz), 4.11 (m, 2H), 3.19 (m, 1H), 3.00 (m, 1H), 2.35 (m, 1H), 2.24 (m, 1H), 2.16 (m, 1H), 2.03 (m, 2H), 1.93 (m, 1H), 1.78 (m, 1H), 1.69 (m, 1H), 1.44 (m, 1H), 1.11 (d, 3H, <math>J = 6.0 Hz);¹³C NMR (CDCl₃): δ 194.04, 163.47, 163.08, 161.50, 140.52, 132.58, 129.95, 129.90, 129.50, 125.48, 118.94, 118.77, 116.60, 116.42, 114.27, 66.72, 60.57, 53.99, 50.64, 32.69, 28.26, 21.73, 18.80; ¹⁹F NMR (CDCl₃): δ –112.17. ESI-MS (M⁺ + 1): found 342.3, calculated for C₂₀H₂₃N₂O₄, 342.19.

(4-(3-Chloropropoxy)phenyl)(3-iodophenyl)methanone (6d)

(4-Hydroxyphenyl)(3-iodophenyl)methanone 3d (450 mg, 1.4 mmol) and 1-bromo-3-chloropropane (277 µL, 2.8 mmol) were suspended in 25 mL of acetonitrile. Anhydrous potassium carbonate (580 mg, 4.2 mmol) was then added to the reaction mixture. The reaction mixture was refluxed for 15 h, concentrated under vacuum, and then extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 90% hexane/10% EtOAc to provide compound 6d (538 mg, 95.9%) as a white solid. ¹H NMR (CDCl₃): δ 8.08 (m, 1H), 7.89 (d, 1H, J =7.9 Hz), 7.79 (m, 1H), 7.69 (m, 1H), 7.21 (t, 1H, *J* = 7.8 Hz), 6.98 (d, J = 8.8 Hz, 2H), 4.22 (t, 2H, J = 5.8 Hz), 3.77 (t, 2H, J = 6.3Hz), 2.29 (q, 2H, J = 6.0 Hz); ¹³C NMR (CDCl₃): δ 193.77, 162.73, 140.75, 140.28, 138.40, 132.66, 130.01, 129.73, 128.88 (s), 114.33, 94.14, 64.69, 41.40, 32.14.

(R)-(3-Iodophenyl)(4-(3-(2-methylpyrrolidin-1-yl)propoxy)phenyl)methanone (7d)

Compound **6d** (350 mg, 0.87 mmol), (*R*)-2-methylprrodine (106 µL, 1.04 mmol), KI (144 mg, 0.87 mmol), anhydrous potassium carbonate (361 mg, 2.61 mmol), and acetonitrile (30 mL) were added to a round-bottom flask. The mixture was heated at reflux for 24 h, cooled to room temperature, and concentrated, and the product was purified by column chromatography and eluted with 98% CH₂Cl₂/2% MeOH to provide compound **7d** (244 mg, 62.1%) as a primrose yellow solid. ¹H NMR (CDCl₃): δ 8.06 (m, 1H), 7.88 (d, 1H, *J* = 7.9 Hz), 7.78 (d, 2H, *J* = 8.8 Hz), 7.68 (d, 1H, *J* = 7.7 Hz), 7.20 (t, 1H, *J* = 7.8 Hz), 6.96 (d, 2H, *J* = 8.8 Hz), 4.12 (m, 2H), 3.28 (m, 1H), 3.06 (m, 1H), 2.49 (m, 1H), 2.36 (m, 1H), 1.52 (m, 1H), 1.17 (d, 3H, *J* = 6.2 Hz); ¹³C NMR (CDCl₃): δ 193.85, 163.02, 140.69, 140.34, 138.36,

132.63, 129.97, 129.49, 128.83, 114.31, 94.06, 66.61, 61.00, 53.90, 50.66, 32.56, 27.97, 21.70, 18.44. ESI-MS (M^+ + 1): found 450.2, calculated for $C_{20}H_{24}INO_2$, 450.09.

(4-(3-Chloropropoxy)phenyl)(4-fluorophenyl)methanone (6e)

(4-Fluorophenyl)(4-hydroxyphenyl)methanone (1.08 g, 5 mmol) and 1-bromo-3-chloropropane (1.57 g, 10 mmol) were suspended in 10 mL of acetonitrile (99.0%). Anhydrous potassium carbonate (2.07 g, 15 mmol) was then added to the reaction mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and then extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 20% EtOAc/ hexane to provide 1 (789 mg, 54.6%) as a white wax; mp: 47-48 °C. ¹H NMR (CDCl3): δ 7.82 (m, 4H), 7.17 (t, 2H, J = 8.6 Hz), 7.00 (d, 2H, J = 8.8 Hz), 4.22 (t, 2H, J = 5.8 Hz), 3.79 (t, 2H, J = 6.2Hz), 2.30 (q, 2H, $J_1 = 6.0$ Hz, $J_2 = 12$ Hz); ¹³C NMR (CDCl₃): δ 194.02, 166.06, 164.05, 162.34, 134.38, 132.23, 130.20, 115.22, 114.08, 64.49, 41.24, 32.02. GC-MS (M⁺): found 291.93; calculated for C₁₆H₁₄ClFO₂, 292.07.

(R)-(4-Fluorophenyl)(4-(3-(2-methylpyrrolidin-1-yl)propoxy)phenyl)methanone (7e)

Compound 6e (292 mg, 1 mmol), (R)-2-methylprrodine (170.3 mg, 2 mmol), potassium iodide (166 mg, 1 mmol), anhydrous potassium carbonate (415 mg, 3 mmol), and acetonitrile (99.0%, 10 mL) were added to a round-bottom flask. The mixture was heated at reflux for 24 h, cooled to room temperature, and concentrated, and the product was purified by column chromatography and eluted with 98% CH2Cl2/2% MeOH to give 7e (212 mg, 62%) as a light brown solid; mp: 127-129 °C. ¹H NMR (CDCl₃): δ 7.79 (m, 4H), 7.15 (t, 2H, J = 8.2 Hz), 6.97 (d, 2H, J = 8.2 Hz), 4.19 (m, 2H), 3.74 (s, 1H), 3.43 (m, 2H), 3.07 (m, 2H), 2.5 (m, 1H), 2.28 (m, 2H), 2.16 (m, 1H), 2.07 (m, 1H), 1.92 (m, 1H), 1.57 (d, 3H, J = 6.1 Hz); ¹³CNMR (CDCl₃): δ 193.95, 166.12, 164.11, 161.72, 134.19, 132.39, 132.31, 133.24, 130.62, 115.46, 115.29, 114.05, 65.22, 53.17, 50.55, 31.48, 29.65, 25.39, 21.25, 15.51. ESI-MS (M⁺ + 1): found 342.04; calculated for C14H24FNO2, 342.19.

(4-(2-Chloroethoxy)phenyl)(4-fluorophenyl)methanone (6e')

(4-Fluorophenyl)(4-hydroxyphenyl)methanone (1.000 g, 4.6 mmol) and 1-bromo-2-chloroethane (0.766 mL, 9.2 mmol) were suspended in 20 mL of acetonitrile. Anhydrous potassium carbonate (1.908 g, 13.8 mmol) was then added to the mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 90% hexane/10% EtOAc to provide compound **6e**' (700 mg, 54.6%) as a white wax. ¹H NMR (CDCl3): δ 7.80 (m, 4H), 7.15 (t, 2H, *J* = 8.6 Hz), 6.99 (d, 2H, *J* = 8.7 Hz), 4.31 (t, 2H, *J* = 5.8 Hz), 3.85 (t, 2H, *J* = 5.8 Hz); ¹³C NMR (CDCl3): δ 193.01, 165.13, 163.12, 160.79, 133.28, 131.43,

129.64, 114.48, 113.24, 67.11, 40.67. GC-MS (M⁺): found 278.03; calculated for $\rm C_{15}H_{12}ClFO_2,$ 278.05.

