Article

Subscriber access provided by AUSTRALIAN NATIONAL UNIV

Strongly Chemiluminescent Acridinium Esters under Neutral Conditions: Synthesis, Property, Determination and Theoretical Study

Manabu Nakazono, Yuji Oshikawa, Mizuho Nakamura, Hidehiro Kubota, and Shinkoh Nanbu J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b02748 • Publication Date (Web): 07 Feb 2017 Downloaded from http://pubs.acs.org on February 8, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Strongly Chemiluminescent Acridinium Esters under Neutral Conditions: Synthesis, Property, Determination and Theoretical Study

Manabu Nakazono,^{\dagger ,*} Yuji Oshikawa,^{\dagger} Mizuho Nakamura,^{\ddagger} Hidehiro Kubota[§]

and Shinkoh Nanbu ‡

[†]Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

[‡]Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554, Japan

[§]ATTO Corporation, 3-2-2 Motoasakusa, Taito-ku, Tokyo 111-0041, Japan

*Corresponding author. Tel: +81-92-642-6597.

E-mail address: nakazono@phar.kyushu-u.ac.jp.

Table of Contents

ABSTRACT

Various novel acridinium ester derivatives having phenyl and biphenyl moieties were synthesized and their optimal chemiluminescence conditions were investigated. Several strongly chemiluminescent acridinium esters under neutral conditions were found and then these derivatives were used to detect hydrogen peroxide and glucose. Acridinium esters having strong electron-withdrawing groups such as cyano, methoxycarbonyl and nitro groups at the 4-position of the phenyl moiety in phenyl 10-methyl- $10\lambda^4$ -acridine-9-carboxylate, trifluoromethanesulfonate salt showed strong chemiluminescence intensities. The chemiluminescence intensity of 3.4-dicvanophenyl 10-methyl- $10\lambda^4$ -acridine-9-carboxylate, trifluoromethanesulfonate salt was approximately 100 times stronger than that of phenyl 10-methyl- $10\lambda^4$ -acridine-9-carboxylate, trifluoromethanesulfonate salt at pH 7. The linear calibration ranges of hydrogen peroxide and glucose were 0.05-10 mM and 10-2000 µM using 3,4-(dimethoxycarbonyl)phenyl 10-methyl- $10\lambda^4$ -acridine-9-carboxylate, trifluoromethanesulfonate salt at pH 7 and pH 7.5, respectively. The proposed chemiluminescence reaction mechanism of acridinium ester via a dioxetanone structure was evaluated via quantum chemical calculation on density functional theory. The proposed mechanism was composed of the nucleophilic addition reaction of hydroperoxide anion, the dioxetanone ring formation and nonadiabatic transition due to spin-orbit coupling around the transition state (TS) to the triplet state (T_1) following the decomposition pathway. The TS which appeared in the thermal decomposition would be a rate-determining step for all three processes.

KEYWORDS: chemiluminescence, acridinium ester, hydrogen peroxide, glucose, neutral condition

INTRODUCTION

Chemiluminescence (CL) assays have been utilized for determining various kinds of compounds qualitatively and quantitatively.^{1–11} CL compounds have been developed as useful luminescent reagents. In particular, luminol (3-aminophthalhydrazide) derivatives,^{12–21} acridinium ester derivatives^{22–30} and dioxetane derivatives^{31–37} are essential compounds in highly sensitive CL assays. Recently, luminol was applied to CL imaging in vivo by CL resonance energy transfer (CRET).³⁸ Acridinium ester derivatives have been frequently selected in enzyme immunoassays.^{39–41} Intramolecular chemically initiated electron exchange luminescence mechanism and CRET were applied to acridinium-substituted 1,2-dioxetanes.⁴² CL sensing of fluoride ions using a self-immolation mechanism was developed based on dioxetane CL.⁴³ The CL property and mechanism of 2-coumaranones were clarified by experimental and theoretical study.⁴⁴

Acridinium esters react with hydrogen peroxide to produce fluorescent 10-methyl-9-acridone via a dioxetanone structure (Scheme 1).^{45,46a} Acridinium ester derivatives have relatively strong CL intensity among CL compounds and various derivatives can be synthesized in a facile manner. 10-Carboxymethylacridinium derivatives were synthesized, when methyl group (an electron-donating group) was introduced at the 2 and 6-position of the phenyl moiety, strong CL intensity was obtained.²³ 9-Acridine carboxylic esters of hydroxamic and sulphohydroxamic acids had strong CL intensity at pico molar levels.²⁵ Acridinium dimethylphenyl esters containing *N*-sulfopropyl groups in the acridinium ring were highly sensitive CL compounds.^{39b} 2'.6'-dimethyl-4'-(*N*-succinimidyloxycarbonyl)phenyl-10-methyl-acridinium-9-carboxylate-1-

propanesulfonate inner salt was used for capillary CL determination of sympathomimetic drugs.⁴⁷ These CL compounds were dissolved in acetonitrile or dimethylformamide, the CL was measured in sodium hydroxide and hydrogen peroxide solution. In general, most CL compounds require strong alkaline conditions and the CL signals are short lasting. A little was studied about acridinium esters having novel CL property under neutral conditions. Di-*ortho*-bromophenyl acridinium ester generated CL signal under neutral conditions.^{48,49} If compounds exhibiting strong CL under neutral conditions could be identified, it would be possible to develop novel and useful CL assays. For example, in the CL measurement of an enzyme activity producing hydrogen peroxide under neutral conditions, the enzyme activity could be measured without the addition of alkali. Therefore, a method is needed to synthesize acridinium esters that can readily react with hydrogen peroxide under neutral conditions. In a previous study, the introduction of electron-withdrawing groups such as bromide to the 4-position of the phenyl moiety in phenyl 10-methyl-10 λ^4 -acridine-9-carboxylate, trifluoromethanesulfonate salt was shown to increase the CL intensity of acridinium esters.^{46a} Electron-withdrawing groups could polarize the electron

density toward the phenyl ring and thereby reduce the electron density at the C9 position of the acridine moiety. Hydroperoxide anion (HOO⁻) reacts with the C9 position in a facile manner and light is produced.^{46a} First, therefore, we decided to focus on cyano, trifluoromethyl, methoxycarbonyl and nitro groups. We thus considered that the detailed effects of electron-donating groups and electron-withdrawing groups on the 4-position of the phenyl moiety in phenyl 10-methyl- $10\lambda^4$ -acridine-9-carboxylate, trifluoromethanesulfonate salt should also be evaluated. In a related experiment, we investigated the increase of CL intensity by the increase of acridinium moieties. Second, the crystal structure of [1,1'-biphenyl]-4-yl 10-methyl- $10\lambda^4$ -acridine-9-carboxylate, trifluoromethanesulfonate salt was previously cleared and the two phenyl rings of the biphenyl moiety was oriented at a dihedral angle of 42.9° .⁵⁰ We predicted that the twist structure of the biphenyl moiety would cause rapid cleavage of the biphenoxy moiety in the dioxetane intermediate, and thereby increase the production of 10-methyl- $10\lambda^4$ -acridine-9-carboxylate, trifluoromethanesulfonate salt were synthesized.

Useful CL methods for determining various analytes are developed by measurement of enzymatically generated hydrogen peroxide. For example, glucose reacts with glucose oxidase (EC1.1.3.4) in the presence of oxygen, and hydrogen peroxide is generated. The quantification of glucose can be achieved by the reaction of hydrogen peroxide and CL compound. In this study, various novel acridinium ester derivatives were designed and synthesized, and their CL was measured. Finally, novel acridinium esters, which appear to have strong CL intensity under neutral conditions, were developed and utilized for the CL determination of hydrogen peroxide and glucose. Furthermore, a theoretical study was performed to clarify the charge distributions

of C9 and N10 positions of acridine moiety and energy diagram on the proposed CL mechanism by *ab initio* chemical calculations.

RESULTS and DISCUSSION

Synthesis of Compounds 1–26. Acridine-9-carbonyl chloride and biphenols were prepared by previously described methods.^{51,52} The esterification reaction of acridine-9-carbonyl chloride

 Table 1. Synthesis and chemical structure of compounds 1–17.

and phenols proceeded promisingly in the presence of triethylamine, 4-dimethylaminopyridine and tetrahydrofuran. Methyl trifluoromethanesulfonate was used for the *N*-methylation of acridine moieties in dichloromethane (Table 1). As shown in Table 2, 4-iodophenol was transformed by arylboronic acids through Suzuki-Miyaura coupling and compounds **18–20** were synthesized in a facile manner. In the synthesis of compound **26**, 1,1':4',1"-terphenyl-4-ol was prepared by 4-bromo-4'-hydroxyphenyl and phenylboronic acid in the presence of tetrakis(triphenylphosphine)palladium, potassium carbonate and dimethoxyethane.⁵³ In the purification of compounds **1–26** by column chromatography, the crude products were excluded by chloroform-methanol solution (v/v, 20/1) and compounds **1–26** were eluted by using chloroform-methanol solution (v/v, 5/1, 4/1 or 2/1).

 Table 2. Synthesis and chemical structure of compounds 18–26.

