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Molecular Design of Calix[4]arene-Based Sodium-Selective Electrodes
Which Show Remarkably High 105:0-105-3 Sodium/Potassium Selectivity
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Several ionophores for the Nat-selective electrode were developed from
calix[4]arene crown ethers with a short -(CHCH,0)oCH,CH3- crown loop on the
lower rim. The ionophoric cavities generated in these ionophores are much smaller and
more rigid than those derived from calix[4]arene crown ethers with a long
-(CH2CH,0)3CH,CHj>- crown loop. It was shown that two electrodes possess Nat
selectivity (with respect to K+) exceeding a factor of 105 which is higher by more than
two orders of magnitude than that of the former calix[4]arene-based Nat-selective

electrodes!

Among alkali metal cations Nat and K+ play particular roles in regulation of many biological events.
Hence, in analytical and biological chemistry fields extensive research efforts have so far been devoted toward
precise discrimination between Nat and K+. To selectively recognize KT with respect to Na* the nature gives
us a splendid ionophore, valinomycin which shows very high K+ selectivity. One can devise practical K-
selective electrodes from a poly(vinyl chloride)(PVC)-plasticizer system using valinomycin as an ionophore. 1)
In contrast, there exists in nature no such useful ionophore for selective recognition of Na* with respect to K+.
Hence, one has to develop some artificial ionophores for Nat-selective electrodes which show high Nat
selectivity. In the first stage Nat-selective electrodes were prepared from crown ethers.2) For example, Shono
et al.3) devised a Nat-selective electrode using a bis(12-crown-4) ethers which showed 102 Nat/K+
selectivity. However, the Nat/K* selectivity attainable with crown ethers has been saturated at the 102 order.
In the second stage Na*t/K* selectivity was further improved by using calix[4]aryl esters and amides as
ionophores.4-10) For example, Kimura et al.4) realized 1024 Na+/K+ selectivity with a PVC-2-fluoro-2'-
nitrodiphenyl ether (FNDPE)-5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis[(decyloxycarbonyl)methoxy]-
calix[4]arene system and Sakaki ez al.5) attained 103-1 Na+/K+ selectivity with a PVC-FNDPE-5,11,17,23-
tetra-tert-octyl-25,26,27,28-tetrakis[(ethoxycarbonyl)methoxy]calix[4]arene system. The superiority of
calix[4]aryl esters over crown ethers is ascribed to the ionophoric cavity size exactly fit to the size of Nat and to
the rigid calix[4]arene skeleton supporting the cavity as a platform.5) To further improve Nat/K+ selectivity we
synthesized various ionophores from calix[4]arene-25,26,27,28-tetrol but could not come across the ionophore
that exceeds 103-1 Na+/K+ selectivity.5) Is there any potential strategy to break this selectivity? Valinomycin
is produced by nature so as to selectively recognize K¥ in the presence of Na*. Itis known, however, that the
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highest selectivity is not observed for K* but for Rb*.11) This contrivance in nature
teaches us that to efficiently discriminate larger K+ from smaller Na* the ionophoric
cavity should be adjusted in the size slightly larger than K+. Provided that this
working hypothesis is applied to discrimination of smaller Nat from larger K+, it
follows that the ionophoric cavity should be adjusted in the size slightly smaller than
Nat. Recently, Ghidini et al12) reported a calix[4]arene crown ether 1 which

shows high K+ selectivity. Examination of the CPK molecular models reveals that
as reported by them,12) the length of the crown loop suitable to the cross-link of the
two distal OH groups is a -(CH2CH20)3CH2CH2- chain. We considered that if

one could synthesize a calix[4]arene capped with a shorter -(CH2CH20)2CH2CH?2- chain, it should result in a
smaller ionophoric cavity which fits Lit or Na*. We thoroughly examined the reaction products yielded from
the reaction of 3,6-dioxaoctane-1,8-ditosylate (2) with calix[4]arene-25,26,27,28-tetrol (32)13) or 5,11,17,23-
tetra-tert-butylcalix[4]arene-25,26,27,28-tetrol (3b) and eventually found out the reaction conditions which give
conformational isomers of -(CH2CH20)2CH2CH?2- bridged calix[4]arene crown ethers. By suitable
modification of these calix[4]arene crown ethers we have succeeded in the design of Nat-selective electrodes
which show unbelievably high 105:0-105-3 Na+ selectivity.
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Preparation of 4a was described previously.13) 4b (mp 259-262 °C) was synthesized in a manner
similar to that described for 4a. These compounds were treated with ethyl bromide, bromo acetate, or 2-
bromoethyl ethyl ether in THF (but in DMF for 1,3-alternate-5a:Et and 1,3-alternate-5b:Et) in the presence of
NaH (but in the presence of KH for 1,3-alternate-5a:Et and 1,3-alternate-5b:Et). The products were identified
by IR and 1H NMR spectral evidence and elemental analyses. 14) The temperature-dependent 1H NMR spectra
(0-145 °C, tetrachloroethane-d2) established that the rotation of the phenyl units are suppressed, indicating that
the ethyl group is bulky enough to inhibit the oxygen-through-the-annulus rotation in S. Preparation of ion-
selective electrodes was described in detail previously.S) The selectivity coefficients were determined by a
mixed solution method (FIM). The results are summarized in Table 1 and Figs.2 and 3.