(R)-(4-Fluorophenyl)(4-(2-(2-methylpyrrolidin-1-yl)ethoxy)phenyl)methanone (7e')

A mixture of compound 6e' (279 mg, 1 mmol), K₂CO₃ (484 mg, 3.5 mmol), KI (100 mg, 0.6 mmol), and (R)-2-methylpyrrolidine (200 $\mu L,$ 2 mmol) in acetonitrile (15 mL) was heated at 85 $^\circ C$ for 24 h. The reaction mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with 98% $CH_2Cl_2/2\%$ MeOH to give compound 7e' (173 mg, 53.0%) as a yellow oil. ¹H NMR (CDCl₃): δ 7.79 (m, 4H), 7.15 (t, 2H, J = 8.6 Hs), 6.98 (d, 2H, J = 8.8 Hs), 4.19 (m, 2H), 3.25 $(m, 2H), 2.58 (m, 1H, J_1 = 6.0 Hz, J_2 = 6.4 Hz), 2.44 (m, 1H), 2.30$ (q, 1H, J = 8.8 Hz), 1.94 (m, 1H), 1.82 (m, 1H), 1.73 (m, 1H), 1.45 (m, 1H), 1.15 (d, 3H, J = 6.1 Hz); ¹³C NMR (CDCl₃): δ 194.20, 166.16, 164.14, 162.66, 134.56, 132.42, 132.36, 130.08, 115.51, 115.34, 114.30, 67.58, 60.58, 55.01, 52.75, 32.52, 22.03, 19.17; ¹⁹FNMR (CDCl₃): δ –106.95. ESI-MS (M⁺ + 1): 328.01; calculated for C₂₀H₂₃FNO₂, 328.16.

(4-(3-Chloropropoxy)phenyl)(4-nitrophenyl)methanone (6f)

(4-Hydroxyphenyl)(4-nitrophenyl)methanone (1.332 g, 5.48 mmol) and 1-bromo-3-chloropropane (3.451 g, 10.96 mmol) were suspended in 20 mL of acetonitrile (99.0%). Anhydrous potassium carbonate (2.272 g, 16.44 mmol) was then added to the reaction mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and then extracted with EtOAc and H₂O. The organic layer was collected and dried with MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 80% EtOAc/20% hexane to provide 1 (1.369 g, 78.3%) as a pale yellow solid; mp: 110–112 °C. ¹H NMR (CDCl₃): δ 8.36 (d, 2H, J = 8.6Hz), 7.91 (d, 2H, J = 8.6 Hz), 7.83 (d, 2H, J = 8.8 Hz), 7.02 (d, 2H, J = 8.8 Hz), 4.24 (t, 2H, J = 5.8 Hz), 3.79 (t, 2H, J = 6.2 Hz), 2.31 (q, 2H, $J_1 = 6.0$ Hz, $J_2 = 6.0$ Hz); ¹³C NMR (CDCl₃): δ 193.42, 163.14, 149.57, 143.76, 132.67, 130.34, 129.14, 123.50, 114.45, 64.66, 41.20, 32.00. GC-MS (M⁺): found 319.01; calculated for C₁₆H₁₄ClNO₄, 319.06.

(R)-(4-(3-(2-Methylpyrrolidin-1-yl)propoxy)phenyl)(4nitrophenyl)methanone (7f)

Compound **6f** (319 mg, 1 mmol), (*R*)-2-methylprrodine (170.3 mg, 2 mmol), potassium iodide (166 mg, 1 mmol), anhydrous potassium carbonate (415 mg, 3 mmol), and acetonitrile (99.0%, 10 mL) were added to a round-bottom flask. The mixture was heated at reflux for 24 h, cooled to room temperature, and concentrated, and the product was purified by column chromatography and eluted with 95% CH₂Cl₂/5% MeOH to give 6 (288 mg, 78.2%) as a yellow oil; mp: 167–169 °C. ¹H NMR (CDCl3): δ 8.33 (d, 2H, *J* = 8.4 Hz), 7.88 (d, 2H, *J* = 8.4 Hz), 7.80 (d, 2H, *J* = 8.6 Hz), 7.00 (d, 2H, *J* = 8.6 Hz), 4.23 (t, 2H, *J* = 5.4 Hz), 3.88 (m, 1H), 3.57 (m, 2H), 3.24 (m, 2H), 2.67 (m, 1H), 2.38 (m, 2H), 2.26 (m, 1H), 2.16 (m, 1H), 2.05 (m, 1H), 1.66 (s, 3H); ¹³C NMR (CDCl3): δ 192.35, 161.54, 148.52, 142.55,

131.64, 129.35, 128.40, 122.50, 113.47, 64.35, 52.21, 49.34, 30.44, 28.65, 24.30, 20.32, 14.47. ESI-MS (M^+ + 1): found 369.02; calculated for $C_{21}H_{24}N_2O_4$, 369.18.

(4-(2-Chloroethoxy)phenyl)(4-nitrophenyl)methanone (6f')

(4-Hydroxylphenyl)(4-nitrophenyl)methanone (1.483 g, 6.1 mmol) and 1-bromo-2-chloroethane (1.015 mL, 12.2 mmol) were suspended in 50 mL of acetonitrile. Anhydrous potassium carbonate (2.529 g, 12.2 mmol) was then added to the mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with 90% hexane/10% EtOAc to obtain compound **6f**' (1.120 g, 60.7%) as a white wax. ¹H NMR (CDCl₃): δ 8.35 (d, 2H, J = 8.7 Hz), 7.90 (d, 2H, J = 8.8 Hz), 7.83 (d, 2H, J = 8.8 Hz), 7.02 (d, 2H, J = 8.8 Hz), 3.87 (t, 2H, J = 5.8 Hz); ¹³C NMR (CDCl₃): δ 193.51, 162.65, 149.67, 143.70, 132.80, 130.48, 129.62, 123.63, 114.66, 68.33, 41.77 ppm. GC-MS (M⁺): found 305.02; calculated for C₁₅H₁₂ClNO₄, 305.04.

(R)-(4-(2-(2-Methylpyrrolidin-1-yl)ethoxy)phenyl)(4nitrophenyl)methanone (7f')

A mixture of compound 6f' (611 mg, 2 mmol), K₂CO₃ (829 mg, 6 mmol), KI (332 mg, 2 mmol), and (R)-2-methylpyrrolidine (240 μ L, 2.4 mmol) in acetonitrile (25 mL) was heated at 85 °C for 24 h. The reaction mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified through flash chromatography and eluted with 98% CH2Cl2/2% MeOH to yield compound 7f' (590 mg, 83.0%) as a yellow oil. ¹H NMR (CDCl₃): δ 8.34 (d, 2H, J = 8.8 Hz), 7.89 (d, 2H, J = 8.8 Hz), 7.81 (d, 2H, J = 8.8 Hz), 7.00 (d, 2H, J = 9.0 Hz), 4.20 (m, 2H), 3.26 (m, 2H), 2.59 $(m, 1H, J_1 = 6.1 Hz, J_2 = 6.4 Hz), 2.47 (m, 1H), 2.31 (q, 1H, J = 8.8$ Hz), 1.95 (m, 1H), 1.83 (m, 1H), 1.74 (m, 1H), 1.45 (m, 1H), 1.15 (d, 3H, J = 6.1 Hz); ¹³C NMR (CDCl₃): δ 193.45, 163.39, 149.52, 143.88, 132.71, 130.40, 128.90, 123.53, 114.59, 67.78, 60.49, 55.01, 52.69, 32.52, 22.02, 19.22 ppm. ESI-MS (M⁺ + 1): found 355.04, calculated for C₂₀H₂₃N₂O₄, 355.16.