Chemiluminescence Property of Compounds 1–26. Compounds **3**, **4** and **9–13** had particularly strong CL intensities at pH 7. The CL of compounds **3** and **10–13** was long-lasting.

Figure 1. (A) Time-course of the chemiluminescence development of compounds 1, 3, 9, 12, 13 and luminol in 100 mM Tris-HCl buffer at pH 7: (a) luminol (b) compound 1 (c) compound 9 (d) compound 3 (e) compound 13 (f) compound 12. The concentration of compounds 1, 3, 9, 12, 13 and luminol was 10 nM. The concentration of hydrogen peroxide was 5 mM. (B) Chemiluminescence of compound 3 (100 μ M) in 100 mM phosphate buffer at pH 7.

In compound **3**, the time required to the maximum photon count was 15 s after the addition of hydrogen peroxide (Figure 1A). In contrast, the CL intensities of compound **1** and luminol were very weak at pH 7. Compared to the CL curves of compounds **3**, **9**, **12** and **13**, increasing the number of electron-withdrawing groups on the phenyl moiety caused the increase of CL intensity. Compound **3** produced CL in phosphate buffer at pH 7 and blue light emission was observed (Figure 1B). The effect of pH on the CL development of compounds **1**–**17** is shown in Figure 2.

Novel acridinium esters that can produce strong CL were found under neutral conditions (pH 7 and pH 8). Most of compounds 1–17 had maximum CL intensities at pH 8. However, the CL

Figure 2. Effect of pH on the chemiluminescence development of compounds 1–17. To 10 nM solution of compounds 1–17 in dimethyl sulfoxide was added buffer solution (100 mM Tris-HCl for pH 7 and pH 8, 100 mM Gly-NaOH for pH 9 and pH 10). The CL reaction was initiated by adding 5 mM aqueous hydrogen peroxide solution to the luminometer. The CL emission was measured for 1 min and the integral photon counts were used to evaluate the CL intensity.

intensities of compounds **1** and **5** increased under alkaline conditions (pH 9 and pH 10). In compounds **2–17**, the CL intensities appeared to be greater than that of compound **1** at pH 7 (Figure 3). The CL intensity of compound **12** was approximately 100 times stronger than that of

compound 1 at pH 7. The introduction of strong electron-withdrawing groups such as cyano, methoxycarbonyl and nitro groups at the 4-position of the phenyl moiety increased the CL intensity and that of electron-donating groups such as methyl and methoxy groups decreased the CL intensity. Quantum yields of acridinium esters are correlated with the pKa of the leaving

Figure 3. Relative chemiluminescence intensity of compounds 1–17 at pH 7 and pH 8. The concentration of compounds 1–17 was 10 nM. The concentration of hydrogen peroxide was 5 mM. Chemiluminescence was measured for 1 min. The CL intensity of compound 1 at each pH 7 and pH 8 was taken as 1.

group.⁵⁴ The pKa values of phenols having electron-withdrawing groups at 4-position of phenol moiety are 7.1–8.5.⁵⁵ When electron-withdrawing groups to the 4-position of the phenyl moiety are introduced, the pKa of the leaving group decreases.⁵⁵ Based on the CL mechanism of acridinium ester (Scheme 1), probably the phenyl moiety of compounds **3**, **4** and **8–13** is readily left and 10-methyl-9-acridone is produced. In 100 mM phosphate buffer (pH 7), the relative CL

intensities of compounds 1, 3, 4, 8, 9, 10, 11 and 13 were similar to those in 100 mM Tris-HCl (Figure S1 in supporting information). Acridinium esters exist in equilibrium with their corresponding pseudo-bases (Figure 4) in aqueous solution.^{39a} The pseudo-base is

Figure 4. Equilibrium between acridinium esters and their pseudo-bases.

nonchemiluminescent compound. When the pseudo-base formation is suppressed, the CL intensity may increase. The absorption spectra of compounds **1** and **3** were measured in Tris-HCl solution (pH 7 and pH 8). The absorption maxima of pseudo-bases were observed at approximately 280 nm⁵⁶ and the apparent difference of these spectra was not observed (Figure S4 in supporting information). In compound **3**, the pseudo-base formation is not suppressed under neutral conditions. Thus, pseudo-base formation could not be crucial factor in the strong CL intensity of compound **3** under neutral conditions. In comparing the CL intensities of compound **1** and compound **14**, it appeared that the twist structure of the biphenyl group was not the cause of the increase of CL intensity. The stabilities of compounds **1**, **3**, **4** and **10–13** (10 nM) in dimethyl sulfoxide (25 °C, 3 h) were approximately 80%, 90%, 90%, 80%, 85%, 70% and 94%. Most of compounds **18–26** had maximum CL intensities at pH 9 (Figure S2 in supporting information). The introduction of various functional groups to the biphenyl moiety (Table 2) appeared to be reasonable for the change of CL intensity. Specifically, the introduction

The Journal of Organic Chemistry

of a methoxycarbonyl (compound 22) and a nitro group (compound 25) at the 4-position of the biphenyl moiety caused an increase of CL intensity (Figure S3 in supporting information). The CL intensity of compound 25 at pH 8 was approximately 5 times stronger than that of compound 14. Unfortunately, the CL intensity of compound 26 did not increase (Table S1 in supporting information). Taken together, these results demonstrate that the introduction of electron-withdrawing groups to the 4-position of the phenyl and biphenyl moieties is crucial for increasing the CL intensity of acridinium esters.

Standard Curves for Hydrogen Peroxide at pH 7 and pH 8 using Compounds 3, 4 and 13. Compounds 3, 4 and 13 having high chemical stability were used for determination of hydrogen peroxide. The CL intensities of compounds 1-17 increased with the increase of hydrogen peroxide concentration (5–100 mM) at pH 7. Standard curves for hydrogen peroxide at pH 7 and pH 8 using compounds 3, 4 and 13 were shown in Figure 5. The linear calibration ranges of hydrogen peroxide were 0.05-25 mM (regression equation: y = 121812x + 68861, R=0.997) at pH 7 and 0.05–5 mM (regression equation: y = 613613x + 126736, R=0.996) at pH 8 using compound **3**. The relative standard deviation was mostly within 4.8% (n=3). The detection limits (S/N=2) of hydrogen peroxide were 50 μ M at pH 7 and pH 8, respectively. The linear 52387, R=0.997) at pH 7 and 0.05–5 mM (regression equation: y = 340474x + 41759, R=0.999) at pH 8 using compound 4. The relative standard deviation was mostly within 5.8% (n=3). The detection limits (S/N=2) of hydrogen peroxide were 100 µM at pH 7 and 50 µM at pH 8. The linear calibration ranges of hydrogen peroxide were 0.05–10 mM (regression equation: 188851x + 12236, R=0.999) at pH 7 and 0.025-1 mM (regression equation: y = 1120300x + 21398,

R=0.999) at pH 8 using compound **13**, respectively. The relative standard deviation was mostly within 4.3% (n=3). The detection limits (S/N=2) of hydrogen peroxide were 50 µM at pH 7 and

Figure 5. Standard curves of hydrogen peroxide in 100 mM Tris-HCl buffer at pH 7 and pH 8 using compounds **3**, **4** and **13**: (A) pH 7 (a) compound **13** (b) compound **3** (c) compound **4** (B) pH 8 (d) compound **13** (e) compound **3** (f) compound **4**. The concentration of compounds **3**, **4** and **13** was 10 nM. Chemiluminescence was measured for 1 min.

 μ M at pH 8, respectively. A long range of detectability and satisfactory reproducibility for the detection of hydrogen peroxide were obtained at pH 7 and pH 8. Similar standard curves were obtained at pH 7 and pH 8 in 100 mM phosphate buffer (Figure S5 in supporting information). In particular, the linear calibration ranges of hydrogen peroxide were 0.01–5 mM (R=0.993) at pH 7 and 5–1000 μ M (R=0.999) at pH 8 using compound **13**, respectively. The relative standard deviation was mostly within 5.4% (n=3). The detection limits (*S/N*=2) of hydrogen peroxide were 10 μ M at pH 7 and 5 μ M pH 8, respectively. Compounds **3**, **4** and **13** were thus shown to be suitable for the CL determination of hydrogen peroxide under neutral conditions.

Standard Curves for Glucose using Compound 13. Compound 13 was very stable, used for the determination of hydrogen peroxide and applied for highly sensitive detection of glucose (Scheme 2). The linear calibration range of glucose was 10–2000 μ M (regression equation: y =

175.93x + 8131.4, R=0.999) at pH 7.5 using compound **13** (Figure 6). The relative standard deviation was mostly within 4.1% (n=3). The detection limit (defined as the mean value of blank + 5 σ) of glucose was 5 μ M. This CL method of glucose showed similar sensitivity and linearity compared to the previous CL methods such as 1-ethyl-3-methylimidazolium ethylsulfate/Cu²⁺-luminol-glucose oxidase, luminol-H₂O₂-horseradish peroxide-glucose oxidase and the Cu^{II}-catalyzed CL of lucigenin using synthetic imidazolium-based ionic liquid derivatives.^{57–59} Thus, this CL method can detect glucose at relatively high sensitivity without the addition of alkali and catalyst.

