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ABSTRACT: We describe herein two alternative protocols to
efficiently prepare difluoromethylgold(I) complexes bearing
ancillary ligands with different electronic and steric properties.
LAu−OX (X = H and t-Bu) species, formed in the presence of
base, have been identified as intermediate complexes involved in
these transformations. The application of these compounds as
“CF2H transmetalation shuttles” from gold to palladium has been
demonstrated in a Pd-catalyzed difluoromethylation reaction of
aryl iodides, in which the Au-to-Pd transfer of “CF2H” is feasible
under stoichiometric conditions. These findings will pave the way
for catalytic manifolds in gold chemistry.

CF2H-containing compounds have found applications in
several disciplines such as drug discovery,1 agrochemistry,2

and PET imaging technology.3 In medicinal chemistry, the
difluoromethyl group exhibits valuable properties, since it is a
bioisostere of the hydroxyl and thiol groups and can act as a
metabolically stable hydrogen bond donor. Consequently, in the
past few years, an increasing number of synthesis methodologies
aimed at incorporating these moieties in a direct and selective
manner into structurally diverse carbon skeletons have been
developed.4 Transitionmetal promoted difluoromethylation has
emerged as an alternative to overcome the challenging
installation of a difluoromethyl group onto (hetero)aromatic
rings.5 Ideal strategies are represented by single-metal-catalyzed
difluoromethylation reactions performed on easily accessible
(hetero)aryl halides and/or with inexpensive industrial raw
materials as “CF2H” source, although these processes are scant.

6

Most often, nucleophilic organometallic M−CF2H compounds
have been used for this purpose. (NHC)Ag(CF2H) complexes
were among the first bench-stable organometallic compounds of
this type to be prepared and broadly used.5f,i,7 Later, Sanford and
co-workers were able to isolate and characterize analogous
(NHC)Cu(CF2H) complexes, and they further explored their
reactivity with aryl electrophiles, both in stoichiometric and
catalytic fashions.5d Very recently, isolable [(L)Pd(CF2H)X]
complexes have also been synthesized, and the stoichiometric
transfer of the CF2H substituent to arenes was studied.5l Given
the parallel reactivity exhibited by the coinage metals in many
instances,8 we wondered whether analogous L−Au−CF2H
complexes could be prepared by selecting the appropriate
ancillary ligands on gold. Notably, gold-catalyzed photoredox
reactions have been employed to form Csp2−CF2R bonds.9

In recent years, direct Si-to-Au(I) transmetalation has been
achieved. A fluoride-free transmetalation of organic fragments

from organosiloxanes to Au (I)10 and the transmetalation of
ethynyl groups from trimethylsilanes to gold complexes11 have
been reported. Furthermore, an early report from the beginning
of this century described the preparation of trifluoromethylgold
complexes by stoichiometric transmetalation with silanes.12

Difluoromethylgold(III) complex cis-[Au(PCy3)(4-F-C6H4)-
(CF2H)(Cl)] has been recently prepared; nevertheless, the use
of (SIPr)Ag(CF2H) complex as starting material is required for
the synthesis.13 Remarkably, Fürstner and co-workers have
recently reported the challenging spectroscopic and chemical
characterization of a highly reactive gold difluorocarbenoid
complex.14 Prompted by all these evidence we set out to explore
the Si-to-Au(I) transmetalation process for the preparation of
L−Au(I)−CF2H complexes, employing the commercially
available TMSCF2H as difluoromethylating agent. Herein we
describe the synthesis and characterization of so far unknown
L−Au(I)−CF2H complexes and their applicability in the
palladium-catalyzed difluoromethylation of aryl iodides.
We began our investigation with the synthesis of a series of

