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A series of amidoheteroaryl compounds were designed and synthesized as inhibitors of B-Raf kinase. Sev-
eral compounds from the series show excellent potency in biochemical, phenotypic and mode of action
cellular assays. Potent examples from the series have also demonstrated good plasma exposure following
an oral dose in rodents and activity against the Ras-Raf pathway in tumor bearing mice.

� 2008 Elsevier Ltd. All rights reserved.
B-Raf is a member of the MAPK signaling cascade, sitting down-
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Figure 1. Bisamidophenyl screening hit 1.
stream of Ras. During MAPK signaling B-Raf phosphorylates its
substrates Mek-1/2, which in turn phosphorylate Erk-1/2. Once
phosphorylated the Erks translocate to the nucleus where they en-
gage a number of transcription factors that ultimately leads to sev-
eral biological responses including proliferation.1 The Ras-Raf-Erk
pathway has been implicated previously to play a role in oncogen-
esis having been demonstrated to promote proliferation, angiogen-
esis and survival in several cancer models.2 Mutant forms of the
kinase domain of B-Raf have been identified in a number of human
cancer types, with the highest prevalence found in malignant mel-
anoma tumors.3,4 The most common mutation, the V600E mutant
(mB-Raf), has been demonstrated in vitro to be constitutively active
in carcinoma cells and to simulate the growth of cancer cells inde-
pendent of upstream signaling. Based on this epidemiological data,
inhibition of the kinase domain of B-Raf represents a promising
strategy for the clinical treatment of cancers bearing the V600E
mutation.

A subset of the AstraZeneca collection, known or expected to
possess activity against kinases, including compounds screened
previously against C-Raf,5 was screened against mB-Raf and several
series with good activity were identified. One of the promising hit
series in terms of biochemical (enzyme) and cellular potency is
shown in Figure 1 (1: enzyme IC50 0.002 lM; GI50 (Colo205 cells)
5.9 lM; P-Erk (Colo205 cells) IC50 0.64 lM).
All rights reserved.

yne).
Modeling6 of the initial hit 1 to the X-ray structure of mB-Raf
(pdb code 1uwj7) suggested that this series bound to mB-Raf in a
DFG-out8 manner, with the quinoline located in the region of the
hinge (Fig. 2). Preliminary efforts to explore the SAR of this series
focused on replacement of the quinoline ring. Initial changes to
the quinoline focused on changing the location of the aryl nitrogen
and reduction in ring size to optimize the interaction between the
Cys531 backbone NH and the inhibitor. As shown in Table 1, the
potency of the series is sensitive to the location of the aryl nitro-
gen, and interestingly, monocyclic heteroaryl rings (5) were toler-
ated. This reduction in the molecular weight of the series was seen
as advantageous for improving the physical properties. 3-Pyridyl
analogs were most potent in the enzyme among the monocyclics.
Furthermore, a significant increase in enzymatic and cellular po-
tency was obtained by reversing the amide (in linker 2, 10), which
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Table 1
mB-Raf enzyme and cell P-Erk inhibition SAR for quinoline analogs.
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Figure 2. Compound 1 docked into the binding site of V600E B-Raf (pdb code
1uwj). The quinoline makes a hydrogen bond to the backbone of Cys531. The amide
between the B and C rings interacts with the gatekeeper Thr528. The amide
between the A and B rings contributes to the stabilization of the DFG-out
conformation of the protein with the trifluoromethylphenyl group buried in the
induced pocket.
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was attributed to an improvement in the interaction between the
amide and the gatekeeper Thr528, and an improvement in the
hydrogen bond accepting ability of the pyridyl nitrogen.

Compounds 1–9 were prepared via the route shown in Scheme
1. The strategy was to couple 3-(trifluoromethyl)benzoyl chloride
with 4-methyl-3-nitroaniline followed by reduction with SnCl2 to
provide a key intermediate (92% yield for two steps) to examine
multiple C rings.

