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a significant challenge for the total synthesis of this class of natural products. A novel approach to these
cyclic spiroimines based on metal-catalysed hydroamination of spiroaminoalkyne precursors is reported
herein. Au(PPh3)SbFs was found to effect the formation of bench-stable 5,6- and 6,6-spiroimine systems
in high yields, although the 7,6-analogue remained elusive. To the best of our knowledge these are the
first reported examples of a-quaternary cyclic imines formed via alkyne hydroamination.
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Marine natural products containing a cyclic imine unit form an :
important subclass of fast-acting toxins responsible for incidents of K\{
shellfish toxicity.! In addition to their potent biological activity, the
complex molecular architecture of compounds such as the pinna-
toxins (1a-d) (Fig. 1), gymnodimine (2) and the spirolides (3a-f)
has inspired synthetic endeavours in several laboratories.? Inter-
estingly, the observed inactivity of spirolides E and F (3ef) in
which the cyclic imine has been hydrolysed, highlights the impor-
tance of this motif in effective binding to its cellular target, the nic-
otinic acetylcholine receptor. Al

Previous synthetic studies towards the pinnatoxins and gymn- B(
odimine report the necessity to use forcing conditions to form c
the cyclic imine from azido-ketone or amino-ketone precursors D(
via an aza-Wittig or condensation reaction, respectively.* These
cyclisations are typically performed at a late stage due to the sus-
ceptibility of imines to hydrolytic cleavage. The cyclic imines pres-
ent in natural products 1-3, however, are unusual in being highly
resistant to hydrolysis when incorporated into the complete mac-
rocycle and exist as protonated iminium salts in acidic aqueous
solution. The adjacent quaternary centre is proposed to impart ste-
ric protection from hydrolysis, along with the vicinal methyl
groups present in the pinnatoxins and spirolides. In support of this
hypothesis, a number of simple imine systems containing a quater-
nary centre prepared by the Romo group proved similarly resistant

. qs . . irali 23 .pl —4-R2 = CR3 = il 23. -
to acidic and basic hydrolysis, although the methodology devel- Sp'“’“deggg $1 'HR e H'N*T ‘Rg"e’MR =Me  Spirolide Egg)ﬁ F‘R =H
. .5 = H; R?= Me; R®= Me =
oped was not applicable to total synthesis. C (3c) A23 ;R = Me; R2= Me; R%= Me
D (3d) R'= Me; R*= Me; R®= Me
* Corresponding author. Figure 1. Spiroimine-containing marine natural products.
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Figure 2. Putative advanced spirolide AE ring intermediate 4 and model system 5
selected for this study.

We were interested to investigate alternative synthetic meth-
ods for preparation of these key spiroimines that either (a) were
suitable for mild late-stage cyclic imine formation involving ad-
vanced intermediates, or (b) enabled access to highly functional-
ised imines that might be stable enough to be viable synthetic
intermediates themselves. In addition, any spiroimines prepared
would be novel entities and potentially interesting subjects for bio-
logical activity investigations.

In recent years hydroamination has received an increasing
amount of attention as a direct and atom-efficient method to ac-
cess nitrogen-containing compounds.® Catalysts based on a variety
of metals including titanium,” zirconium, yttrium, lanthanides and
most notably, gold,® have been found to promote intramolecular
hydroamination affording cyclic imines from amino-alkynes,
including two seven-membered examples.® It seemed reasonable
that similar cyclisation of a suitable amino-alkyne precursor might
afford the bicyclic spiroimine ring systems of possible imine-con-
taining intermediates (e.g., 4, Fig. 2) required for synthesis of the
complex marine natural products 1-3. To this end, we designed a
simplified model system 5 that would allow us to investigate the
feasibility of this approach, starting from amino-alkynes 6a-c.