1-(4-Methoxyphenoxy)-2-nitrobenzene (2B)

A mixture of 4-methoxyphenol (4.0 g, 32.2 mmol) and anhydrous potassium hydroxide (2.0 g, 35.6 mmol) was heated at 150 °C and stirred for 10 min. After the mixture melted, 1-chloro-2-nitrobenzene (4.0 g, 25.4 mmol) was added, and the mixture was stirred at 170 °C for 2 h (TLC monitor). The reaction mixture was poured into 80 mL of 3% potassium hydroxide aqueous solution, stirred at room temperature for approximately 2 h, and then cooled to 4 °C. The solid was filtered with suction and washed with water. The crude product was then dissolved in CH₂Cl₂, introduced onto a silica gel column, and eluted with 10% EtOAc/90% hexane to obtain compound **2B** (5.29 g, 84.9%) as a yellow solid. ¹H NMR (DMSO-d₆): δ 8.02 (dd, 1H, $J_1 = 1.65$ Hz, $J_2 = 8.15$ Hz), 7.62 (m, 1H), 7.27 (m, 1H), 7.08 (m, 2H), 6.99 (m, 3H), 3.76 (s, 3H) ppm.

4-(2-Nitrophenoxy)phenol (3B)

Compound **2B** (3.724 g, 15.2 mmol) was suspended in hydrobromic acid (155 mL, 40%) and acetic acid (125 mL, 99.7%). The reaction mixture was refluxed for 16 h and extracted with CH₂Cl₂ and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with EtOAc/hexane (20 : 80, v/v) to provide compound **3B** (3.299 g, 93.9%) as a yellow solid. ¹H NMR (DMSO-d₆): δ 9.50 (s, 1H), 7.98 (dd, 1H, *J*₁ = 1.55 Hz, *J*₂ = 8.10 Hz), 7.58 (m, 1H), 7.22 (m, 1H), 6.93 (m, 3H), 6.80 (m, 2H) ppm.

2-Iodo-4-(2-nitrophenoxy)phenol (4B)

At 0 °C, 40% aqueous MeNH₂ (14.8 mL) and then a solution of KI (5.93 g, 35.7 mmol) and I₂ (2.40 g, 9.45 mmol) in H₂O (18.5 mL) were added to a solution of 4-(4-nitrophenoxy)phenol (1.46 g, 6.30 mmol) in EtOH (148 mL). The reaction mixture was stirred at 0 °C for 1 h, quenched with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with CH₂Cl₂ to give **4B** (1.086 g, 48.3%). ¹H NMR (DMSO-d₆): δ 10.38 (s, 1H), 8.00 (dd, 1H, $J_1 = 1.6$ Hz, $J_2 = 8.1$ Hz), 7.61 (m, 1H), 7.43 (d, 1H, J = 2.9 Hz), 7.26 (m, 1H), 7.00 (m, 2H), 6.91 (d, 1H, J = 8.8 Hz); ¹³C NMR (DMSO-d₆): δ 154.73, 151.05, 147.97, 140.88, 135.44, 130.11, 126.07, 123.79, 121.44, 119.72, 115.94, 85.18 ppm.

(R)-2-Methyl-1-(2-(5-(2-nitrophenoxy)benzofuran-2-yl)ethyl)pyrrolidine (5B)

(R)-1-(But-3-yn-1-yl)-2-methylpyrrolidine (20 mL of 0.1 M solution in CH₃CN, 2.0 mmol) and compound 4B (500 mg, 1.40 mmol) were mixed in a 100 mL round-bottom flask. Pd(OAc)₂ (9 mg, 0.041 mmol), tri(4-methylpenyl)phosphine (25 mg, 0.082 mmol), and CuI (78 mg, 0.41 mmol) were then added to the reaction mixture. After stirring at 25 °C for 10 min, the reaction mixture was treated with i-Pr₂NH (1.96 mL, 13.94 mmol) and then heated at 60 °C under N2 for 16 h. The reaction mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified on silica gel and eluted with 98% CH2Cl2/2% MeOH to provide 5B (145 mg, 28.2%). ¹H NMR (CDCl₃): δ 7.95 $(dd, 1H, J_1 = 1.6 Hz, J_2 = 8.2 Hz), 7.48 (m, 1H), 7.40 (d, 1H, J =$ 8.8 Hz), 7.18 (m, 2H), 6.97 (m, 2H), 6.62 (s, 1H), 3.80 (m, 1H), 3.65 (m, 3H), 3.48 (m, 1H), 3.35 (m, 1H), 3.04 (m, 1H), 2.31 (m, 1H), 2.22 (m, 1H), 2.09 (m, 1H), 2.00 (m, 1H), 1.66 (d, 3H, J = 5.5 Hz); ¹³C NMR (CDCl₃): δ 154.50, 151.84, 141.00, 134.32, 129.55, 125.79, 122.86, 119.77, 116.65, 112.14, 111.51, 105.25, 65.04, 53.27, 50.76, 31.40, 25.18, 21.41, 15.55. ESI-MS: found [M $+ H^{+}_{1}$ 367.12; calculated for $C_{21}H_{22}N_2O_4$, $[M^{+} + H]$, 367.16.

1-Fluoro-4-(4-methoxyphenoxy)benzene (2E)

1-Fluoro-4-iodobenzene (444 mg, 2 mmol), CuI (38 mg, 0.2 mmol), *n*-Bu₄NBr (64 mg, 0.2 mmol), and K_3PO_4 (849 mg, 4 mmol) were added to a round-bottom flask containing 4-methoxyphenol (248 mg, 2 mmol) under a N₂ atmosphere; DMF

(2 mL) was then added to the mixture. The reaction mixture was vigorously refluxed for 22 h. After cooling to room temperature, saturated NH₄Cl (20 mL) was added, and the organic layer was extracted with EtOAc (3 × 20 mL). The combined organic layer was then washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated to dryness. The reside was purified using a silica gel column with EtOAc/hexane (5 : 95, v/v) to obtain compound **2E** (138 mg, 31.6%) as a pale yellow oil. ¹H NMR (CDCl₃): δ 6.98 (t, 2H, *J* = 9.05 Hz), 6.95 (d, 2H, *J* = 9.1 Hz), 6.90 (m, 2H), 6.88 (d, 2H, *J* = 9.05 Hz), 3.79 (s, 3H) ppm; ¹⁹FNMR (CDCl₃): δ 121.34 ppm.