Subsequent optimization of 10 focused on the generation of an
A-ring library to explore the SAR of the series in the DFG-out pock-
et. A variety of substituents on the 3-position of the A ring were
found to yield compounds with potent inhibition in the enzyme as-
say. Similarly substituents at the 4-, 3,4-, and 3,5-positions also
yielded potent compounds in the enzyme assay. A variety of sub-
stituents yielded excellent enzymatic potency, with substitution
at the 3-position giving good cellular potency (inhibition of P-Erk
levels), and in particular, the dimethylcyano group (19) resulted
in a compound with the best cellular potency. Although compound
19 was found to have reasonable physical and pharmacokinetic
properties, the clearance and bioavailability precluded testing of
this compound in pharmacological assays (Table 3).

Compounds 10–25 were prepared via the route shown in
Scheme 2. The dimethylcyano A ring was prepared by reacting
methyl-3-(bromomethyl)benzoate with NaCN and then methyl io-
dide. Hydrolysis of the ester with LiOH provided the key A ring in a
43% overall yield. Coupling with methyl 5-amino-2-methylbenzo-
ate followed by hydrolysis (98% yield for two steps) generated
the acid that allowed extensive investigation of the C ring. Com-
pound 19 was completed by coupling the A–B intermediate to pyri-
din-3-amine with HATU in DMF (98%). Ref. 11 provides detailed
experiments for all analogs described in Tables 2 and 3.

Optimization efforts for compound 19 focused on exploring
substitution on the pyridyl C ring with a view to adding potency,
blocking metabolic sites and adding steric hindrance to mitigate
any potential for Cyp P450 inhibition (10 Cyp2C9 IC50 = 5 lM). In
addition, based on structural information, a focused exploration
of the B ring was examined. The ortho methyl group of the B ring
Scheme 1. Preparation of examples 1–9. Reagents and conditions: (a) 3-(trifluo-
romethyl)benzoyl chloride, Et3N, DCM; (b) SnCl2�H2O, DMF; (c) RCO2H, HATU, i-
Pr2NEt, DMF.
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Scheme 2. Preparation of reversed amide examples. Reagents and conditions: (a)
NaCN, DMF, 75 �C; (b) MeI, NaH, DMSO; (c) LiOH, THF/MeOH/H2O (3:1:1); (d)
HATU, i-Pr2NEt, DMF; (e) LiOH, THF/MeOH/H2O (3:1:1); (f) Pyridin-3-amine, HATU,
i-Pr2NEt, DMF.



Table 2
SAR (biochemical and cellular) of the A ring.

N
H

O
N

N
H

O

R

Compound R IC50 (lM) mB-Raf Cell (lM) P-Erk IC50

11 3-CF3 0.007 1.4
12 3-F 0.322 —
13 3-Me 0.016 >30
14 3-iPr 0.015 5.9
15 3-NMe2 0.016 14.6
16 3-Cl 0.012 >30
17 3-OiPr 0.015 14.9
18 3-OiBu 0.028 10.1
19 3-C(Me2)CN 0.007 0.33
20 3-CN 0.237 >30
21 3-SO2Me 0.011 >30
22 3-SO2NH2 0.030 >30
23 4-OMe 0.115 >30
24 3-CF3, 4-Cl 0.009 3.1
25 3-C(Me2)CN, 5-CNMe2 0.076 —

Table 4
IC50 data for 39 against a panel of kinases screened at KM for ATP in each case.

Kinase IC50 (lM)

p38a 0.005
CSF-1R 0.005
PDGFRb 0.031
PTK2 0.478
EphB4 0.672
FGFR1 13.0
Jak2 29.0
Kdr >30
EGFR >30
IGFR1 >30
Pak1 >30
Plk >30
Csk >30
Src >30
Chk-1 >30
Cdk2 >30
Jnk1 >30
PKA >30
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could be replaced with chloro and that change resulted in reduced
metabolism without impacting cellular potency. The data for se-
lected analogs are summarized in Table 3.

Substitution at the 2- and 3-positions of the pyridyl C ring led to
improvements in cellular potency and in some cases to improved
pharmacokinetic profiles. Addition of a hydrogen bond donor at
the 2-position of the pyridyl ring resulted in good cellular potency
with excellent potency seen for the acetamide analog 31. Unfortu-
nately, the metabolic lability and poor oral exposure of 31 pre-
vented further progression. Attempts to introduce ionizable basic
groups at the 2-position of the pyridyl ring generally increased sol-
ubility but resulted in decreases in cellular potency. A variety of
groups with a range of electronic properties was tolerated at the
3-position. Introduction of a chloro group was found to be partic-
ularly beneficial for cellular potency. The P450 inhibition profile
Table 3
Enzyme and cellular potency, physical property data and rat PK upon iv (3 mpk) and po (