Figure 6. Standard curve of glucose at pH 7.5 using compound **13**. The concentration of compound **13** was 10 nM. Chemiluminescence was measured for 1 min.

Theoretical Analysis. The potential energy of the S_0 state for compound 1 has been theoretically explored in detail by Błażejowski *et al.*^{56,60}; the energy diagrams on the electronic ground state (S_0) has been determined for 10-methyl-9-(phenoxycarbonyl)acridium cations substituted with various alkyl groups in the phenyl fragment. However, the final products were Page 17 of 44

The Journal of Organic Chemistry

assumed to be the electronic ground states for N-methylacridone (NMA) in their work. To make acridone molecule emit a photon, the electronically excited states of NMA have to be found at the end of this reaction in the proposed CL reaction mechanism by McCapra and Nelson.^{45,46a} In the present work, the energetics was mainly explored by density functional theory (DFT) based B3-LYP functional at the correlation-consistent polarized-valence double-zeta (cc-pVDZ) basis function⁶¹ for (i) the thermally accessible dioxetanone to reach an electronic excited state of acridone molecule in S_0 , (ii) nonadiabatic transition through spin-orbit coupling between S_0 and T_1 , and (iii) the final decomposition to reach acridone in T_1 . The first triplet state (T_1) is electronically excited state from the viewpoint of singlet calculations based on the DFT approach, but since our interest is in the electronically ground state in triplet states, the DFT approach for the triplet ground state (T_1) was assumed to be reasonable for searching the reaction-path, rather than TDFT approach. Polarized continuum model was also employed to reproduce the solvent effect caused by dimethyl sulfoxide (DMSO). Each energy listed in Figure 7 was confirmed by a single-point calculation at symmetry adapted cluster / configuration interaction (SAC-CI) method with using the optimized geometry by the DFT calculation employing the same PCM by DMSO (Table S2 in supporting information).

Since the mechanism of the nucleophilic addition of hydroperoxide anion was proposed by McCapra and Nelson *et al.*^{45,46a} and theoretically discussed by Błażejowski *et al.*,^{56,60} the charges of acridinium ester were evaluated by natural bond orbital (NBO) analysis. The atomic charge of N10 position of compound **1** shows the negative charge which is about -0.343 (-0.303) at B3-LYP (M06-2X); the hydroperoxide anion could be repulsive to N10 side.

ACS Paragon Plus Environment

Figure 7. The energy diagram on the chemiluminescence mechanism proposed by McCapra and Nelson *et al.*^{45,46a} (A) compound **1** (B) compound **3**.

Figure 7A shows the energy diagram started from the dioxetanone ring-structure (min1) for compound 1, which was a stable dioxetane intermediate found by Błażejowski *et al.*^{56,60} and then the transition state (TS) search was performed with the initial coordinate given by this min1 structure, because the driving force for this reaction would assumed to be thermal decomposition.

The TS structure appeared at **TS1** to be close to the dioxetane intermediate (**min1**) as was expected; the C-C bond distance in the dioxetane structure was slightly stretched, compared with **min1**. And then the reaction path (**IRC1**) on the electronic ground state (S_0) was obtained from the intrinsic reaction coordinate (IRC) analysis with the TS structure (**TS1**). The reaction path (**IRC1**) determined by the IRC-analysis from **TS1** was found to be correlated to the interaction structure between the S_0 and lowest triplet (T_1) states at **int1** (Figure 8), which clearly shows the triplet state lying closely to S_0 . Furthermore, the S_1 state was much higher than T_1 at **int1** (Table S2(a) in supporting information); the vertical excitation energy of S_1 was 2.02 eV at the $S_0 - T_1$ closest point (**int1**) by SAC-CI calculation.

As discussed in Ref. 62, the inter-system crossing (ISC, nonadiabatic transition in other words) mechanism was explored due to the spin-orbit coupling between S_0 and T_1 states along the reaction path of **IRC1**. The potential energy curve of the T_1 state was found to be lying closely to S_0 at **int1**. Thus, the nonadiabatic transition between S_0 and T_1 could happen due to the spin-orbit coupling effect at the vicinity to T_1 .⁶³ If we here assumed the nonadiabatic transition between S_0 and T_1 , the molecule could be expected to hop to T_1 and be dissociated into 10-methyl-9-acridone and the fragment anion in T_1 ; it follows that the IRC-analysis was performed again on T_1 with the **int1** structure instead of **IRC1**. The obtained reaction path (**IRC2**) is found to be correlated with the decomposition product including the triplet state of 10-methyl-9-acridone, compared to **IRC1**; the phosphorescence could be anticipated by this process. Furthermore, the transition probability due to the spin-orbit coupling was estimated by Zhu-Nakamura formula;⁶³ the spin-orbit coupling elements were computed by complete active space (CAS) SCF calculation by *ab* initio program package Molpro 2012 at cc-pVDZ basis set.⁶⁴ Using 8 cpu-cores of AMD Opteron 2382 and 8 GB ram (Tempest9D2 model, CONCURRENT

SYSTEM ltd.) in Sophia University, it took about four months to obtain all results. However, spin-orbit coupling elements were obtained by complete active space (CAS) SCF methods at ccpVDZ basis set. The active space was determined by (6e, 4o); the electron configurations of CASSCF were totally 32,758. The probability was 96% at the **int1** structure by the available excess-energy proposed by Błażejowski *et al.*^{56,60} In general, the transition probability is considered to be small for singlet–triplet transition, but there are several evidences discussed on nonadiabatic transition probability between singlet and triplet states;⁶⁵ the probabilities shown in several molecular systems are actually almost unity for intersystem crossing (ISC).

Figure 8. The intrinsic reaction coordinate determined with the initial molecular geometry of TS1 (IRC1). The employed step-width was 0.05 Bohr around TS.

Finally, the phosphorescence might happen, because the 10-methyl-9-acridone staying in T_1 could emit photon for deactivating the excited 10-methyl-9-acridone. The phosphorescence process is discussed in the later paragraph.

The Journal of Organic Chemistry

We also carried out the same theoretical analysis on the compound **3** as shown in Figure 7B; the height of TS from **min2** to **TS2** was 0.05 eV, which was much smaller than the case of the compound **1** (0.76 eV). The 4-cyanophenol moiety in compound **3**, moreover, leaved along **IRC3** and the stable dioxetanone was produced at **min3**. The potential energy of S_0 was found to be lying closely to the triplet state (T_1) at this **min3**. Since the S_1 state was much higher than T_1 (see Table S2(b)), the transition by ISC to the triplet state could be crucial on the CL of compound **3**.

The potential energy of the S_0 state for compound 1 has been theoretically explored by Błażejowski,56,60 but the exploration of electronically excited states is still necessary for the photoemission process of 10-methyl-9-acridone at the end of this reaction. It's because the electronically excited state $(S_1 \text{ or } T_1)$ of 10-methyl-9-acridone should appear as the thermal reaction product through S_0 ; there should be two possible paths by nonadiabatic transition to S_1 or T_1 . If we are considering that the nonadiabatic transition of S_0 - S_1 will happen, the energy separation (ΔE) between these states should be less than 1.0 eV. Figure 7 and Table S2 however suggest that this $S_0 - S_1$ transition would not occur because of $\Delta E > 2.0$ eV. On the other hand, if the nonadiabatic transition of S_0 - T_1 will happen, it would happen because of $\Delta E < 1.0$ eV and our estimated probability by 96% at the int1 structure, but phosphorescence process should be explored at the end of the reaction. The acridinium 4-cyanophenyl ester of compound 3 should be also explored in the same manner, because the reaction path on S_0 was found to be quite different from compound 1 as shown in Figure 7. As clearly seen in Table S2, the S_1 state is much higher than T_1 at each molecular conformation except at products (i.e. 10-methyl-9acridone). Although we were not able to perform the molecular geometry-optimization and IRCcalculation on each conformation at SAC-CI level, the obtained triplet states reasonably agree

with the trend of DFT results, especially at the geometry of the $S_0 - T_1$ closest point at **int1** and **min3**. Here we are assuming the photoemission from the T_1 state lying closely to the S_1 state (4.15 eV at SAC-CI) at the equilibrium geometry of 10-methyl-9-acridone, the expected emission energy would be 2.43 eV at DFT (3.88 eV at SAC-CI). This emission energy from T_1 quite agrees with the experimental spectrum which features the maximum speak at 430 nm (2.88 eV). However, since the transition dipole moment between S_1 and S_0 is 1.25 a_0 at the equilibrium conformation of 10-methyl-9-acridone, the acridone would produce luminescence on the way of the final dissociation processes in **IRC2** and **IRC4**, together with vibronic allowed transitions described by the intensity borrowing mechanism (due to spin-orbit mixing) between these two excited states (S_1 and T_1) lying closely to each other. The photoemission would happen in the middle of these decomposition processes.