4-(4-Fluorophenoxy)phenol (3E)

Compound **2E** (1.472 g, 6.75 mmol) was suspended in hydrobromic acid (70 mL, 40%) and acetic acid (58 mL, 99.7%). The reaction mixture was refluxed for 16 h and extracted with CH₂Cl₂ and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with CH₂Cl₂ (100%) to yield compound **3E** (1.005 g, 72.9%) as a milky white solid. ¹H NMR (500 MHz, DMSO-d₆): δ 7.00 (t, 2H, *J* = 8.75 Hz), 6.91 (m, 4H), 6.82 (d, 2H, *J* = 8.85 Hz), 4.92 (s, 1H).

2-Iodo-4-(4-fluorophenoxy)phenol (4E)

At 0 °C, 40% aqueous MeNH₂ (11.4 mL) and then a solution of KI (4.55 g, 27.4 mmol) and I₂ (1.65 g, 6.52 mmol) in H₂O (15 mL) were added to a solution of compound **3E** (987 mg, 4.83 mmol) in EtOH (114 mL). The reaction mixture was stirred at 0 °C for 1 h, quenched with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with CH₂Cl₂ to give **4E** (1.157 g, 72.6%). ¹H NMR (CDCl₃): δ 7.29 (d, 1H, *J* = 2.6 Hz), 7.00 (t, 2H, *J* = 9.1 Hz), 6.94 (d, 1H, *J* = 8.8 Hz), 6.91 (m, 3H), 5.18 (s, 1H) ppm; ¹³C NMR (CDCl₃): δ 159.70, 157.78, 153.63, 151.34, 128.32, 121.06, 119.67, 116.52, 115.43, 85.22 ppm.

(R)-2-Methyl-1-(2-(5-(4-fluorophenoxy)benzofuran-2-yl)ethyl)pyrrolidine (5E)

(R)-1-(But-3-yn-1-yl)-2-methylpyrrolidine (20 mL of 0.1 M solution in CH₃CN, 2.0 mmol) and compound 4E (510 mg, 1.54 mmol) were mixed in a 100 mL round-bottom flask. Pd(OAc)₂ (10 mg, 0.0454 mmol), tri(4-methylpenyl)phosphine (28 mg, 0.0909 mmol), and CuI (86 mg, 0.454 mmol) were then added to the reaction mixture. After stirring at 25 °C for 10 min, the reaction mixture was treated with i-Pr₂NH (2.17 mL, 15.4 mmol) and then heated at 60 °C under N₂ for 16 h. The reaction mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified on silica gel and eluted with 98% CH2Cl2/2% MeOH to provide 5E (155 mg, 29.6%). ¹H NMR (CDCl₃): δ 7.36 (d, 1H, J = 8.85 Hz), 7.08 (d, 1H, J = 2.45 Hz), 7.01 (t, 2H, J = 8.65)Hz), 6.94 (m, 3H), 6.60 (s, 1H), 4.16-3.92 (m, 1H), 3.82-3.63 (m, 2H), 3.61-3.45 (m, 2H), 3.41-3.30 (m, 1H), 3.04-2.80 (m, 1H), 2.39-2.21 (m, 2H), 2.17-1.97 (m, 2H), 1.82-1.59 (m, 3H); ¹³C NMR (CDCl₃): δ 159.49, 157.57, 154.12, 153.30, 151.19, 129.29,

119.65, 119.59, 116.37, 116.28, 116.19, 111.82, 110.56, 105.22, 65.12, 53.28, 50.65, 31.37, 25.13, 21.41, 15.50 ppm; ¹⁹F NMR (CDCl₃): δ 121.34 ppm. ESI-MS: found [M + H]⁺ 340.03; calculated for C₂₁H₂₂FNO₂, [M⁺ + H], 340.16.

1-(4-Methoxyphenoxy)-4-nitrobenzene (2F)

A mixture of 4-methoxyphenol (2.0 g, 16.1 mmol) and anhydrous potassium hydroxide (1.0 g, 17.8 mmol) were heated at 150 °C and stirred for 10 min. After the mixture melted, 1-chloro-4-nitrobenzene (2.0 g, 12.7 mmol) was added, and the mixture was stirred at 170 °C for 2 h (TLC monitor). The reaction mixture was poured into 50 mL of 3% potassium hydroxide aqueous solution, stirred at room temperature for approximately 2 h, and then cooled to 4 °C. The solid was filtered with suction and washed with water. The crude product was dissolved in CH₂Cl₂, introduced onto a silica gel column, and eluted with 10% EtOAc/90% hexane to provide compound **2F** (2.432 g, 77.8%) as a yellow solid. ¹H NMR (DMSO-d₆): δ 8.24 (d, 2H, *J* = 9.25 Hz), 7.16 (d, 2H, *J* = 9.05 Hz), 7.05 (m, 4H), 3.79 (s, 3H).

4-(4-Nitrophenoxy)phenol (3F)

Compound **2F** (1.80 g, 7.34 mmol) was suspended in hydrobromic acid (77 mL, 40%) and acetic acid (63 mL, 99.7%). The reaction mixture was refluxed for 16 h and extracted with CH_2Cl_2 and H_2O . The organic layer was collected and dried over Na_2SO_4 . After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with EtOAc/hexane (20 : 80, v/v) to provide compound **3F** (1.65 g, 96.8%) as a yellow powder. ¹H NMR (DMSO-d₆): δ 9.57 (s, 1H), 8.21 (d, 2H, J = 9.35 Hz), 7.02 (m, 4H), 6.85 (d, 2H, J = 8.95 Hz).

2-Iodo-4-(4-nitrophenoxy)phenol (4F)

At 0 °C, 40% aqueous MeNH₂ (18 mL) and then a solution of KI (7.32 g, 44.1 mmol) and I₂ (2.66 g, 10.5 mmol) in H₂O (10 mL) were added to a solution of 4-(4-nitrophenoxy)phenol (1.80 g, 7.78 mmol) in EtOH (183 mL). The reaction mixture was stirred at 0 °C for 1 h, quenched with H₂O, and extracted with EtOAc. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with CH₂Cl₂ to give **4F** (1.013 g, 36.5%). ¹H NMR (DMSO-d₆): δ 10.46 (s, 1H), 8.22 (d, 1H, *J* = 9.2 Hz), 7.52 (d, 1H, *J* = 2.8 Hz), 7.07 (m, 3H), 6.97 (d, 1H, *J* = 8.7 Hz); ¹³C NMR (DMSO-d₆): δ 164.19, 155.22, 146.97, 142.48, 131.30, 126.70, 122.57, 117.16, 116.04.

(R)-2-Methyl-1-(2-(5-(4-nitrophenoxy)benzofuran-2-yl)ethyl)pyrrolidine (5F)

(*R*)-1-(But-3-yn-1-yl)-2-methylpyrrolidine (20 mL of 0.1 M solution in CH₃CN, 2.0 mmol) and compound **4F** (500 mg, 1.40 mmol) were mixed in a 100 mL round bottom flask. Pd(OAc)₂ (9 mg, 0.041 mmol), tri(4-methylpenyl)phosphine (25 mg, 0.082 mmol), and CuI (78 mg, 0.41 mmol) were then added to the reaction mixture. After stirring at 25 °C for 10 min, the reaction mixture was treated with i-Pr₂NH (1.96 mL, 13.94 mmol) and then heated at 60 °C under N₂ for 16 h. The reaction

mixture was allowed to cool and filtered through celite, and the filtrate was concentrated under reduced pressure. The residue was purified on silica gel and eluted with 98% CH₂Cl₂/2% MeOH to provide 5F (145 mg, 28.2%). ¹H NMR (DMSO-d₆): δ 8.19 (d, 2H, J = 9.2 Hz), 7.45 (d, 1H, J = 8.8 Hz), 7.24 (d, 1H, J = 2.4 Hz), 6.99 (m, 3H), 6.66 (s, 1H), 3.79 (m, 1H), 3.65 (m, 2H), 3.48 (m, 2H), 3.26 (m, 1H), 2.94 (m, 1H), 2.26 (m, 2H), 2.04 (m, 2H), 1.64 (d, 3H, J = 5.7 Hz) ppm; ¹³C NMR (DMSO-d₆): δ 164.19, 154.79, 152.21, 150.46, 142.53, 129.78, 126.03, 117.47, 116.69, 112.84, 112.33, 105.25, 65.03, 53.25, 50.87, 31.45, 25.29, 21.42, 15.60. ESI-MS: found [M + H]⁺, 367.06; calculated for C₂₁H₂₂N₂O₄, [M⁺ + H], 367.16.