Au(I) chloride complexes bearing a variety of ancillary ligands
(L),15 which are known to play a paramount role in modulating
the reactivity of the complexes (Figure 1). Electron-poor, -rich,
and -neutral phosphines (1a−12a), triphenyl phosphite (8a),
and electron-rich N-heterocyclic carbene ligands (NHC) that
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could stabilize Au(I)−fluoroalkyl complexes (13a−16a)16 were
included in this study.
The Si-to-Au “transmetalation” experiments aimed to

determine the “matching transmetalation couples” from the
pool of gold(I) chloride derivatives and the commercially
available TMSCF2H. The optimization of the reaction
conditions began with the treatment of all the starting gold(I)
complexes with 200 mol % of the nucleophilic difluoromethylat-
ing agent in THF for 3 h without other additives. As expected, no
formation of the product was observed for any of them (Table 1,

entry 1). The use of bases such as acetates or fluorides did not
allow to obtain the desired CF2H−gold(I) complexes (Table 1,
entry 2). Next, we focused our attention on NHC−Au(I)
complex 14a with the aim of investigating the effect of other
bases in the reaction outcome. On the basis of the protocols
employed in the synthesis of the analogous silver(I)7b and
copper(I)5d complexes, NaOtBu was the first base selected.
Unfortunately, the addition of 200 mol % of this additive led to
the recovery of the starting complex (Table 1, entry 3).
Nevertheless, when the same amount of NaOH was used,

product 14b was formed in trace amounts, as revealed by its
diagnostic signals in the 1H NMR and 19F NMR spectra (Table
1, entry 4). Since the low yields obtained could be traced back to
experimental errors during the addition of the base due to the
small scale of the reaction, in the subsequent experiments the
amount of both the base and TMSCF2H were increased to 500
mol %. Fine-tuning of the experimental conditions for the
workup and the handling of the gold complexes (see Supporting
Information) led to almost full conversion to the product using
IPrAuCl (13a) (Table 1, entry 6) and to full conversion for
SIPrAuCl (14a) (Table 1, entry 5). Purification of both gold
complexes by column chromatography, precipitation, or
crystallization to give accurate isolated yields was not possible.
Due to this drawback, we turned our attention to quantitative
NMR for the determination of reaction yields with the addition
of an internal standard. Dibromomethane was selected for this
purpose and allowed to determine the yield for the IPrAu−
CF2H (13b) (92%) and SIPrAu−CF2H (14b) (quantitative)
gold complexes.
Next, we moved to the phosphine gold(I) complexes.

Unfortunately, when the conditions developed for the
preparation of (NHC)Au−CF2H were tested on the electron-
rich [tris(p-methoxyphenyl)phosphine]gold(I) chloride (1a),
the desired product was obtained in trace amounts (Table 1,
entry 7). Gratifyingly, the use of 200 mol % of NaOtBu and 500
mol % of TMSCF2H delivered desired compound 1b in
excellent yield (Table 1, entry 8).
With two set of conditions in hand (conditions A and B) the

full scope of this transformation was evaluated (Scheme 1).
Additional gold(I) complexes bearing electron-rich phosphines
could be converted into their corresponding Au−CF2H
complexes in yields ranging from very good to excellent (4b,
5b, 6b, and 7b). The neutral triphenylphosphinegold(I)
chloride (9a) was likewise a suitable substrate for this
transformation, since corresponding Au−CF2H complex 9b
could be generated in an excellent yield. To further expand the
scope for NHC−Au complexes, analogues 15b and 16b were
prepared following protocol A. To our delight, we were able to
obtain suitable crystals for single-crystal X-ray diffraction
analysis, which unambiguously confirmed the identity of
compounds 6b, 7b, 13b, and 14b. Surprisingly, the more
challenging electron-deficient (p-CF3−Ph)3PAu-CF2H (10b)
and (p-F-Ph)3PAu-CF2H (11b) complexes could be synthesized
in good and excellent yields, respectively (for scope limitations,
see the Supporting Information).17