On the other hand, the direct search for the minimum energy conical intersection (MECI) between S_0 and T_1 for both compounds **1** and **3** were performed to make sure of our discussion; we carried out the state-averaged CAS(6e,4o)SCF optimizations of a singlet-triplet conical intersection in vacuo.⁶⁴ The result is shown in Figure S6 (supporting information) for compound **1**, which is similar to the **int1** structure shown in Figure 7A. Concerning compound **3**, we also found the MECI structure at around the **min3** structure shown in Figure 7B. Thus, the thermal decomposition of acridanyl dioxetanes would happen along our proposal. It is furthermore found that the solvent effect (DMSO) could not cause the different paths in compounds **1** and **3**, albeit indirectly. As a result of these factors and the energy difference between **TS1** and **TS2** (barrierheight, $\Delta E=0.76$ and 0.05 eV), we could conclude that the *p*-cyanophenolate anion is more stabilized than the phenolate anion in thermal decomposition processes, which leads to the

The Journal of Organic Chemistry

difference between the paths for compounds 1 and 3. Compound 3 could show the stronger fluorescence intensity than compound 1.

Furthermore, the spin-orbit coupling was also evaluated at this CASSCF level with the MECI structure for compound **1**. The potential energies of S_0 and T_1 states were shifted due to the spin-orbit coupling, as shown in Table S3 (supporting information); the shifted energy range is approximately 80 cm⁻¹. Since the value of atomic carbon is 43.4 cm⁻¹,⁶⁶ this shifted range is obviously larger than the normal carbon atom. Probably the carbon atoms are strongly affected by the oxygen atoms. Thus, our result could reasonably support the reaction pathway through the triplet state (T_1).

CONCLUSION

Various acridinium ester derivatives were synthesized and the chemiluminescence intensities were cleared. Acridinium esters that show strong chemiluminescence intensities under neutral conditions were identified. The introduction of electron-withdrawing groups at the 4-position of the phenyl and biphenyl moiety was very effective for increasing chemiluminescence intensity; the effect would induce the polarizability not only at the specific positions in acridine moiety, but also the strong polarizability as a whole molecule. 3,4-(Dimethoxycarbonyl)phenyl 10-methyl-10 λ^4 -acridine-9-carboxylate, trifluoromethanesulfonate salt was useful compound for the determination of hydrogen peroxide and glucose under neutral conditions. The chemiluminescence reaction mechanism has been proposed by McCapra and Nelson, *et al.*^{45,46a} The proposed mechanism was mainly evaluated via quantum chemical calculation on density functional theory with the polarizable continuum model. The actual proposed mechanism was

composed of the nucleophilic addition reaction of hydroperoxide anion, the highly strained dioxetanone ring formation and the decomposition of the ring molecule. Natural bond orbital (NBO) charge analysis shows that the atomic charge of C9 position in acridine moiety was obviously positive than the other atoms, and was quite attractive to a nucleophilic reagent such as hydroperoxide anion. The decomposition reaction would happen after the formation of the dioxetane intermediate; there was a transition state (TS) on the way of this decomposition, and it would be a rate-determining step in the whole process. Since the first triplet state (T_1) was lying closely to S_0 at around TS, nonadiabatic transition of $S_0 \rightarrow T_1$ could happen, but the photoemission of the mixed state from T_1 and S_1 states of 10-methyl-9-acridone was expected due to the intensity borrowing mechanism at the end of the reaction. This mechanism would be consistent with the experimental result. This study should provide significant information toward the development of novel chemiluminescent acridinium esters.

EXPERIMENTAL SECTION

General Information. Melting points were uncorrected. ¹H and ¹³C NMR spectra were recorded on a 500 MHz and 125.7 MHz spectrometers. HRMS spectra were obtained by electrospray ionization time-of-flight (ESI-TOF) system or fast atom bombardment (FAB).

General Procedure for the Synthesis of Compounds 1–17. To a solution of acridine-9carbonyl chloride (0.12 g, 0.5 mmol) in dry tetrahydrofuran (10 mL) under nitrogen gas was added 4-dimethylaminopyridine (0.01 g, 0.08 mmol), the corresponding phenols (0.75 mmol) and triethylamine (2 mL). The mixture was refluxed for 2.5 h. Chloroform (150 mL) and water (100 mL) were added to the solution. The organic layer was dried with anhydrous sodium

sulfate. The filtrate was evaporated in vacuo, and the residue was purified by column chromatography (silica gel, chloroform or ethyl acetate-hexane solution) to produce the desired acridine-9-carboxylates. The acridine-9-carboxylates were *N*-methylated by methyl trifluoromethanesulfonate in dichloromethane, which were purified by column chromatography (silica gel, chloroform-methanol) to produce the desired acridine-9-carboxylates, trifluoromethanesulfonate salt.

Phenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (1). Yellow solid (0.01 g, 13%); mp 233–235 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 5.25 (s, 3H), 7.48 (m, 1H), 7.63 (m, 2H), 7.69 (m, 2H), 8.26 (m, 2H), 8.64 (m, 2H), 8.75 (d, J = 8.5 Hz, 2H), 9.06 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 119.9, 121.8, 122.2, 127.5, 129.8, 130.1, 139.1, 141.9, 146.8, 149.5, 163.5; HRMS ESI (m/z) calculated for C₂₁H₁₆NO₂ [M]⁺ 314.1181, found 314.1177.

p-Tolyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (2). Yellow solid (0.03 g, 14%); mp 232–234 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 2.43 (s, 3H), 5.24 (s, 3H), 7.43 (d, J = 8 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 8.25 (m, 2H), 8.64 (m, 2H), 8.72 (d, J = 8.5 Hz, 2H), 9.05 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆) δ 20.4, 119.9, 121.5, 122.2, 127.5, 129.7, 130.4, 136.9, 139.1, 141.9, 146.9, 147.3, 163.6; HRMS ESI (m/z) calculated for C₂₂H₁₈NO₂ [M]⁺ 328.1338, found 328.1361.

4-Cyanophenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (3). Yellow solid (0.05 g, 23%); mp 278–280 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 5.25 (s, 3H), 7.98 (d, J = 8.5 Hz, 2H), 8.08 (d, J = 8.5 Hz, 2H), 8.25 (m, 2H), 8.64 (m, 2H), 8.78 (d, J = 8.5 Hz, 2H), 9.07 (d, J = 9 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 110.6, 118, 119.9, 122.3, 123.5, 127.5, 129.8, 134.6, 139.2, 141.9, 145.9, 152.5, 162.8; HRMS ESI (m/z) calculated for C₂₂H₁₅N₂O₂ [M]⁺ 339.1134; found 339.1139.

4-(Trifluoromethyl)phenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (4). Yellow solid (0.03 g, 13%); mp 252–255 °C; ¹H NMR (500 MHz, Acetoned₆): δ 5.26 (s, 3H), 7.98 (m, 4H), 8.26 (m, 2H), 8.65 (m, 2H), 8.79 (d, J = 8.5 Hz, 2H), 9.07 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 119.9, 121.9, 122.3, 122.7, 123.1, 124.9, 127.1, 127.5, 128, 128.3, 129.2, 129.8, 139.2, 141.9, 146.1, 152.2, 163; HRMS ESI (m/z) calculated for C₂₂H₁₅F₃NO₂ [M]⁺ 382.1055; found 382.1055.

4-Methoxyphenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (5). Yellow solid (0.04 g, 25%); mp 265–268 °C; ¹H NMR (500 MHz, Acetone-d₆) δ 3.88 (s, 3H), 5.24 (s, 3H), 7.14 (d, J = 9 Hz, 2H), 7.6 (d, J = 9.5 Hz, 2H), 8.25 (m, 2H), 8.63 (m, 2H), 8.71 (d, J = 8.5 Hz, 2H), 9.05 (d, J = 9 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆) δ 55.7, 114.9, 119.4, 119.8, 121.9, 122.2, 122.8, 127.5, 129.7, 139.1, 141.9, 142.8, 147, 158, 163.8; HRMS ESI (m/z) calculated for C₂₂H₁₈NO₃ [M]⁺ 344.1287, found 344.1294.

4-Bromophenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (6). Yellow solid (0.11 g, 63%); mp 248–250 °C; ¹H NMR (500 MHz, Acetone-d₆) δ 5.24 (s, 3H), 7.7 (d, J = 9 Hz, 2H), 7.8 (d, J = 9 Hz, 2H), 8.24 (t, J = 8 Hz, 2H), 8.63 (m, 2H), 8.74 (d, J = 9 Hz, 2H), 9.05 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆) δ 119.9, 120, 122.3, 124.2, 127.5, 129.7, 132.9, 139.1, 141.9, 146.4, 148.6, 163.2; HRMS ESI (m/z) calculated for C₂₁H₁₅BrNO₂ [M]⁺ 392.0286, found 392.0290.

4-Iodophenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (7). Yellow solid (0.05 g, 26%); mp 267–270 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 5.25 (s, 3H), 7.56 (d, J = 9 Hz, 2H), 7.99 (d, J = 8.5 Hz, 2H), 8.24 (t, J = 7 Hz, 2H), 8.64 (m, 2H), 8.74 (d, J = 7

9 Hz, 2H), 9.05 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 92.7, 119.9, 122.3, 124.3, 127.5, 129.7, 138.8, 139.2, 141.9, 146.4, 149.3, 163.2; HRMS ESI (m/z) calculated for C₂₁H₁₅INO₂ [M]⁺ 440.0147; found 440.0140.