Examination of Table 1 tells us several intriguing characteristics of 5-based ion-selective electrodes: that
is, (i) six electrodes show the highest selectivity for Na™, (ii) Nat/K selectivity of two electrodes exceeds a
factor of 105 which is higher by more than two orders of magnitude than the past champion data,) (iii) the
highest Nat/K+ selectivity (105-3) is realized with partial-cone-5a:Et, (iv) cone-5b:Et also shows 105-0
selectivity but that for 1,3-alternate-5b:Et is reduced to 102-0, and (v) introduction of ester or ethereal groups
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Tablel. Sodium selectivity of 5-based electrodes?)

logKNI;%,M+b)
Calix[4Jarene  M*=Li+ Nat K* Rb+ Cst NH4* Mg2t+ Ca2*+ Ba2+ sr2+ H+
Cone-5a:Et 27 0 -4.1 -41 34 -44 -43 -43 -48 -41 -47

Partial-cone-5a:Et -2.4 0 -5.3 -37 -32 -39 -51 -46 -46 -42 -47
1,3-Alternate-5a:Et ~ -3.8 -3.3 44 -44 -45 45 -44 50 -41 -34
Cone-5b:Et -2.8 -5.0 -48 -50 -44 -45 -44 -55 -41 -54
1,3-Alternate-5b:Et  -3.0 2.0 -28 -14 23 -47 -46 -44 -44 -31
Cone-5b:AcOEt -3.1 -4.0 -46 -46 -43 -44 -44 -51 -41 -42
Cone-5b:EtOEt -3.1 -4.1 -43 -46 -45 -43 -42 -51 -41 -47
Reference®) -3.6 -3.0 44 -46 -43 -55 -55 -6.1 -52 -4.6

SO O O O O O

a) The PVC membranes consist of 3.2% (in weight) calix[4]arene derivative, 64.1% o-nitrophenyl octyl ether as
a plasticizer, 32.1% PVC, and 0.6% potassium tetrakis(p-chlorophenyl) borate. The emf measurements were

carried out at 25 °C with an electrochemical cell of Ag-AgCl/1x10-2 M NaCl/PVC membrane/sample solution
/1x10-1 M NH4Cl/ sat. KCI/Ag-AgCl. b) Data were obtained by the FIM method with back ground
concentrations of 0.05M for Lit+ and K+ (in the case of logK values smaller than -4) and 0.5 M for other cations
(Rb*, Cs¥, etc.) and K¥ (in the case of logK values larger than -4). The selectivity coefficients were

determined according to the recommendation of IUPAC.15) c¢) 5,11,17,23-Tetra-tert-octyl-25,26,27,28-
tetrakis[(ethoxycarbonyl)methoxy]calix[4]arene.
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Fig. 1. Sodium selectivity against alkali metal  Fig. 2. Sodiu[m selectivity against alkali metal
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reduces Nat/K+ selectivity about one order of magnitude (see cone-5b:AcOEt and cone-5b:EtOEt vs. cone-
5b:Et). These findings suggest that a size of the ionophoric cavity and a surrounding of the cavity seriously
influence the performance of the electrode.
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In conclusion, the present study demonstrated that the Nat-selective electrode can be devised by
preparing a calix[4]arene crown ether having a rigid, small ionophoric cavity. To the best of our knowledge,
Nat/K+ selectivity of 103-3 is the highest value achieved so far. The results imply that the working hypothesis
described in Introduction is pertinent. We are now investigating the Nat-binding mode of these calix[4]arene
crown ethers by 1H NMR spectroscdpy. The preliminary 1H NMR study indicates that in partial-cone-5a:Et
Nat resides in the crown loop and is sandwiched by the two EtO oxygens. This binding mode is similar to that
proposed by Ghidini et al.12) for 1 with a partial-cone conformation. We believe that his research eventually
leads to further improvement of Nat selectivity.
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