1-(4-(3-Chloropropoxy)phenoxy)-2-nitrobenzene (6B)

Compound **3B** (500 mg, 2.16 mmol) and 1-bromo-3-chloropropane (427 µL, 4.32 mmol) were suspended in 25 mL acetonitrile. Anhydrous potassium carbonate (896 mg, 6.48 mmol) was then added to the mixture. The reaction mixture was refluxed for 38 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with EtOAc/hexane (10 : 90, v/v) to provide compound **6B** (573 mg, 86.1%) as a yellow oil. ¹H NMR (CDCl₃): δ 7.94 (dd, 1H, *J*₁ = 1.50 Hz, *J*₂ = 8.15 Hz), 7.46 (m, 1H), 7.14 (m, 1H), 7.03 (m, 2H), 6.93 (d, 3H, *J* = 8.85 Hz), 4.12 (t, 2H, *J* = 5.80 Hz), 3.77 (t, 2H, *J* = 6.30 Hz), 2.26 (m, 2H); ¹³C NMR (CDCl₃): δ 156.01, 151.91, 148.87, 140.75, 134.24, 125.74, 122.48, 121.18, 119.13, 115.90, 64.87, 41.64, 32.30 ppm.

(R)-2-Methyl-1-(3-(4-(2-nitrophenoxy)phenoxy)propyl) pyrrolidine (7B)

A mixture of compound **6B** (450 mg, 1.46 mmol), K_2CO_3 (605 mg, 4.38 mmol), KI (242 mg, 1.46 mmol), and (R)-2-methylpyrrolidine (177 µL, 1.75 mmol) in acetonitrile (25 mL) was heated at 85 °C for 48 h. The reaction mixture was cooled to room temperature and filtered through diatomite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with MeOH/ CH_2Cl_2 (3 : 97, v/v) to obtain compound 7B (237 mg, 45.5%) as a buff oil. ¹H NMR (CDCl₃): δ 7.92 (dd, 1H, $J_1 = 1.30$ Hz, $J_1 = 8.15$ Hz), 7.44 (m, 1H), 7.12 (m, 1H), 7.01 (m, 2H), 6.92 (m, 3H), 4.03 (m, 2H), 3.20 (m, 1H), 3.01 (m, 1H), 2.35 (m, 1H), 2.23 (m, 1H), 2.16 (m, 1H), 2.04 (m, 2H), 1.92 (m, 1H), 1.80 (m, 1H), 1.71 (m, 1H), 1.45 (m, 1H), 1.12 (d, 3H, J = 6.00 Hz); ¹³C NMR (CDCl₃): δ 156.35, 152.06, 148.50, 140.66, 134.12, 125.71, 122.27, 121.18, 118.94, 115.85 67.00, 60.43, 54.06, 50.85, 32.76, 28.59, 21.73, 19.00 ppm. ESI-MS: found $[M + H]^+$, 357.17; calculated for $C_{19}H_{22}N_2O_4$, $[M^+ + H]$, 357.19.

1-(4-(2-Chloroethoxy)phenoxy)-2-nitrobenzene (6B')

Compound **3B** (1 g, 4.32 mmol) and 1-bromo-2-chloroethane (716 μ L, 8.64 mmol) were suspended in 30 mL of acetonitrile. Anhydrous potassium carbonate (1.792 g, 12.96 mmol) was then added to the mixture. The reaction mixture was refluxed for 33 h, concentrated under vacuum, and extracted with EtOAc

and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with EtOAc/hexane (10 : 90, v/v) to provide compound **6B**' (555 mg, 43.8%) as a jasmine solid. ¹H NMR (CDCl₃): δ 7.92 (dd, 1H, J_1 = 1.60 Hz, J_2 = 8.15 Hz), 7.45 (m, 1H), 7.13 (m, 1H), 7.02 (m, 2H), 6.92 (m, 3H), 4.22 (t, 2H, J = 5.80 Hz), 3.82 (2H, t, J = 5.85 Hz); ¹³C NMR (CDCl₃): δ 155.44, 151.75, 149.31, 140.78, 134.29, 125.78, 122.62, 121.17, 119.25, 116.21, 68.67, 42.18 ppm.

(R)-2-Methyl-1-(2-(4-(2-nitrophenoxy)phenoxy)ethyl) pyrrolidine (7B')

A mixture of compound 6B' (300 mg, 1.02 mmol), K₂CO₃ (846 mg, 6.12 mmol), KI (338 mg, 2.04 mmol), and (R)-2-methylpyrrolidine (206 µL, 2.04 mmol) in acetonitrile (20 mL) was heated at 85 °C for 48 h. The reaction mixture was cooled to room temperature and filtered through diatomite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with MeOH/CH₂Cl₂ (3:97, v/v) to give compound 7B' (253 mg, 72.5%) as a deep yellow wax. ¹H NMR (CDCl₃): δ 7.92 (d, 1H, J = 8.10 Hz), 7.45 (m, 1H), 7.12 (t, 1H, J = 7.90 Hz), 6.99 (m, 2H), 6.92 (t, 3H, J = 7.95 Hz), 4.17 (t, 2H, J = 4.95 Hz), 3.34 (m, 1H), 3.28 (m, 1H), 2.67 (m, 1H), 2.60 (m, 1H), 2.44 (m, 1H), 2.00 (m, 1H), 1.88 (m, 1H), 1.78 (m, 1H), 1.53 (m, 1H), 1.23 (d, 3H, J = 6.10 Hz); ¹³C NMR (CDCl₃): δ 155.89, 151.97, 148.80, 140.71, 134.17, 125.75, 122.37, 121.19, 119.05, 115.93, 67.10, 61.17, 54.82, 52.71, 32.29, 21.89, 18.62 ppm. ESI-MS: found [M + H]⁺, 343.08; calculated for $C_{19}H_{22}N_2O_4$, $[M^+ + H]$, 343.16.

1-(4-(3-Chloropropoxy)phenoxy)-4-fluorobenzene (6E)

Compound **3E** (408 mg, 2.0 mmol) and 1-bromo-3-chloropropane (396 µL, 4.0 mmol) were suspended in 10 mL of acetonitrile. Adding anhydrous potassium carbonate (829 mg, 6.0 mmol) was then added to the mixture. The reaction mixture was refluxed for 43 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with EtOAc/hexane (5 : 95, v/v) to provide compound **6E** (547 mg, 97.5%) as a pale yellow oil. ¹H NMR (CDCl₃): δ 7.03– 6.99 (m, 2H), 6.98–6.89 (m, 6H), 4.11 (t, 2H, *J* = 5.90 Hz), 3.78 (t, 2H, *J* = 6.35 Hz), 2.25 (m, 2H); ¹³C NMR (CDCl₃): δ 159.41, 157.50, 155.05, 150.96, 120.38, 119.34, 116.37, 115.70, 64.84, 41.66, 32.40 ppm; ¹⁹F NMR (CDCl₃): δ –121.20 ppm.