4-Formylphenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (8). Yellow solid (0.14 g, 57%); mp 255–258 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 5.26 (s, 3H), 7.96 (d, J = 8.5 Hz, 2H), 8.2 (d, J = 6.5 Hz, 2H), 8.26 (m, 2H), 8.65 (m, 2H), 8.79 (d, J = 9Hz, 2H), 9.07 (d, J = 9.5 Hz, 2H), 10.15 (s, 1H); ¹³C NMR (125.7 MHz,DMSO-d₆): δ 119.9, 122.3, 122.9, 127.5, 129.8, 131.4, 135.2, 139.2, 141.9, 146.1, 153.6, 163, 192.1; HRMS ESI (m/z) calculated for C₂₂H₁₆NO₃ [M]⁺ 342.1130; found 342.1126.

4-(Methoxycarbonyl)phenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (9). Yellow solid (0.07 g, 30%); mp 250–253 °C; ¹H NMR (500 MHz, Acetoned₆): δ 3.96 (s, 3H), 5.25 (s, 3H), 7.88 (d, J = 8.5 Hz, 2H), 8.25 (m, 4H), 8.65 (m, 2H), 8.77 (d, J =9 Hz, 2H), 9.07 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 52.4, 119.9, 122.3, 122.4, 127.5, 128.8, 129.8, 131.2, 139.2, 141.9, 146.2, 152.9, 163, 165.3; HRMS ESI (m/z) calculated for C₂₃H₁₈NO₄ [M]⁺ 372.1236; found 372.1222.

4-(Ethoxycarbonyl)phenyl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (10). Yellow solid (0.01 g, 4%); mp 258–260 °C; ¹H NMR (500 MHz, Acetoned₆): δ 1.38 (t, J = 7 Hz, 3H), 4.39 (q, J = 7 Hz, 2H), 5.26 (s, 3H), 7.86 (d, J = 9 Hz, 2H), 8.25 (m, 4H), 8.65 (t, J = 8 Hz, 2H), 8.77 (d, J = 8.5 Hz, 2H), 9.07 (d, J = 10 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 14.1, 61.1, 119.9, 122.3, 122.4, 127.5, 129.1, 129.8, 131.1, 139.2, 141.9, 146.2, 152.8, 163, 164.8; HRMS ESI (m/z) calculated for C₂₄H₂₀NO₄ [M]⁺ 386.1392; found 386.1392. **4-Nitrophenyl 10-methyl-10**λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (11). Yellow solid (0.07 g, 46%); mp 232–235 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 5.26 (s, 3H), 8.05 (d, J = 9 Hz, 2H), 8.26 (m, 2H), 8.5 (d, J = 9 Hz, 2H), 8.65 (m, 2H), 8.8 (d, J = 9 Hz, 2H), 9.07 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆) δ 119.9, 122.3, 123.5, 125.7, 127.5, 129.8, 139.2, 141.9, 145.8, 146.3, 153.8, 162.7. HRMS ESI (m/z) calculated for C₂₁H₁₅N₂O₄ [M]⁺ 359.1032, found 359.1052.

3,4-Dicyanophenyl 10-methyl-10 λ^4 **-acridine-9-carboxy-late, trifluoromethanesulfonate salt (12).** Ocherous solid (0.03 g, 12%); mp 252–254 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 5.26 (s, 3H), 8.24 (m, 2H), 8.38 (s, 2H), 8.57 (t, *J* = 1.5 Hz, 1H), 8.65 (m, 2H), 8.84 (d, *J* = 8 Hz, 2H), 9.07 (d, *J* = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ =113, 113.9, 115, 115.3, 116.7, 119.8, 122.4, 127, 127.7, 128.1, 128.3, 129.3, 129.7, 136.2, 139.2, 141.9, 145.2, 152, 162.4; HRMS FAB (m/z) calculated for C₂₃H₁₄N₃O₂ [M]⁺ 364.1086; found 364.1090.

3,4-(Dimethoxycarbonyl)phenyl 10-methyl-10 λ^4 -acridine-9-carboxylate, trifluoromethanesulfonate salt (13). Yellow solid (0.03 g, 13%); mp 268–271 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 3.93 (s, 6H), 5.27 (s, 3H), 8.04 (m, 3H), 8.25 (m, 2H), 8.66 (m, 2H), 8.83 (d, J = 8.5 Hz, 2H), 9.08 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 52.9, 113, 119.8, 122.3, 125, 126.9, 127.7, 129.6, 129.8, 134.2, 139.2, 141.9, 145.9, 151.2, 162.9, 166.1, 166.5; HRMS FAB (m/z) calculated for C₂₅H₂₀NO₆ [M]⁺ 430.1291; found 430.1274.

[1,1'-Biphenyl]-4-yl 10-methyl-10 λ^4 -acridine-9-carboxy-late, trifluoromethanesulfonate salt (14). Yellow solid (0.06 g, 23%); mp 250–253 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 4.96 (s, 3H), 7.42 (t, *J* = 7 Hz, 1H), 7.51 (t, *J* = 8 Hz, 2H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.85 (d, *J* = 9 Hz, 2H), 7.91 (d, *J* = 9 Hz, 2H), 8.18 (t, *J* = 7 Hz, 2H), 8.55 (t, *J* = 8 Hz, 2H), 8.66 (d, *J* = 8.5 Hz, 2H), 8.94 (d, *J* = 9 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 119.9, 122.3, 126.9, 127.5,

127.8, 128.3, 129, 129.8, 139, 139.2, 139.5, 141.9, 146.7, 148.9, 163.5; HRMS ESI (m/z) calculated for $C_{27}H_{20}NO_2$ [M]⁺ 390.1494; found 390.1514.

Naphthalen-1-yl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (15). Yellow solid (0.04 g, 50%); mp 245–248 °C; ¹H NMR (500 MHz, Acetone-d₆): δ 5.29 (s, 3H), 7.62 (m, 2H), 7.74 (t, J = 8 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 8 Hz, 2H), 8.31(m, 2H), 8.68 (m, 2H), 8.84 (d, J = 8 Hz, 2H), 9.1 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 118.9, 120, 122.4, 125.4, 125.7, 127.1, 127.2, 127.3, 127.6, 128.3, 129.9, 134.3, 139.2, 141.9, 144.9, 146.6, 163.4; HRMS ESI (m/z) calculated for C₂₅H₁₈NO₂ [M]⁺ 364.1338; found 364.1342.

2-Oxo-2H-chromen-4-yl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (16). Yellow solid (0.01 g, 4%); mp 238–241 °C; ¹H NMR (500 MHz, Acetoned₆): δ 3.63 (s, 3H), 6.29 (s, 1H), 6.78 (m, 1H), 7.1 (m, 3H), 7.28 (d, J = 8.5 Hz, 1H), 7.33 (d, J =9 Hz, 2H), 7.48 (m, 2H), 7.56 (m, 1H), 7.6 (m, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 91, 115.7, 116.3, 117.3, 119.6, 120.7, 121.5, 123.2, 123.9, 128, 128.9, 132.7, 138.9, 140.8, 141.8, 151.3, 153.5, 161.8, 165.6, 166.3; HRMS ESI (m/z) calculated for C₂₄H₁₆NO₄ [M]⁺ 382.1079; found 382.1088.

(3-Oxo-1,3-dihydroisobenzofuran-1,1-diyl)bis(4,1-phenylene) bis(10-methyl-10λ⁴acridine-9-carboxylate), ditrifluoromethanesulfonate salt (17). Yellow solid (0.13 g, 21%); mp 280–283 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 4.95 (s, 6H), 7.60 (d, J = 9 Hz, 1H), 7.66 (m, 3H), 7.73 (d, J = 9 Hz, 1H), 7.77 (m, 2H), 7.84 (m, 3H), 7.96 (m, 2H), 8.03 (m, 1H), 8.13 (m, 4H), 8.26 (d, J = 9 Hz, 1H), 8.29 (d, J = 9 Hz, 1H), 8.53 (m, 3H), 8.61 (d, J = 8.5 Hz, 3H), 8.93 (d, J = 9.5 Hz, 3H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ=89.9, 119.4, 119.9, 121.4, 122, 122.3, 122.4, 122.5, 124.3, 124.7, 124.8, 126, 127.4, 128.4, 128.5, 129.1, 129.8, 130.5, 131.5, 135.5,

ACS Paragon Plus Environment

139.1, 139.2, 139.7, 139.8, 142, 146.4, 147.5, 149.6, 149.7, 150.1, 150.8, 150.9, 163.3, 165.2, 168.5, 168.6; HRMS ESI (m/z) calculated for $C_{50}H_{34}N_2O_6$ [M]²⁺ 379.1209; found 379.1220.

General Procedure for the Synthesis of Compounds 18–26. To a solution of acridine-9carbonyl chloride (0.12 g, 0.5 mmol) in dry tetrahydrofuran (10 mL) under nitrogen gas was added 4-dimethylaminopyridine (0.03 g, 0.25 mmol), the corresponding biphenols (0.75 mmol) and triethylamine (1.5 mL). The mixture was refluxed for 2.5 h. Chloroform (150 mL) and water (100 mL) were added to the solution. The organic layer was dried with anhydrous sodium sulfate. The filtrate was concentrated and purified by column chromatography (silica gel, chloroform) to produce the desired acridine-9-carboxylates. The acridine-9-carboxylates were *N*-methylated by methyl trifluoromethanesulfonate in dichloromethane, which were purified by column chromatography (silica gel, chloroform-methanol) to produce the desired acridine-9carboxylates, trifluoromethanesulfonate salt.

