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Abstract: An unprecedented catalytic asymmetric
synthesis of aminal-containing heterocyclic com-
pounds has been developed from imines and teth-
ered nitrogen/nitrogen nucleophiles. In the presence
of 10 mol% of a commercially available chiral phos-
phoric acid, a range of aromatic, a,b-unsaturated,
and aliphatic imines react with 2-aminobenzamides
to give dihydroquinazolinones in good to excellent
yields and ee. The enantioselectivity is significantly
affected by the imine N-substituent through non-
bonding interactions with the chiral phosphoric acid
and the 2-aminobenzamide.
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A wide variety of nucleophiles undergo additions to
imines by breaking the C�N p bonds but delivering
the stronger C�N s bonds to the final products.[1] In
contrast, the transformation of imines has rarely been
reported through the complete cleavage of C=N
bonds. Other than olefination,[2] the C=N bonds of
imines can be transformed into geminal s bonds in

the presence of carbon, sulfur, or nitrogen nucleo-
philes (Scheme 1).[3,4] Recently, we reported a catalytic
asymmetric formation of geminal C�C/C�N s bonds
from imines and tethered carbon/nitrogen nucleo-
philes, wherein the imine N-substituents significantly
affect the reactivity and enantioselectivity.[3] Inspired
by this study, we investigated the reaction of imines
with tethered nitrogen/nitrogen nucleophiles for the
formation of aminal-containing heterocyclic com-
pounds and developed a highly enantioselective syn-
thesis of dihydroquinazolinones (Scheme 1).

Dihydroquinazolinones display a variety of impor-
tant biological and medicinal properties such as anti-
tumor, analgetic, anti-inflammatory, choleretic, antifi-
brillatory, antibiotic, antispermatogenic, and vasodila-
tory efficiency.[5] They are usually prepared from alde-
hydes and 2-aminobenzamides under acidic condi-
tions, and recently List and Rueping reported
remarkable breakthroughs toward the corresponding
asymmetric synthesis using chiral phosphoric acids as
the catalysts.[6–8] List et al. obtained excellent enantio-
selectivity from the reaction of a-unbranched aliphat-
ic aldehydes with 2-aminobenzamides, but poor enan-
tioselectivity from the reaction with a-branched ali-
phatic aldehydes (e.g., Me2CHCHO: 50% ee) or aro-
matic aldehydes (e.g., PhCHO: 26% ee).[6a] Rueping
et al. obtained 80–92% ee from the reaction with

Scheme 1. Transformation of imine C=N bonds into geminal s bonds.
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para- and/or meta-substituted benzaldehydes and 80%
ee from the reaction with cyclohexanecarboxalde-ACHTUNGTRENNUNGhyde.[6b] Our goal was to improve the enantioselectivi-
ty and extend the scope. Reasoning that imines have
additional N-substituents to interact with the acidic
catalysts and 2-aminobenzamides, we replaced the al-
dehydes in the aminal-forming reaction with imines
and found that the modified reaction not only gave
better enantioselectivity in the synthesis of some
known 2-aryl- and 2-alkyldihydroquinazolinones, but
also extended the scope to 2-(2-substituted-phenyl)-,
2-(1- or 2-naphthyl)-, 2-heteroaryl-, and 2-
alkenyldihydroquin ACHTUNGTRENNUNGazolinones (Scheme 2).

Treatment of N-benzylidene-p-toluenesulfonamide
(1aa) with 2-aminobenzamide (2a) and 10 mol% of
chiral phosphoric acid 4a in chloroform at room tem-
perature resulted in the formation of dihydroquinazo-
linone 3a in 90% yield and with 24% ee (Table 1,
entry 1). Notably, the enantioselectivity is significantly
better than that for the synthesis of the same product
from a previously reported reaction of benzaldehyde
with 2-aminobenzamide (2a) in the presence of cata-
lyst 4a (10% ee).[6b] Encouraged by this result, we
evaluated a range of substituents on the imine nitro-
gen atoms including the sulfonyl, diphenylphosphinyl,
and aryl groups (Table 1, entries 2–20). The reactivity
and enantioselectivity were dramatically affected by
the imine N-substituents, and the N-(1-naphthalene-
sulfonyl) group was identified as the best one, the use
of which led to the formation of dihydroquinazoli-
none 3a with 64% ee (Table 1, entry 9). It is notewor-
thy that the reaction with N-benzylidene-p-methoxy-ACHTUNGTRENNUNGaniline (1ap) afforded comparable enantioselectivity
(Table 1, entry 16, 63% ee). While deteriorated ee
and/or unsatisfying yields were observed when replac-
ing chloroform with a number of other common or-
ganic solvents,[9] chiral phosphoric acids 4b–f were
able to improve the enantioselectivity significantly
(Table 1, entries 21–25). Taken together, the employ-
ment of commercially available phosphoric acid 4f in
combination with low temperature (�20 8C) and 3 �
molecular sieves allowed the synthesis of
dihydroquin ACHTUNGTRENNUNGazolinone 3a with up to 96% ee (Table 1,
entry 26), which is much higher than that reported in
literature (26% ee[6a] and 86% ee[6b]). For further com-
parison, we applied our optimized conditions to the