(R)-1-(3-(4-(4-Fluorophenoxy)phenoxy)propyl)-2methylpyrrolidine (7E)

A mixture of compound **6E** (500 mg, 1.785 mmol), K_2CO_3 (740 mg, 5.355 mmol), KI (296 mg, 1.785 mmol), and (*R*)-2-methylpyrrolidine (244 µL, 2.412 mmol) in acetonitrile (20 mL) was heated at 85 °C for 48 h. The reaction mixture was cooled to room temperature and filtered through diatomite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with MeOH/ CH₂Cl₂ (3 : 97, v/v) to give compound 7E (443 mg, 75.4%) as a pale yellow oil. ¹H NMR (CDCl₃): δ 7.00–6.93 (m, 2H), 6.92–6.86 (m, 6H), 4.01 (m, 2H), 3.22 (m, 1H), 3.01 (m, 1H), 2.35 (m, 1H), 2.23 (m, 1H), 2.17 (m, 1H), 2.02 (m, 2H), 1.92 (m, 1H), 1.80 (m, 1H), 1.71 (m, 1H), 1.46 (m, 1H), 1.13 (d, 3H, *J* = 6.1 5 Hz); ¹³C NMR (CDCl₃): δ 159.32, 157.41, 155.34, 154.34, 150.62, 120.32, 119.19, 119.13, 116.26, 116.07, 115.65, 66.99, 60.55, 54.07, 50.94, 32.74, 28.60, 21.72, 18.93 ppm; ¹⁹F NMR (CDCl₃): δ –121.41 ppm. ESI-MS: found [M + H]⁺, 330.07; calculated for C₂₀H₂₄FNO₂, [M⁺ + H], 330.18.

1-(4-(2-Chloroethoxy)phenoxy)-4-fluorobenzene (6E')

Compound **3E** (530 mg, 2.6 mmol) and 1-bromo-2-chloroethane (433 µL, 5.2 mmol) were suspended in 10 mL of acetonitrile. Anhydrous potassium carbonate (1.078 g, 7.8 mmol) was then added to the mixture. The reaction mixture was refluxed for 45 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with EtOAc/ hexane (5 : 95, v/v) to provide compound **6**E' (330 mg, 47.7%) as a pale yellow solid. ¹H NMR (CDCl₃): δ 7.04–6.99 (m, 2H), 6.97–6.90 (m, 6H), 4.22 (t, 2H, *J* = 5.85 Hz), 3.82 (t, 2H, *J* = 5.85 Hz); ¹³C NMR (CDCl₃): δ 159.48, 157.56, 154.45, 151.44, 120.31, 119.49, 116.38, 116.06, 68.72, 42.12 ppm; ¹⁹F NMR (CDCl₃): δ –120.89 ppm.

(R)-1-(2-(4-(4-Fluorophenoxy)phenoxy)ethyl)-2methylpyrrolidine (7E')

A mixture of compound 6E' (320 mg, 1.2 mmol), K₂CO₃ (498 mg, 3.6 mmol), KI (199 mg, 1.2 mmol), and (R)-2-methylpyrrolidine (146 µL, 1.44 mmol) in acetonitrile (20 mL) was heated at 85 °C for 48 h. The reaction mixture was cooled to room temperature and filtered through diatomite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with MeOH/CH₂Cl₂ (3:97, v/v) to give compound 7E' (263 mg, 69.2%) as a pale orange oil. ¹H NMR (CDCl₃): δ 7.01–6.96 (m, 2H), 6.93–6.87 (m, 6H), 4.09 (m, 2H), 3.24 (m, 2H), 2.53 (m, 1H), 2.43 (m, 1H), 2.29 (m, 1H), 1.92 (m, 1H), 1.81 (m, 1H), 1.71 (m, 1H), 1.42 (m, 1H), 1.15 (d, 3H, J = 6.10 Hz); ¹³C NMR (CDCl₃): δ 159.32, 157.44, 155.14, 154.29, 150.73, 120.27, 119.26, 119.20, 116.27, 116.08, 115.67, 67.69, 60.56, 54.07, 52.97, 32.51, 21.99, 19.18 ppm; ¹⁹F NMR (CDCl₃): δ -121.33 ppm. ESI-MS: found [M + H]⁺, 316.06; calculated for $C_{19}H_{22}N_2O_4$, $[M^+ + H]$, 316.16.

1-(4-(3-Chloropropoxy)phenoxy)-4-nitrobenzene (6F)

Compound **3F** (500 mg, 2.16 mmol) and 1-bromo-3-chloropropane (0.427 mL, 4.32 mmol) were suspended in 25 mL of acetonitrile. Anhydrous potassium carbonate (896 g, 6.48 mmol) was then added to the mixture. The reaction mixture was refluxed for 24 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with EtOAc/hexane (10 : 90, v/v) to provide compound **6F** (563 mg, 84.7%) as a light brown solid. ¹H NMR (CDCl₃): δ 8.20 (d, 2H, J = 9.25 Hz), 7.05 (d, 2H, J = 9.05 Hz), 6.98 (m, 4H), 4.15 (t, 2H, J = 5.80 Hz), 3.79 (t, 2H, J = 6.30 Hz), 2.28 (m, 2H); ¹³C NMR (CDCl₃): δ 164.22, 156.40, 148.02, 142.35, 126.00, 122.00, 116.47, 116.00, 64.83, 41.62, 32.29 ppm.

(R)-2-Methyl-1-(3-(4-(4-nitrophenoxy)phenoxy)propyl) pyrrolidine (7F)

A mixture of compound 6F (450 mg, 1.46 mmol), K₂CO₃ (605 mg, 4.38 mmol), KI (242 mg, 1.46 mmol), and (R)-2-methylpyrrolidine (177 µL, 1.75 mmol) in acetonitrile (25 mL) was heated at 85 °C for 34 h. The reaction mixture was cooled to room temperature and filtered through diatomite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with MeOH/ CH_2Cl_2 (3 : 97, v/v) to give compound 7F (182 mg, 34.9%) as a brown oil. ¹H NMR (CDCl₃): δ 8.17 (d, 2H, J = 9.20 Hz), 7.00 (d, 2H, J = 9.05 Hz), 6.94 (m, 4H), 4.03 (m, 2H), 3.21 (m, 1H),3.01 (m, 1H), 2.35 (m, 1H), 2.23 (m, 1H), 2.16 (m, 1H), 2.02 (m, 2H), 1.93 (m, 1H), 1.80 (m, 1H), 1.71 (m, 1H), 1.45 (m, 1H), 1.12 (d, 3H, J = 6.10 Hz); ¹³C NMR (CDCl₃): δ 164.28, 156.71, 147.70, 142.27, 125.95, 121.88, 116.38, 115.96, 66.99, 60.40, 54.07, 50.85, 32.77, 28.62, 21.73, 19.03 ppm. ESI-MS: found [M + H_{1}^{+} , 357.17; calculated for $C_{19}H_{22}N_2O_4$, $[M^+ + H]$, 357.03.