4'-Methyl-[1,1'-biphenyl]-4-yl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (18). Yellow solid (0.1 g, 33%); mp 278–281 °C; ¹H NMR (500 MHz, DMSOd₆): δ 2.37 (s, 3H), 4.96 (s, 3H), 7.32 (d, J = 8 Hz, 2H), 7.61 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 8Hz, 2H), 7.82 (m, 3H), 8.18 (m, 2H), 8.55 (m, 2H), 8.62 (m, 2H), 8.93 (m, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ=20.6, 119.9, 122.3, 124.3, 126.7, 127.5, 128, 129.6, 129.8, 136.1, 137.2, 138.8, 139.2, 139.4, 141.9, 146.4, 146.8, 148.7, 149.3, 163.2, 163.5; HRMS ESI (m/z) calculated for C₂₈H₂₂NO₂ [M]⁺ 404.1651; found 404.1678.

4'-Ethyl-[1,1'-biphenyl]-4-yl 10-methyl-10\lambda^4-acridine-9-carboxylate, trifluoromethanesulfonate salt (19). Yellow solid (0.02 g, 5%); mp 265–268 °C; ¹H NMR (500 MHz, DMSOd₆): δ 1.22 (t, *J* = 7.5 Hz, 3H), 2.65 (q, *J* = 7.5 Hz, 2H), 4.96 (s, 3H), 7.35 (d, *J* = 8 Hz, 2H), 7.61 (d, *J* = 8.5 Hz, 1H), 7.67 (d, *J* = 8.5 Hz, 2H), 7.82 (d, *J* = 9 Hz, 1H), 7.88 (d, *J* = 8.5 Hz, 1H),

The Journal of Organic Chemistry

7.99 (d, J = 8.5 Hz, 1H), 8.15 (m, 2H), 8.53 (m, 2H), 8.62 (d, J = 8.5 Hz, 1H), 8.66 (d, J = 9 Hz, 1H), 8.93 (m, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ =15.5, 27.8, 119.9, 122.3, 124.3, 126.8, 127.5, 128, 128.4, 129.8, 136.4, 138.8, 139.2, 139.5, 141.9, 143.5, 146.4, 146.8, 148.7, 149.3, 163.2, 163.5; HRMS FAB (m/z) calculated for C₂₉H₂₄NO₂ [M]⁺418.1807; found 418.1813.

4'-Methoxy-[1,1'-biphenyl]-4-yl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (20). Yellow solid (0.05 g, 12%); mp 255–258 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 3.82 (s, 3H), 4.96 (s, 3H), 7.07 (d, J = 8.5 Hz, 2H), 7.7 (d, J = 9 Hz, 2H), 7.8 (d, J = 9 Hz, 2H), 7.85 (d, J = 8.5 Hz, 2H), 8.18 (t, J = 7 Hz, 2H), 8.55 (t, J = 8 Hz, 2H), 8.65 (d, J = 8.5 Hz, 2H), 8.94 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 55.2, 112.9, 114.4, 119.9, 121.2, 122.2, 122.3, 127.2, 127.5, 127.7, 128, 129.8, 131.3, 139.2, 141.9, 146.8, 148.4, 159.2, 163.5; HRMS FAB (m/z) calculated for C₂₈H₂₂NO₃ [M]⁺ 420.1600; found 420.1614.

4'-Bromo-[1,1'-biphenyl]-4-yl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (21). Yellow solid (0.08 g, 29%); mp 262–265 °C; ¹H NMR (500 MHz, DMSOd₆): δ 4.96 (s, 3H), 7.7 (m, 4H), 7.86 (d, J = 9 Hz, 2H), 7.92 (d, J = 9 Hz, 2H), 8.17 (t, J = 7 Hz, 2H), 8.55 (t, J = 9.5 Hz, 2H), 8.66 (d, J = 8.5 Hz, 2H), 8.94 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 112.9, 119.9, 121.3, 121.4, 122.3, 122.4, 126.9, 127.5, 127.8, 128.3, 128.6, 129, 129.1, 129.8, 131.7, 131.9, 138.1, 138.2, 139.2, 141.9, 146.6, 149.2, 163.4; HRMS FAB (m/z) calculated for C₂₇H₁₉BrNO₂ [M]⁺ 468.0599; found 468.0627.

4'-(Methoxycarbonyl)-[1,1'-biphenyl]-4-yl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (22). Yellow solid (0.09 g, 11%); mp 254–257 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 3.9 (s, 3H), 4.96 (s, 3H), 7.9 (d, J = 8.5 Hz, 2H), 7.93 (d, J = 9 Hz, 2H), 8 (d, J = 9 Hz, 2H), 8.09 (d, J = 8.5 Hz, 2H), 8.18 (t, J = 8 Hz, 2H), 8.55 (t, J = 9.5 Hz, 2H), 8.67 (d, J = 8 Hz, 2H), 8.94 (d, J = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 52.2, 119.9, 121.5,

ACS Paragon Plus Environment

122.3, 122.5, 126.8, 127.2, 127.5, 128.2, 128.7, 128.8, 129.8, 138.1, 139.2, 141.9, 143.4, 146.6, 149.6, 163.4, 166; HRMS FAB (m/z) calculated for C₂₉H₂₂NO₄ [M]⁺ 448.1549; found 448.1524.

4'-(Ethoxycarbonyl)-[1,1'-biphenyl]-4-yl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (23). Yellow solid (0.12 g, 20%); mp 226–229 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 1.34 (t, J = 7 Hz, 3H), 4.34 (q, J = 7 Hz, 2H), 4.96 (s, 3H), 7.9 (d, J = 9 Hz, 2H), 7.92 (d, J = 8.5 Hz, 2H), 8 (d, J = 8.5 Hz, 2H), 8.08 (d, J = 8.5 Hz, 2H), 8.18 (t, J = 8.5 Hz, 2H), 8.55 (t, J = 9 Hz, 2H), 8.67 (d, J = 8.5 Hz, 2H), 8.94 (d, J = 9 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ 14.1, 60.8, 119.9, 122.3, 122.5, 127.1, 127.5, 128.7, 129.1, 129.8, 138.2, 139.2, 141.9, 143.3, 146.6, 149.6, 163.4, 165.5; HRMS FAB (m/z) calculated for C₃₀H₂₄NO₄ [M]⁺ 462.1705; found 462.1685.

4'-((Benzyloxy)carbonyl)-[1,1'-biphenyl]-4-yl 10-methyl-10λ⁴-acridine-9-carboxylate, trifluoromethanesulfonate salt (24). Yellow solid (0.04 g, 9%); mp 222–225 °C. ¹H NMR (500 MHz, DMSO-d₆): δ 4.96 (s, 3H), 5.4 (s, 2H), 7.37 (d, J = 7 Hz, 1H), 7.41 (t, J = 8 Hz, 2H), 7.49 (d, J = 7 Hz, 2H), 7.9 (d, J = 8.5 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 7.99 (d, J = 9 Hz, 2H), 8.12 (d, J = 8.5 Hz, 2H), 8.18 (m, 2H), 8.55 (t, J = 9 Hz, 2H), 8.67 (d, J = 8.5 Hz, 2H), 8.94 (d, J = 9 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ=66.2, 119.9, 122.3, 122.6, 127.3, 127.5, 127.9, 128.1, 128.5, 128.7, 128.8, 129.8, 129.9, 136.1, 138.1, 139.2, 141.9, 143.6, 146.6, 149.6, 163.4, 165.3; HRMS FAB (m/z) calculated for C₃₅H₂₆NO₄ [M]⁺ 524.1862; found 524.1861.

4'-Nitro-[1,1'-biphenyl]-4-yl 10-methyl-10 λ ⁴-acridine-9-carboxylate, trifluoromethane-sulfonate salt (25). Yellow solid (0.13 g, 45%); mp > 300 °C; ¹H NMR (500 MHz, DMSO-d₆): δ 4.97 (s, 3H), 7.94 (d, *J* = 8.5 Hz, 2H), 8.05 (t, *J* = 8.5 Hz, 4H), 8.18 (t, *J* = 7.5 Hz, 2H), 8.35 (d, *J* = 8.5 Hz, 2H), 8.55 (m, 2H), 8.68 (d, *J* = 9 Hz, 2H), 8.95 (d, *J* = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSO-d₆): δ=119.9, 122.3, 122.7, 124.1, 127.5, 128.1, 129, 129.8, 137.1, 139.2, 141.9,

145.3, 146.5, 146.9, 150.1, 163.3; HRMS FAB (m/z) calculated for $C_{27}H_{19}N_2O_4$ [M]⁺ 435.1345; found 435.1343.