Gold(I) complex 10c was obtained as a byproduct in the
formation of 10b. To shed light on the origin of this compound
and the general mechanism for the formation of the LAu−CF2H
complexes, the experiments outlined in Scheme 2 were
performed. A TSMCF2H-free experiment with JohnPhosAu−
Cl 7a in the presence of NaOH (eq 1, Scheme 2) revealed the
partial conversion of the starting gold complex to gold(I)
hydroxide 7c and, very likely, to triaurated oxonium cation 7d,18

after 3 h of reaction. The fact that 7a, 7c, and 7d were present in
the crude mixture almost in the same ratio after 14 h of reaction
seems to indicate the establishment of an equilibrium between
the three species, which is eventually shifted to the right when
the difluoromethylating agent is present in the reaction media to
react with 7c and furnish product 7b. Similar results could be
extrapolated to the NaOtBu base (see the Supporting
Information for further details). The analogous control
experiment with 10a led to the isolation of 10c in 75% yield
(eq 2). Secondary phosphine oxide−gold(I) complex19 10d and

Figure 1. Starting [LAuCl] complexes.

Table 1. Optimization of the Reaction Conditions for the Si-
to-Au Transmetalation

entry [LAu-Cl]
TMSCF2H
(mol %) base (mol %) yielda,b

1 1a−16a 200
2 1a−16a 200 NaOAc, CsOAc, CsF,c

NaF,c n-Bu4NF
(200)c

3 14a 200 NaOtBu (200)
4 14a 200 NaOH (200) trace amounts
5 14a 500 NaOH (500) quantitative

(conditions A)d

6 13a 500 NaOH (500) 92%
(conditions A)

7 1a 500 NaOH (500) trace amounts
8 1a 500 NaOtBu (200) 94%

(conditions B)
aReaction scale: 0.030−0.040 mmol. bYield calculated by 1H NMR
using CH2Br2 as internal standard.

cComplex 1a was used. MeOH or
CH3CN were used as cosolvents. dConcentration: [0.03M].
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its anionic form, 10e, were obtained as byproducts of this
reaction, as confirmed by 31P NMR and HR-ESI of the crude
mixture. According to these results and the conclusions drawn
from the previous control experiments, a metathesis reaction
between starting gold(I) complex 10a and gold(I) hydroxide
species 10f is proposed as a plausible pathway for this
transformation, to our knowledge unreported in the literature.
Very likely, this process occurs through a concerted transition
state and might represent a potential catalyst decomposition
pathway in gold-catalyzed reactions.
To evaluate the applicability of the synthesized gold

complexes as difluoromethylating reagents, we set out to explore
a Pd-catalyzed difluoromethylation of aryl iodides by means of a

stoichiometric Au−Pd transmetalation20 of the difluoromethyl
moiety. Although this transformation has already been achieved
with a single palladium21 or copper5d catalysts or with a
bimetallic Ag−Pd system,7a the results obtained in these studies
will hopefully contribute to a better understanding of the
unexploited Au−M bimetallic catalytic processes, since as
demonstrated in previous reports in the literature, the
transmetalation is a key step in the catalytic cycle.22

4-Iodobiphenyl (17a) and (p-OMe-Ph)3PAu-CF2H (1b)
were selected as model systems to study the desired trans-
formation. Reactions were performed with freshly prepared Au-
CF2H crude mixtures; therefore, the yields were calculated over
the two-step sequence. Starting from the general conditions
depicted Table 2, palladium catalysts with different bidentate

ligands were screened (for further details, see the Supporting
Information). Pd2(dba)3 or Pd(dba)2 in combination with
Xantphos ligand turned out to be the most appropriate catalytic
system, which afforded desired product 17b in a 20% combined
yield over 2 steps, after 24 h of reaction time in 1,4-dioxane at
100 °C (entry 1, Table 2). Lower temperatures or shorter

Scheme 1. Scope for LAu−CF2H Complexes

aConditions A: TMSCF2H (500 mol %), NaOH (500 mol %), THF
[0.05M], r.t., 3 h. bConditions B: TMSCF2H (500 mol %), NaOtBu
(200 mol %), THF [0.05M], r.t., 3 h. Reaction scale: 0.030−0.040
mmol. Yield calculated by 1H NMR using CH2Br2 as internal
standard. The ORTEP diagrams are represented with the ellipsoids
drawn at 30% probability level.