1-(4-(2-Chloroethoxy)phenoxy)-4-nitrobenzene (6F')

Compound **3F**' (500 mg, 2.16 mmol) and 1-bromo-2-chloroethane (0.358 mL, 4.32 mmol) were suspended in 25 mL of acetonitrile. Anhydrous potassium carbonate (896 mg, 6.48 mmol) was then added to the mixture. The reaction mixture was refluxed for 36 h, concentrated under vacuum, and extracted with EtOAc and H₂O. The organic layer was collected and dried over MgSO₄. After removal of the organic solvent under vacuum, the residue was purified with flash chromatography and eluted with EtOAc/ hexane (10 : 90, v/v) to provide compound **6F**' (377 mg, 59.3%) as a jasmine solid. ¹H NMR (CDCl₃): δ 8.20 (d, 2H, *J* = 9.25 Hz), 7.06 (d, 2H, *J* = 9.05 Hz), 6.98 (m, 4H), 4.26 (t, 2H, *J* = 5.80 Hz), 3.85 (t, 2H, *J* = 5.80 Hz); ¹³C NMR (CDCl₃): δ 164.07, 155.85, 148.51, 142.46, 126.01, 122.03, 116.55, 116.34, 68.67, 42.03 ppm.

(R)-2-Methyl-1-(2-(4-(4-nitrophenoxy)phenoxy)ethyl) pyrrolidine (7F')

A mixture of compound **6F**' (300 mg, 1.02 mmol), K₂CO₃ (423 mg, 3.06 mmol), KI (169 mg, 1.02 mmol), and (*R*)-2-methylpyrrolidine (123 µL, 1.22 mmol) in acetonitrile (20 mL) was heated at 85 °C for 37 h. The reaction mixture was cooled to room temperature and filtered through diatomite, and the filtrate was concentrated under reduced pressure. The residue was purified with flash chromatography and eluted with MeOH/CH₂Cl₂ (2 : 98, v/v) to give compound 7F' (271 mg, 77.5%) as a brown wax. ¹H NMR (CDCl₃): δ 8.18 (d, 2H, *J* = 9.30 Hz), 7.02 (d, 2H, *J* = 9.1 Hz), 6.96 (m, 4H), 4.23 (m, 2H), 3.35 (m, 2H), 2.75 (m, 2H), 2.52 (m, 1H), 2.05 (m, 1H), 1.94 (m, 1H), 1.83 (m, 1H), 1.60 (m, 1H), 1.29 (d, 3H, *J* = 6.00 Hz); ¹³C NMR (CDCl₃): δ 164.17, 156.03, 148.15, 142.36, 125.99, 121.96, 116.49, 116.12, 66.51, 61.85, 54.72, 52.56, 32.09, 21.83, 18.11 ppm. ESI-MS: found [M + H]⁺, 343.05; calculated for C₁₉H₂₂N₂O₄, [M⁺ + H], 343.16.

Conclusions

In summary, a series of **XB-1** analogues were synthesized and evaluated at two low concentrations (0.1 μ M and 1 μ M) to determine their neuroprotective effects in an *in vitro* neuronal injury model in primary neurons. The biological results indicated that all of the synthesized compounds displayed neuroprotective effects against A β_{25-35} - and glutamate-induced neurotoxicity. Of the tested compounds, **7B** exhibited a marked protective effect at a very low concentration of 0.1 μ M. Further studies to improve the neuroprotective activity and clarify the neuroprotective mechanism of these compounds are currently in progress and will pave the way for the exploitation of these compounds as novel potential PET radioligands.

Conflict of interests

The authors declare no competing financial interest.

Acknowledgements

This research was supported by the NSF of China (81371616), the Natural Science Foundation of Jiangsu Province (no. BK2011704, BK20130653), the Fundamental Research Funds for the Central Universities (30920130111024, JKZD2013006) and the Research Fund for the Doctoral Program of Higher Education of China (20133219120020). We are very grateful to Dr Victor W. Pike and Dr Shuiyu Lu in NIH/NIMH for helpful discussions in this project.

Notes and references

- C. Sturchler-Pierrat, D. Abramowski, M. Duke,
 K. H. Wiederhold, C. Mistl, S. Rothacher, B. Ledermann,
 K. Bürki, P. Frey, P. A. Paganetti, C. Waridel,
 M. E. Calhoun, M. Jucker, A. Probst, M. Staufenbiel and
 B. Sommer, *Proc. Natl. Acad. Sci. U. S. A.*, 1997, 94, 13287.
- 2 D. J. Selkoe, Nature, 1999, 399, A23.
- 3 B. A. Yankner, Neuron, 1996, 16, 921.
- 4 C. Velez-Pardo, G. G. Ospina and del Rio M. Jimenez, *NeuroToxicology*, 2002, 23, 351.
- 5 F. Misiti, B. Sampaolese, M. Pezzotti, S. Marini, M. Coletta, L. Ceccarelli, B. Giardina and M. E. Clementi, *Neurochem. Int.*, 2005, 46, 575.
- 6 T. Harkany, I. Abrahám, C. Kónya, C. Nyakas, M. Zarándi, B. Penke and P. G. Luiten, *Rev. Neurosci.*, 2000, **11**, 329.
- 7 D. Watson, E. Castaño, T. A. Kokjohn, Y. M. Kuo,
 Y. Lyubchenko, D. Pinsky, E. S. Connolly, C. Esh,
 D. C. Luehrs, W. B. Stine, L. M. Rowse, M. R. Emmerling and A. E. Roher, *Neurol. Res.*, 2005, 27, 869.
- 8 N. W. Hu, T. Ondrejcak and M. J. Rowan, *Pharmacol., Biochem. Behav.*, 2012, **100**, 855.
- 9 W. Danysz and C. G. Parsons, Br. J. Pharmacol., 2012, 167, 324.
- 10 T. J. Revett, G. B. Baker, J. Jhamandas and S. Kar, *J. Psychiatry Neurosci.*, 2013, **38**, 6.