[1,1':4',1''-Terphenyl]-4-yl 10-methyl-10 λ^4 -acridine-9-carboxylate, trifluoromethanesulfonate salt (26). Yellow solid (0.04 g, 6%); mp 279–282 °C; ¹H NMR (500 MHz, DMSOd₆): δ 4.97 (s, 3H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 8 Hz, 2H), 7.74 (d, *J* = 7 Hz, 2H), 7.82 (d, *J* = 8 Hz, 2H), 7.87 (d, *J* = 9 Hz, 4H), 7.98 (d, *J* = 8.5 Hz, 2H), 8.18 (t, *J* = 8.5 Hz, 2H), 8.55 (t, *J* = 8 Hz, 2H), 8.68 (d, *J* = 8.5 Hz, 2H), 8.95 (d, *J* = 9.5 Hz, 2H); ¹³C NMR (125.7 MHz, DMSOd₆): δ 112.9, 119.9, 121.3, 122.3, 122.4, 123.5, 126.5, 126.6, 126.9, 127, 127.1, 127.2, 127.4, 127.5, 127.6, 128.2, 128.9, 129, 129.1, 129.8, 137.9, 138.9, 139.2, 139.4, 139.5, 141.9, 146.7, 149, 163.5; HRMS FAB (m/z) calculated for C₃₃H₂₄NO₂ [M]⁺ 466.1807; found 466.1807.

Chemiluminescence Measurement of Compounds 1–26. Chemiluminescence was measured using a Lumat LB 9507 (Berthold, Bad Wildbad, Germany) luminometer.

To 50 μ L of a 10 nM solution of compounds 1–26 in dimethyl sulfoxide was added 100 μ L of a buffer solution (100 mM Tris-HCl for pH 7 and pH 8, 100 mM Gly-NaOH for pH 9 and pH 10). After allowing the mixture to stand for 20 s, the CL reaction was initiated by adding 100 μ L of 5–100 mM aqueous hydrogen peroxide solution to the luminometer using an automatic injection system. The CL emission was measured for 1 min and the integral photon counts were used to evaluate the CL intensity.

Standard Curves for Hydrogen Peroxide at pH 7 and pH 8 using Compounds 3, 4 and 13. To 50 μ L of a 10 nM solution of compound 3, compound 4 or compound 13 in dimethyl sulfoxide was added 100 μ L of a buffer solution (100 mM Tris-HCl for pH 7 and pH 8). After allowing the mixture to stand for 20 s, the CL reaction was initiated by adding 100 μ L of 0–40 mM aqueous hydrogen peroxide solution to the luminometer using an automatic injection system. The CL emission was measured for 1 min and the integral photon counts were used to evaluate the CL intensity.

Chemical Stability of Compounds 1, 3, 4 and 10–13. A 10 nM dimethyl sulfoxide solution of compounds 1, 3, 4 and 10–13 was allowed to stand at 25 °C for 3 h. Then, to 50 μ L of the 10 nM dimethyl sulfoxide solution of compounds 1, 3, 4 and 10–13 was added 100 μ L of a buffer solution (100 mM Tris-HCl, pH 7). After allowing this mixture to stand for 20 s, the CL reaction was initiated by adding 100 μ L of 5 mM aqueous hydrogen peroxide solution to the luminometer using an automatic injection system. The CL emission was measured for 1 min and the integral photon counts were used to evaluate the CL intensity.

Standard Curves for Glucose using Compound 13. To 250 μ L of 10–2000 μ M glucose in 100 mM phosphate buffer (pH 7.5) was added 250 μ L of a glucose oxidase (1 U) in 100 mM phosphate buffer (pH 7.5). The reaction mixture was incubated at 37 °C for 10 min and 100 μ L of the mixture solution was initiated by adding 100 μ L of 10 nM compound 13 in dimethyl sulfoxide to the luminometer using an automatic injection system. The CL emission was measured for 1 min and the integral photon counts were used to evaluate the CL intensity.

Computational Method. Molecular structures of two compounds (1 and 3) and the correlated molecules were fully optimized using the density functional theory (DFT) at Becke and Lee, Yang, and Parr (B3LYP)^{67,68} and Zhao and Truhlar (M06-X2)⁶⁹ levels of theory. Dunning's cc-pVDZ basis set was used.⁶¹ Energy minima were verified by vibrational frequency analysis. To determine the energy diagram on the proposed CL reaction,^{45,46a} the polarizable continuum model (PCM) was employed; the solution was dimethyl sulfoxide. Symmetry adapted cluster / configuration interaction (SAC-CI) method was employed to confirm and search the

The Journal of Organic Chemistry

electronically excited states by a single-point calculation with DFT optimized geometries on PCM models. Almost all of these *ab initio* calculations were performed with use of the electronic structure program Gaussian 09.⁷⁰ Using 8 cpu-cores of AMD Opteron 2382 and 8 GB ram (Tempest9D2 model, CONCURRENT SYSTEM ltd.) in Sophia University, it took about four months to obtain all results. However, spin-orbit coupling elements were obtained by complete active space (CAS) SCF methods at cc-pVDZ basis set. The active space was determined by (6e, 4o).

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: .

¹H and ¹³C NMR spectra and computational data tables

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was performed as part of a Cooperative Research Program of the "Network Joint Research Center for Materials and Devices."

REFERENCES

 (1) (a) Kricka, L. J. Anal. Chem. 1995, 67, 499R–502R. (b) Kricka, L. J. Anal. Chem. 1999, 71, 305R–308R. (c) Kricka, L. J. Anal. Chim. Acta 2003, 500, 279–286. (d) Kricka, L. J.; Voyta, J. C.; Bronstein, I. Methods Enzymol. 2000, 305, 370–390. (e) Park, J. Y.; Kirn, T. J.; Artis, D.; Waldman, S. A.; Kricka, L. J. Luminescence 2010, 25, 463–465. (f) Park, J. Y.; Gunpat, J.; Liu, L.; Edwards, B.; Christie, A.; Xie, X-J.; Kricka, L. J.; Mason, R. P. Luminescence 2014, 29, 553–558.

(2) (a) Honda, K.; Imai, K. Anal. Chem. 1983, 55, 940–943. (b) Tsunoda, M.; Takezawa, K.;
Imai, K. Analyst 2001, 126, 637–640. (c) Tsunoda, M.; Imai, K. Anal. Chim. Acta 2005, 541, 13–23.

(3) (a) Shimomura, O.; Wu, C.; Murai, A.; Nakamura, H. *Anal. Biochem.* 1998, *258*, 230–235.
(b) Shimomura, O.; Teranishi, K. *Luminescence* 2000, *15*, 51–58.

(4) (a) Nakazono, M.; Hino, T.; Zaitsu, K. J. Photochem. Photobiol. A Chem. 2007, 186, 99–105. (b) Nakazono, M.; Nanbu, S.; Uesaki, A.; Kuwano, R.; Kashiwabara, M.; Zaitsu, K. Org. Lett. 2007, 9, 3583–3586. (c) Agawa, H.; Nakazono, M.; Nanbu, S.; Zaitsu, K. Org. Lett. 2008, 10, 5171–5174. (d) Nakazono, M.; Jinguji, A.; Nanbu, S.; Kuwano, R.; Zheng, Z.; Saita, K.; Oshikawa, Y.; Mikuni, Y.; Murakami, T.; Zhao, Y.; Sasaki, S.; Zaitsu, K. Phys.Chem. Chem. Phys. 2010, 12, 9783–9793.

(5) (a) Kuroda, N.; Shimoda, R.; Wada, M.; Nakashima, K. *Anal. Chim. Acta* 2000, *403*, 131–136. (b) Wada, M.; Abe, K.; Ikeda, R.; Harada, S.; Kuroda, N.; Nakashima, K. *Talanta* 2010, *81*, 1133–1136. (c) Elgawish, M. S.; Shimomai, C.; Kishikawa, N.; Ohyama, K.; Nakashima,K.; Kuroda, N. *Analyst* 2012, *137*, 4802–4808.

The Journal of Organic Chemistry

(6) (a) Arakawa, H.; Maeda, M.; Tsuji, A. Anal. Biochem. 1991, 199, 238–242. (b) Arakawa,
H.; Kanemitsu, M.; Tajima, N.; Maeda, M. Anal. Chim. Acta 2002, 472, 75–82. (c) Arakawa,
H.; Masuda, K.; Tajima, N.; Maeda, M. Luminescence 2007, 22, 245–250.

(7) (a) Roda, A.; Pasini, P.; Mirasoli, M.; Michelini, E.; Guardigli, M. *Trends Biotechnol.*2004, 22, 295–303. (b) Roda, A.; Di Fusco, M.; Quintavalla, A.; Guardigli, M.; Mirasoli, M.;
Lombardo, M.; Trombini, C. *Anal. Chem.* 2012, *84*, 9913–9919. (c) Di Fusco, M.; Quintavalla,
A.; Trombini, C.; Lombardo, M.; Roda, A.; Guardigli, M.; Mirasoli, M. *J. Org. Chem.* 2013, *78*,
11238–11246. (d) Roda, A.; Michelini, E.; Cevenini, L.; Calabria, D.; Calabretta, M. M.;
Simoni, P. *Anal. Chem.* 2014, *86*, 7299–7304. (e) Roda, A.; Guardigli, M.; Calabria, D.;
Calabretta, M. M.; Cevenini, L; Michelini, E. *Analyst* 2014, *139*, 6494–6501.