In parallel sequences, readily available diols 7a-c (Scheme 1)
were monoprotected as PMB ethers and converted into the iodides
8a-c. Formation of lithium enolate of commercially available
methyl cyclohexane carboxylate (9) at —78 °C using LDA, followed
by addition of 8a-c and slow warming to room temperature
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Scheme 1. Preparation of hydroamination precursors 6a-c. Reagents and condi-
tions: (a) NaH, PMBCI, DMF, 0 °C to rt, 18 h; (b) PPhs, I, imidazole, CH,Cl;, 0 °C to rt,
2 h, 8a (70%), 8b (65%), 8¢ (83%) over 2 steps; (c) LIHMDS, 9, THF, —78 °C then 8a-c,
—78°C to rt, 18 h, 10a (81%), 10b (83%), 10c (89%); (d) LiAlH4, THF, rt, 3 h; (e)
(COCl),, DMSO, Et3N, —78 °C; (f) diethyl 1-diazo-2-oxopropylphosphonate, K,COs,
MeOH, 0°C to rt, 18 h, 11a (43%), 11b (59%), 11c (78%) over 3 steps; (g) DDQ,
CH,Cl,-H,0 (10:1), rt, 2 h; (h) TsCl, EtsN, DMAP, CH,Cl,, rt, 18 h, 12a (70%), 12b
(62%), 12c (85%) over 2 steps; (i) NaN3, DMF, 50 °C, 3 h; (j) PPhs, THF-H,0 (40:1),
50 °C, 4 h, 6a (73%), 6b (74%), 6¢ (74%) over 2 steps.

Table 1
Hydroamination of amino alkynes 6a-c

Table 1
—_—

Substrate Cat.? Conditions Result (%)
6b 13 NH4PFs,? 100 °C, PhMe, 4 h cm.p
6¢c 13 NH4PFg, 100 °C, PhMe, 4 h c.m.
[ 14 rt, CHyClp, 3 d -
6¢c 15 rt, CHyCl, 3d —
6¢c 14 80 °C, PhMe, 1d —
6a 16 95°C, MeCN, 1h cmd
6b 16 95°C, MeCN, 1 h cmd
6¢c 16 95°C, MeCN, 1h -

6¢c 16 95°C, MeCN, 1d c.m.
6¢c 17 100 °C, PhMe, 2 d —

6b 17 Et3N,* 100 °C, PhMe, 2 d —

6¢c 17 EtsN, 100 °C, PhMe, 2 d —

6a 17 EtsN, 95 °C, MeCN, 0.5 h 5a (91)
6b 17 Et3N, 95 °C, MeCN, 0.5 h 5b (80)
6¢c 17 EtsN, 95 °C, MeCN, 2 d —

2 5 mol %.

b Complex mixture.

¢ No reaction, starting material recovered.

d

Contained trace spiroimine by '"H NMR spectroscopy.
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Figure 3. Hydroamination catalysts examined in this study.

afforded methyl esters 10a-c containing a quaternary centre, in
excellent yields.

The resulting methyl esters were then transformed into the cor-
responding alkynes 11a-c by a standard three-step sequence
involving reduction to the alcohol with lithium aluminium hy-
dride, Swern oxidation and alkyne formation from the aldehyde
with freshly-prepared Ohira-Bestmann reagent. It is worth noting
that the Corey-Fuchs protocol failed to yield any of the desired al-
kyne in the last step of this sequence. Installation of the primary
amine was achieved by oxidative PMB deprotection and subse-
quent tosylation to give 12a-c, followed by nucleophilic displace-
ment with sodium azide in DMF at 50 °C and Staudinger reduction
using triphenylphosphine, to give the desired amino-alkynes 6a-c.

With required precursors 6a-c in hand, the hydroamination
reaction was investigated (Table 1) using readily available cata-
lysts, stable under standard laboratory conditions, that would be
applicable to a robust and scalable synthetic program (Fig. 3).
Ru3(CO);, (13) has been reported to be effective for the formation
of imines, including a cyclic seven-membered example, albeit in
low yield under forcing conditions.!® Unfortunately, no cyclisation
products were obtained under these conditions, even with the
additive NH4PFs."! Among a number of gold catalysts recently
developed for alkyne hydroamination, both phosphine 14'2 and
N-heterocyclic carbene 15'3 have been applied successfully in a
range of systems. Disappointingly, however, neither catalyst was
effective in cyclisation of any of the amino-alkyne precursors
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6a-c. Reasoning that the reaction might be hindered by the bulky
ligands of catalysts 14 and 15, especially given the presence of
the quaternary spirocentre o to the acetylene, it was decided to
investigate simple gold salts 16 and 17. Elevated temperatures ini-
tially failed to provide any cyclised product 5c in either acetonitrile
or toluene.