- G. B. Fox, T. A. Esbenshade, J. B. Pan, R. J. Radek, K. M. Krueger, B. B. Yao, K. E. Browman, M. J. Buckley, M. E. Ballard, V. A. Komater, H. Miner, M. Zhang, R. Faghih, L. E. Rueter, R. S. Bitner, K. U. Drescher, J. Wetter, K. Marsh, M. Lemaire, R. D. Porsolt, Y. L. Bennani, J. P. Sullivan, M. D. Cowart, M. W. Decker and A. A. Hancock, *J. Pharmacol. Exp. Ther.*, 2005, 313, 176.
- A. D. Medhurst, A. R. Atkins, I. J. Beresford, K. Brackenborough, M. A. Briggs, A. R. Calver, J. Cilia, J. E. Cluderay, B. Crook, J. B. Davis, R. K. Davis, R. P. Davis, L. A. Dawson, A. G. Foley, J. Gartlon, M. I. Gonzalez, T. Heslop, W. D. Hirst, C. Jennings, D. N. Jones, L. P. Lacroix, A. Martyn, S. Ociepka, A. Ray, C. M. Regan, J. C. Roberts, J. Schogger, E. Southam, T. O. Stean, B. K. Trail, N. Upton, G. Wadsworth, J. A. Wald, T. White, J. Witherington, M. L. Woolley, A. Worby and D. M. Wilson, *J. Pharmacol. Exp. Ther.*, 2007, 321, 1032.
- 13 T. A. Esbenshade, K. E. Browman, R. S. Bitner, M. Strakhova, M. D. Cowart and J. D. Brioni, *Br. J. Pharmacol.*, 2008, 154, 1166.
- 14 M. E. Bardgett, N. N. Davis, P. J. Schultheis and M. S. Griffith, *Neurobiol. Learn Mem.*, 2011, **95**, 64.
- 15 P. J. Nathan, R. Boardley, N. Scott, A. Berges, P. Maruff, T. Sivananthan, N. Upton, M. T. Lowy, P. J. Nestor and R. Lai, *Curr. Alzheimer Res.*, 2013, **10**, 240.
- 16 J. M. Arrang, M. Garbarg and J. C. Schwartz, *Nature*, 1983, 302, 832.
- 17 D. Vohora and M. Bhowmik, Front. Syst. Neurosci., 2012, 6, 72.
- 18 R. S. Bitner, S. Markosyan, A. L. Nikkel and J. D. Brioni, *Neuropharmacology*, 2011, 60, 460.
- 19 Q. Fu, H. Dai, P. He, W. Hu, Y. Fan, W. Zhang and Z. Chen, *Pharmazie*, 2010, **65**, 257.
- 20 D. Vohora, S. N. Pal and K. K. Pillai, Eur. Neuropsychopharmacol., 2007, 17, 375.
- 21 J. M. Arrang, M. Garbarg, J. C. Lancelot, J. M. Lecomte, H. Pollard, M. Robba, W. Schunack and J. C. Schwartz, *Nature*, 1987, 327, 117.
- 22 X. Ligneau, J. Lin, G. Vanni-Mercier, M. Jouvet, J. L. Muir, C. R. Ganellin, H. Stark, S. Elz, W. Schunack and J. C. Schwartz, *J. Pharmacol. Exp. Ther.*, 1998, 287, 658.
- 23 C. E. Tedford, M. Hoffmann, N. Seyedi, R. Maruyama, R. Levi, S. L. Yates, S. M. Ali and J. G. Phillips, *Eur. J. Pharmacol.*, 1998, **351**, 307.
- 24 G. Meier, J. Apelt, U. Reichert, S. Grassmann, X. Ligneau,
 S. Elz, F. Leurquin, C. R. Ganellin, J. C. Schwartz,
 W. Schunack and H. Stark, *Eur. J. Pharm. Sci.*, 2001, 13, 249.
- 25 E. Schlicker, M. Kathmann, H. Bitschnau, I. Marr,
 S. Reidemeister, H. Stark and W. Schunack, *Naunyn* Schmiedeberg's Arch. Pharmacol., 1996, 353, 482.
- 26 R. Aslanian, M. W. Mutahi, N. Y. Shih, K. D. McCormick, J. J. Piwinski, P. C. Ting, M. M. Albanese, M. Y. Berlin, X. Zhu, S. C. Wong, S. B. Rosenblum, Y. Jiang, R. West, S. She, S. M. Williams, M. Bryant and J. A. Hey, *Bioorg. Med. Chem. Lett.*, 2002, 12, 937.

- 27 H. Stark, W. Sippl, X. Ligneau, J. M. Arrang, C. R. Ganellin, J. C. Schwartz and W. Schunack, *Bioorg. Med. Chem. Lett.*, 2001, 11, 951.
- 28 R. Yang, J. A. Hey, R. Aslanian and C. A. Rizzo, *Pharmacology*, 2002, **66**, 128.
- 29 X. Ligneau, D. Perrin, L. Landais, J. C. Camelin, T. P. Calmels, I. Berrebi-Bertrand, J. M. Lecomte, R. Parmentier, C. Anaclet, J. S. Lin, V. Bertaina-Anglade, C. D. la Rochelle, F. d'Aniello, A. Rouleau, F. Gbahou, J. M. Arrang, C. R. Ganellin, H. Stark, W. Schunack and J. C. Schwartz, *J. Pharmacol. Exp. Ther.*, 2007, **320**, 365.
- 30 M. Cowart, R. Faghih, M. P. Curtis, G. A. Gfesser, Y. L. Bennani, L. A. Black, L. Pan, K. C. Marsh, J. P. Sullivan, T. A. Esbenshade, G. B. Fox and A. A. Hancock, *J. Med. Chem.*, 2005, **48**, 38.
- 31 A. D. Medhurst, A. R. Atkins, I. J. Beresford, K. Brackenborough, M. A. Briggs, A. R. Calver, J. Cilia, J. E. Cluderay, B. Crook, J. B. Davis, R. K. Davis, R. P. Davis, L. A. Dawson, A. G. Foley, J. Gartlon, M. I. Gonzalez, T. Heslop, W. D. Hirst, C. Jennings, D. N. Jones, L. P. Lacroix, A. Martyn, S. Ociepka, A. Ray, C. M. Regan, J. C. Roberts, J. Schogger, E. Southam, T. O. Stean, B. K. Trail, N. Upton, G. Wadsworth, J. A. Wald, T. White, J. Witherington, M. L. Woolley, A. Worby and D. M. Wilson, *J. Pharmacol. Exp. Ther.*, 2007, 321, 1032.
- 32 T. A. Esbenshade, G. B. Fox, K. M. Krueger, J. L. Baranowski, T. R. Miller, C. H. Kang, L. I. Denny, D. G. Witte, B. B. Yao,

- J. B. Pan, R. Faghih, Y. L. Bennani, M. Williams and A. A. Hancock, *Biochem. Pharmacol.*, 2004, **68**, 933.
- 33 R. L. Hudkins, R. Raddatz, M. Tao, J. R. Mathiasen, L. D. Aimone, N. C. Becknell, C. P. Prouty, L. J. Knutsen, M. Yazdanian, G. Moachon, M. A. Ator, J. P. Mallamo, M. J. Marino, E. R. Bacon and M. Williams, *J. Med. Chem.*, 2011, 54, 4781.
- 34 A. J. Barbier, C. Berridge, C. Dugovic, A. D. Laposky,
 S. J. Wilson, J. Boggs, L. Aluisio, B. Lord, C. Mazur,
 C. M. Pudiak, X. Langlois, W. Xiao, R. Apodaca,
 N. I. Carruthers and T. W. Lovenberg, *Br. J. Pharmacol.*, 2004, 143, 649.
- 35 X. Bao, S. Lu, J. S. Liow, S. S. Zoghbi, K. J. Jenko, D. T. Clark, C. L. Morse, R. L. Gladding, R. B. Innis and V. W. Pike, *J. Labelled Compd. Radiopharm.*, 2011, 54, S83.
- 36 X. Bao, S. Lu, J. S. Liow, S. S. Zoghbi, K. J. Jenko, D. T. Clark, R. L. Gladding, R. B. Innis and V. W. Pike, *J. Med. Chem.*, 2012, 55, 2406.
- 37 J. Benicky, E. Sanchez-Lemus, M. Honda, T. Pang, M. Orecna, J. Wang, Y. Leng, D. M. Chuang and J. M. Saavedra, *Neuropsychopharmacology*, 2011, 36, 857.
- 38 T. Pang, J. Wang, J. Benicky, E. Sanchez-Lemus and J. M. Saavedra, J. Neuroinflammation, 2012, 9, 102.
- 39 (a) T. A. Esbenshade, K. E. Browman, R. S. Bitner, M. Strakhova, M. D. Cowart and J. D. Brioni, Br. J. Pharmacol., 2008, 154, 1166; (b) A. A. Hancock, Biochem. Pharmacol., 2006, 71, 1103.