H
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Compound R X Y IC50

(lM)
Cell (lM) P-Erk
IC50

GI50
12

(lM)

19 — C(Me2)CN Me 0.007 0.33 1.2
26 2-NH2 C(Me2)CN Me 0.014 0.20 0.56
27 2-Me C(Me2)CN Me 0.048 0.25 1.58
28 2-OMe C(Me2)CN Me 0.116 >30
29 2-NMe C(Me2)CN Me 0.038 0.19 2.9
30 2-

Morpholine
C(Me2)CN Me 0.079 6.0

31 2-
NCCN(Me)2

C(Me2)CN Me 0.048 1.4

32 2-NCOMe C(Me2)CN Me 0.016 0.01 0.20
33 2-CN C(Me2)CN Me 0.205 >30
34 3-Me C(Me2)CN Me 0.016 0.23 0.83
35 3-Cl C(Me2)CN Me 0.035 0.04 0.46
36 3-CONMe C(Me2)CN Me 0.017 0.89 2.1
37 3-OMe C(Me2)CN Me 0.014 0.08 0.81
38 2-NH2, 3-Cl C(Me2)CN Me 0.016 0.04 0.35
39 2-NH2, 3-Cl CF3 Cl 0.027 0.08 0.86
40 2-NH2, 3-Cl CF3 Me 0.012 0.11 0.38
of the compounds did not seem to be alleviated by substitution
on the pyridyl ring, with Cyp2C9 being consistently inhibited, al-
beit generally at low lM concentrations. Analogs that combined
the best groups at both the 2- and 3-positions yielded compounds
with excellent cellular potency and acceptable pharmacokinetic
profiles.

The kinase selectivity profile of this series was assessed, using
39 as a representative. The dose response data are shown in Table
4. Within this panel, which includes a range of tyrosine and serine/
threonine targets of therapeutic relevance, 39 was found to dem-
onstrate good selectivity over the majority of the targets. Notable
exceptions are the potent inhibitions of p38a and CSF-1R. The
p38a activity is not surprising given a previous report of p38a
activity for related compounds,14 and data on a related series has
been reported recently for CSF-1R.15

Based on the known MAPK pathway biology these particular
off-target activities are not expected to contribute to inhibition
10 mpk) dosing.13
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29 42.5 1.6 2.5 17
75.5 0.6 2.3

36 9.8 47.5 0.8 2.9 73
13

4.9 53.5 0.6 1.7 15
26

35 64 0.7 2.7 10
2

23 1.8 32.5 0.8 1.4 4
9 0.4 60 0.9 3.1 45

21
24 56 0.5 1.7
12 4.0 9.5 1.0 0.8 30
<1 0.7 11 1.4 1.2 96
<1 1.8 8 1.6 1.0 78



Table 5
Pharmacodynamic data following a single oral dose to A375 tumor bearing Nude
mice.

Compound 30 mpk 60 mpk 100 mpk

P-Erk Inhib. (%) 2 h post-dose
38 0 40 83
39 50 64 71
40 18 67 81
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of mB-Raf mediated signaling. The compound, 39, was found to
be inactive against Kdr and Cdks, which should aid in the inter-
pretation of biological activity in future efficacy studies with this
series.

Based on these optimization efforts compounds 38–40 were
chosen for profiling in pharmacodynamic models. Each compound
was dosed orally to A375 tumor (average tumor volume 200 mm3)
bearing Nude mice. The mice were sacrificed and tumors were col-
lected at specific timepoints post-dose. The tumors were lysed and
analyzed for P-Erk levels. The activities of these compounds rela-
tive to vehicle control are shown in Table 5. Each of these com-
pounds was able to inhibit the Raf-Mek-Erk pathway in tumors
in a dose dependent manner.

In conclusion, amidoheteroaryl compounds presented here are
potent inhibitors of mutant (V600E) B-Raf protein, which results
in blockade of signaling through the Raf-Mek-Erk pathway in
Colo205 cells in vitro, and in A375 tumor cells in vivo. Selected
members of this series have pharmacokinetic properties that ren-
der them suitable for testing in cancer disease models and the re-
sults of such studies will be reported in due course.
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