Scheme 2. Mechanistic Proposal for the LAu−CF2H
Formation (eq 1) and the Base-Promoted P-to-Au Transfer
of an Aryl Ring (eq 2): Detection of Intermediate Species

Table 2. Optimization of the Reaction Conditions for the
Au−Pd Transmetalationa

entry [Pd], ligand solvent
yield

(2 steps)b

1 Pd2(dba)3 or Pd(dba)2
Xantphos

1,4-dioxane 20%

2 Pd(dba)2, Xantphos toluene 18%
3 Pd(dba)2, Xantphos MeOH/toluene(1:1) 3%
4 Pd2(dba)3 or Pd(dba)2

Xantphos
1,4-dioxane/toluene (1:1) 30% (27%)

aReaction scale: 0.030−0.040 mmol. bYields calculated by 19F NMR
(200 mol % of 2-chloro-4-fluorotoluene as internal standard). Isolated
yields are given in brackets. Each entry was repeated twice or three
times; the highest yields obtained are shown.
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reaction times led to a decrease in the yield (data not shown).
Likewise, the use of toluene or a binary mixture of MeOH and
toluene as solvents did not improve the outcome of the reaction
(entries 2 and 3). However, a 1:1 solvent mixture of 1,4-dioxane
and toluene provided the product in 30% yield (entry 4).
To test whether these optimal conditions could be

extrapolated to other gold(I)-CF2H complexes, we examined
the scope of the reaction on the entire series (Scheme 3).

NHC−Au−CF2H complexes 13b, 14b, and 15b were first
assayed, but only traces of product were obtained. Despite the
fact that (p-CF3-Ph)Au−CF2H (10b) afforded traces of the
transmetalation product, the electron-poor (p-F-Ph)3PAu−
CF2H (11b) furnished 17b in 14% yield over the two steps.
Gold complexes bearing electron-rich phosphines such as 4b,
5b, 6b, and 7b under the same reaction conditions delivered the
desired product in yields ranging from 10 to 20%. Finally, the use
of neutral Ph3PAu−CF2H (9b) afforded the product in a
significant 25% combined yield. Next, the scope on the aryl
iodide was evaluated. Aryl iodides bearing electron-donating
groups in the para-position were not suitable for this
transformation, as shown by the detection of difluoromethylated
product 18b in trace amounts. However, the presence of
electron-withdrawing groups was beneficial for the reaction as
demonstrated by the preparation of the CF2H-aryl derivatives
20b and 21b in 33 and 38% yield, respectively, which represent
the best results achieved for this transformation. Given the low
yields reported in the literature for the single-step Au−Pd
transmetalation of alkyl groups,23 we consider these yields
calculated over the two-step sequence to be significant.
In summary, we have reported two efficient methods for the

preparation of the first examples of difluoromethyl gold(I)
complexes containing a variety of ancillary ligands. LAu−OX (X
= H and t-Bu) species have been identified as intermediate
complexes in these transformations. In addition, we have shown
their application as a “CF2H transmetalation shuttles”24 in a Pd-
catalyzed difluoromethylation reaction of aryl iodides, in which
the Au-to-Pd transfer of “CF2H” is possible in a stoichiometric
manner. Meaningful yields for the overall Si-to-Au(I)-to-Pd
process have been achieved with gold(I) complexes bound to
phosphines with opposite electronic properties, which broadens
the application of these transformations to substrates with
different electronic demands. Given the versatility of gold(I) as a
transmetalating partner,24,25 these new Au(I)−CF2H complexes
represent potential candidates for further synthesis applications.
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