Scheme 2. Catalytic asymmetric synthesis of dihydroquinazolinones.

Table 1. Survey of the imine N-substituents and catalysts.[a]

[a] Reaction conditions: imine 1a (0.11 mmol), 2-aminobenz-ACHTUNGTRENNUNGamide (2a) (0.10 mmol), catalyst 4 (10 mol%), chloro-
form (2.0 mL), room temperature, 24 h.

[b] Isolated yield.
[c] Determined by chiral stationary phase HPLC analysis.
[d] The reaction was run at �20 8C for 4 d in the presence of

3 � molecular sieves (10 mg).
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reaction of benzaldehyde with 2-aminobenzamide
(2a) and obtained dihydroquinazolinone 3a in 73%
yield and with 84% ee.

In the presence of 10 mol% of phosphoric acid 4f,
a range of aromatic and heteroaromatic imines,
having an N-(1-naphthalenesulfonyl) or N-(p-meth-ACHTUNGTRENNUNGoxyphenyl) group, smoothly reacted with 2-aminoben-
zamide (2a) to afford the corresponding dihydroqui-

nazolinones in good yields and with excellent ee
(Table 2, entries 1–8). It is noteworthy that both elec-
tron-withdrawing and electron-donating groups were
successfully introduced into the heterocyclic products
by employing the imines bearing such groups on the
aromatic rings. For the reaction with a,b-unsaturated
imines, alternative employment of a 2,6-dichloroben-
zenesulfonyl group as the N-substituent afforded
much better enantioselectivity relative to that with
the 1-naphthalenesulfonyl group,[9] and 2-alkenyldihy-
droquinazolinones were obtained with excellent ee
(Table 2, entries 9 and 10). Switching the imine N-sub-
stituents allowed the reaction with aliphatic imines to
afford very good enantioselectivity (Table 2, entries 11
and 12). Moreover, a variety of 2-aminobenzamides
having substituted benzene rings were transformed
into the corresponding dihydroquinazolinones in good
to excellent yields and with excellent ee (Table 2, en-
tries 13–18). When compared to the catalytic asym-
metric synthesis of dihydroquinazolinones from alde-
hydes,[6] the reaction with imines not only significantly
enhances the enantioselectivity by tuning the elec-
tronic and steric properties of the N-substituents, but
also extends the scope to 2-(2-substituted-phenyl)-, 2-
(1- or 2-naphthyl)-, 2-heteroaryl-, and 2-alkenyldihy-
droquinazolinones in a highly enantioselective
manner.

According to the 1H NMR spectroscopic analysis,
no reaction occurred between imine 1ai and 2-amino-
benzamide (2a) in deuterated chloroform at room
temperature. The addition of phosphoric acid 4a to
the mixture resulted in the formation of dihydroqui-
nazolinone 3a and 1-naphthalenesulfonamide (by-
product), but no intermediate was observed. Never-
theless, to our delight, ESI-mass (positive mode) spec-
troscopic analysis of the reaction mixture allowed us
to identify tentatively two intermediates, aminal Aa
and imine Ba, and the complexes of 2-aminobenza-
mide (2a) and imine Ba with phosphoric acid 4a ac-
cording to the high resolution mass data (Table 3).[10]

These results suggest that transimination occurs

Table 2. Catalytic asymmetric synthesis of dihydroquinazoli-
nones.[a–c]

[a] Reaction conditions: imine 1 (0.11 mmol), 2-aminobenz-ACHTUNGTRENNUNGamide 2 (0.10 mmol), phosphoric acid 4f (10 mol%),
chloroform (2.0 mL), �20 8C (or 10 8C for entries 3, 5, 7,
8, 13, and 15-18), 1.5–4 d.

[b] For entries 1, 9–11, and 14, 3 � molecular sieves (10 mg)
were used.

[c] The absolute configuration of product 3e was deter-
mined by single crystal X-ray analysis (CCDC 816904;
these data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif), and that of the
rest of new products was assigned by analogy.