Finally, we were pleased to discover that heating 6a or 6b in
acetonitrile under sealed-tube conditions, in the presence of gold
phosphine catalyst 17 and triethylamine,'* afforded the respective
five- and six-membered cyclic imines 5a and 5b in 91% and 80%
yields. Based on these results, use of the non-coordinating anti-
mony hexafluoride counterion appears important for any reaction
to occur. The reactions were notably rapid, affording a single prod-
uct cleanly according to TLC in less than 30 min and requiring only
simple filtration to provide nearly pure products.!>!® Contrary to
our initial concerns, the imines 5a and 5b appeared relatively resis-
tant to hydrolysis, proving stable to benchtop storage open to air
for prolonged periods. However, despite all efforts, it remained
impossible to isolate any of the corresponding seven-membered
cyclic imine 5¢ upon subjecting amino-alkyne 6¢ to the same con-
ditions used successfully for 6a and 6b. Further studies will be re-
quired to determine whether this is due to a prohibitive energy
barrier or the instability of the product.

In summary, we have described the successful synthesis of spi-
rocyclic imines 5a and 5b in high yield via intramolecular alkyne
hydroamination, using the convenient gold phosphine catalyst
Au(PPhs)SbFg. All efforts to obtain the analogous seven-membered
imine 5¢ have proved fruitless to date. These results demonstrate
the feasibility of hydroamination of a-quaternary alkyne sub-
strates and also suggest that the five- and six-membered cyclic
imine products may be stable enough to be utilised as viable inter-
mediates in synthesis.
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. General hydroamination procedure: To a stirred solution of amino-alkyne 6a

(20.0 mg, 0.13 mmol) in MeCN (0.5 ml) in a sealed tube were added Au(PPh3)Cl
(3.30mg, 6.60 mmol), AgSbFs (2.30mg, 6.60mmol) and Et;N (0.9 pl,
6.60 mmol). The mixture was heated at 95°C for 0.5h then filtered and
concentrated in vacuo to afford cyclic imine 5a (18.2 mg, 91%) as a yellow oil:
Rr 0.85 (10% EtMA); IR Vimax(film) 2926, 2855, 1641, 1437, 750, 694, 623 cm™;
"H NMR (400 MHz, CDCl3) 6 1.11-1.50 (6H, m, 6-H’, 7-H, 9-H, 10-H'), 1.68-1.73
(4H, m, 6-H”, 8-H, 10-H"), 1.82 (2H, t, ] = 7.2 Hz, 4-H), 1.96 (3H, t, ] = 1.6 Hz, 1"-
H), 3.68-3.72 (2H, m, 3-H); '*C NMR (100 MHz, CDCl5) § 15.9 (CH3, C-1'), 23.1
(CH,, C-6, C-10), 25.7 (CH,, C-8), 32.8 (CH,, C-7, C-9), 33.3 (CH,, C-4), 54.7 (C, C-
5), 56.9 (CHa, C-3), 182.5 (C=N, C-1); m/z (ESI+, %) 152 (M+H*, 100); HRMS M*
found 152.1432, C;oH;gN* requires 152.1434.

Data for 5b: R; 0.85 (10% EtMA); IR vimax(film) 2927, 2855, 1644, 1449, 695, 657,
623 cm~'. 'TH NMR (400 MHz, CDCl5) 6 1.44-1.72 (14H, m, 4-H, 5-H, 7-H, 8-H,
9-H, 10-H, 11-H), 2.02 (3H, s, 1’-H), 3.51-3.54 (2H, m, 3-H); '3C NMR
(100 MHz, CDCl3) & 18.7 (CH,, C-9), 20.6 (CH,, C-7, C-11), 22.7 (CH;, C-1'), 25.7
(CHa, C-5), 27.6 (CHa, C-4), 33.1 (CH,, C-8, C-10), 39.6 (C, C-6), 49.6 (CH,, C-3),
177.0 (C=N, C-1); m/z (ESI+, %) 166 (M+H*, 100); HRMS M* found 166.1594,
C;1HyoN" requires 166.1590.
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