[d] Isolated yield.
[e] Determined by chiral stationary phase HPLC analysis.
[f] X=1-naphthalenesulfonyl.
[g] X=p-methoxyphenyl.
[h] X=2,6-dichlorobenzenesulfonyl.
[i] X=p-toluenesulfonyl.
[j] X=2,4,6-triisopropylbenzenesulfonyl.
[k] The ee reported in literature: 26%[6a] and 86%.[6b]

[l] Product 3i was obtained in 83% ee from the reaction
with (E)-PhCH=CHCHO under the same conditions.

[m] The ee reported in literature: 80%.[6b]

Table 3. Species detected by ESI-mass spectroscopic analy-
sis.
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through promotion by the phosphoric acid during the
reaction.[11]

The primary amine group rather than the primary
amide group in 2-aminobenzamide 2 was confirmed
to undergo transimination with imine 1 at an early
stage of the reaction by treatment of imine 1ai with
phosphoric acid 4f and a 2-aminobenzamide having
a methyl group either on the amide nitrogen atom or
on the amine nitrogen atom (Scheme 3). While the re-
action with secondary amide 5 proceeded in the pres-
ence of phosphoric acid 4f at room temperature to
give dihydroquinazolinone 6 in 81% yield and with
51% ee, no desired product was obtained from the re-
action with secondary amine 7 under the same condi-
tions.[12]

These experiments allow us to propose the follow-
ing reaction pathway for the catalytic asymmetric syn-
thesis of dihydroquinazolinones (Scheme 4). Both
imine 1 and 2-aminobenzamide 2 are activated by
phosphoric acid 4, a bifunctional catalyst acting as
a hydrogen bond donor and acceptor,[8] and an initial
imine addition results in the formation of aminal A.
Elimination of the original imine N-substituent from
aminal A is promoted by phosphoric acid 4, and the
resulting complex, E, undergoes intramolecular imine
addition to give dihydroquinazolinone 3 and releases
phosphoric acid 4. It is clear that the enantioselectivi-
ty is determined by the step of intramolecular imine
addition. The significant influence of the imine N-sub-
stituent on enantioselectivity should be attributable to

the nonbonding interactions among by-product F (a
primary sulfonamide or a primary amine), intermedi-
ate B, and phosphoric acid 4 as tentatively shown in
complex E.

In summary, we have developed, for the first time,
an efficient catalytic asymmetric synthesis of aminal-
containing heterocyclic compounds from imines and
tethered nitrogen/nitrogen nucleophiles. In the pres-
ence of 10 mol% of a commercially available chiral
phosphoric acid, a range of aromatic, a,b-unsaturated,
and aliphatic imines react with 2-aminobenzamides to
give dihydroquinazolinones in good to excellent
yields and ee. The enantioselectivity is significantly af-
fected by the imine N-substituent through non-bond-
ing interactions with the chiral phosphoric acid and
the 2-aminobenzamide.

Experimental Section

General Procedure for the Catalytic Asymmetric
Synthesis of Dihydroquinazolinones

With molecular sieves: To a flame dried reaction vial
equipped with a magnetic stirring bar were added 3 � mo-
lecular sieves (10 mg). The molecular sieves were thermally
activated under vacuum for 30 min, and cooled down to
room temperature under nitrogen. To the reaction vial were
added 2-aminobenzamide 2 (0.10 mmol), chiral phosphoric
acid 4f (7.0 mg, 0.010 mmol), and chloroform (2.0 mL). The
mixture was stirred at �20 or 10 8C for 10 min, and imine

Scheme 3. Treatment of imine 1ai with 2-aminobenzamide 5 or 7.

Scheme 4. Proposed reaction pathway.
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1 (0.11 mmol) was added. The resulting mixture was stirred
for 1.5–4 d, and directly charged onto silica gel. The product
was isolated using hexane/chloroform/ethanol (10/10/1) or
hexane/ethyl acetate (2/1) as eluent.

Without molecular sieves: To a flame dried reaction vial
equipped with a magnetic stirring bar under nitrogen were
added 2-aminobenzamide 2 (0.10 mmol), chiral phosphoric
acid 4f (7.0 mg, 0.010 mmol), and chloroform (2.0 mL). The
mixture was stirred at �20 or 10 8C for 10 min, and imine
1 (0.11 mmol) was then added. The resulting mixture was
stirred for 1.5–4 d, and directly charged onto silica gel. The
product was isolated using hexane/chloroform/ethanol (10/
10/1) or hexane/ethyl acetate (2/1) as eluent.
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