(8) (a) Huang, G.; Lv, Y.; Zhang, S.; Yang, C.; Zhang, X. Anal. Chem. 2005, 77, 7356–7365.

(b) Wang, W.; Lu, Y.; Zhang, S.; Wang, S.; Cao, P.; Tian, Y.; Zhang, X. Luminescence 2009, 24, 55–61.
(c) Niu, W.; Kong, H.; Wang, H.; Zhang, Y.; Zhang, S.; Zhang, X. Anal. Bioanal. Chem. 2012, 402, 389–395.

(9) Teranishi, K.; Nishiguchi, T. Anal. Biochem. 2007, 352, 185-195.

(10) (a) Zhang, H.; Smanmoo, C.; Kabashima, T.; Lu, J.; Kai, M. *Angew. Chem. Int. Ed.* 2007, 46, 8226–8229. (b) Xin, L.; Cao, Z.; Lau, C.; Kai, M.; Lu, J. *Luminescence* 2010, 25, 336–342.
(c) El-Mahdy, A. F. M.; Shibata, T.; Kabashima, T.; Kai, M. *Chem. Commun.* 2014, 859–861.

(11) Zhang, Y.; Tan, C.; Fei, R.; Liu, X.; Zhou, Y.; Chen, J.; Chen, H.; Zhou, R.; Hu, Y. *Anal. Chem.* **2014**, *86*, 1115–1122.

(12) White, E. H.; Roswell, D. F. Acc. Chem. Res. 1970, 3, 54-62.

- (13) Nakazono, M., Nohta, H.; Sasamoto, K.; Ohkura, Y. Anal. Sci. 1992, 8, 779–783.
- (14) Zhao, J-Y.; Labbe, J.; Dovichi, N. J. J. Microcolumn Sep. 1993, 5, 331-339.
- (15) Tsukagoshi, K.; Nakamura, T.; Nakajima, R. Anal. Chem. 2002, 74, 4109-4116.

(16) Huang, G.; Ouyang, J.; Delanghe, J. R.; Baeyens, W. R. G.; Dai, Z. Anal. Chem. 2004, 76, 2997–3004.

(17) Erwen, M.; Burgess, K. Angew. Chem. Int. Ed. 2007, 46, 1684-1687.

(18) Qi, Y.; Li, B. Chem. Eur. J. 2011, 17, 1642–1648.

(19) Bailey, T. S.; Pluth, M. D. J. Am. Chem. Soc. 2013, 135, 16697-16704.

(20) He, Y. Cui, H. Chem. Eur. J. 2013, 19, 13584-13589.

(21) Griesbeck, A. G.; Diaz-Miara, Y.; Fichtler, R.; Jacobi Von Wangelin, A.; Pérez -Ruiz, R.; Sampedro, D. *Chem. Eur. J.* **2015**, *21*, 9975–9979.

(22) Ruberto, M. A.; Grayeski, M. L. Anal. Chem. 1992, 64, 2758-2762.

(23) Sato, N. Tetrahedron Lett. 1996, 37, 8519–8522.

(24) Razavi, Z.; McCapra, F. Luminescence 2000, 15, 245-249.

(25) Renotte, R.; Sarlet, G.; Thunus, L.; Lejeune, R. Luminescence 2000, 15, 311-320.

(26) King, D. W.; Cooper, W. J.; Rusak, S. A.; Peake, B. M.; Kiddle, J. J.; O'Sullivan, D. W.;

Melamed, M. L.; Morgan, C. R.; Theberge, S. M. Anal. Chem. 2007, 79, 4169-4176.

(27) Krzymiński, K.; Roshal, A. D.; Niziołek, A. Spectrochim. Acta Part A. 2008, 70, 394–402.

(28) Smith, K.; Yangb, J-J.; Li, Z.; Weeks, I.; Woodhead, J. S. J. Photochem. Photobiol. A Chem. 2009, 203, 72–79.

(29) Browne, K. A.; Deheyn, D. D.; El-Hiti, G. A.; Smith, K.; Weeks, I. J. Am. Chem. Soc.
2011, 133, 14637–14648.

(30) (a) Natrajan, A.; Sharpe, D. Org. Biomol. Chem. **2013**, *1*, 1026–1039. (b) Wang, S.; Natrajan, A. RSC Adv. **2015**, *5*, 19989–20002.

(31) Waldemar, A.; Wilhelm, J. B. Angew. Chem. Int. Ed. 1984, 23, 166-167.

(32) Schaap, A. P.; Sandison, M. D.; Handley, R. S. Tetrahedron Lett. 1987, 11, 1159-1162.

(33) Bronstein, I.; Edwards, B.; Voyta, J. C. J. Biolumin. Chemilumin. 1989, 4, 99-111.

(34) (a) Matsumoto, M.; Suzuki, H.; Watanabe, N.; Ijuin, H. K.; Tanaka, J.; Tanaka, C. J. Org. Chem., 2011, 76, 5006–5017. (b) Tanimura, M.; Watanabe, N.; Ijuin, H. K.; Matsumoto, M. J. Org. Chem. 2012, 77, 4725–4731.

(35) Chen, Y.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma,
R. P. *Nat. Chem.* 2012, *4*, 559–562.

(36) Kawashima, H.; Watanabe, N.; Ijuin, H. K.; Matsumoto, M. Luminescence 2013, 28, 696–704.

(37) Fusco, M. D.; Quintavalla, A.; Trombini, C.; Lombardo, M.; Roda, A.; Guardigli, M.;Mirasoli, M. J. Org. Chem. 2013, 78, 11238–11246.

(38) Zhang, N.; Francis, K. P.; Prakash, A.; Ansaldi, D. Nat. Med. 2013, 19, 500-505.

(39) (a) Weeks, I.; Beheshti, I.; McCapra, F.; Campbell, A. K.; Woodhead, J. S. Clin. Chem.

1983, 29, 1474–1479. (b) Natrajan, A.; Sharpe, D.; Costello, J.; Jiang, Q. Anal. Biochem. 2010,

406, 204–213. (c) Natrajan, A.; Sharpe, D.; Wen, D. Org. Biomol. Chem. 2012, 10, 3432–3447.

(40) Arakawa, H.; Tsuruoka, K.; Ohno, K.; Tajima, N.; Nagano, H. *Luminescence* **2014**, *29*, 374–377.

(41) Wang, W.; Ouyang, H.; Yang, S.; Wang, L.; Fu, Z. Analyst 2015, 140, 1215–1220.

(42) (a) Ciscato, L. F. M. L.; Bartoloni, F. H.; Weiss, D.; Beckert, R.; Baader, W. J. J. Org. *Chem.* 2010, 75, 6574–6580. (b) Maruyama, T.; Sugishita, H.; Kujira, H.; Ichikawa, M.; Hattori,
Y.; Motoyoshiya, J. *Tetrahedron Lett.* 2013, 54, 1338–1343.

(43) Turan, I. S.; Akkaya, E. U. Org. Lett. 2014, 16, 1680–1683.

(44) (a) Schramm, S.; Weiss, D.; Navizet, I.; Roca-Sanjuán, D.; Beckert, R.; Görls, H. *ARKIVOC* 2013, *3*, 174–188. (b) Ciscato, L. F. M. L.; Bartoloni, F. H.; Colavite, A. S.; Weiss, D.; Beckert, R.; Schramm, S. *Photochem. Photobiol. Sci.* 2014, *13*, 32–37. (c) Schramm, S.; Ciscato, L. F. M. L.; Oesau, P.; Krieg, R.; Richter, J. F.; Navizet, I.; Roca-Sanjuan, D.; Weiss, D.; Beckert, R. *ARKIVOC* 2015, *5*, 44–59. (d) Schramm, S.; Navizet, I.; Naumov, P.; Nath, N. K.; Berraud-Pache, R.; Oesau, P.; Weiss, D.; Beckert, R. *Eur. J. Org. Chem.* 2016, *2016*, 678–681.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20 27	
27	
28	
29	
30	
31	
32	
33 24	
34 25	
30 26	
30 27	
31 20	
აი აი	
39	
40 ⊿1	
+1 ∕\?	
+∠ ⊿२	
ΔΔ	
45	
46	
47	
48 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

(45) McCapra, F.; Richardson, D. G.; Chang, Y. C. Photochem. Photobiol. 1965, 4, 1111–1121.

(46) (a) Nelson, N. C.; Cheikh, A. B.; Matsuda, E.; Becker, M. M. *Biochemistry* 1996, 35, 8429–8438.
(b) Nelson, N. C.; Woodhead, J. S.; Weeks, I.; Cheikh, A. B. Eur. Pat. Appl. (1996). EP 709466 A2 19960501.

(47) Wang, Z.; Yue, H.; Wang, Y.; Wang, L.; Fu, Z. Electrophoresis 2014, 35, 1000–1003.

(48) Brown, R. C.; Weeks, I.; Fisher, M.; Harbron, S.; Taylorson, C. J.; Woodhead, J. S. Anal. Biochem. 1998, 259, 142–151.

(49) Brown, R. C.; Li, Z.; Rutter, A. J.; Mu, X.; Weeks, O. H.; Smith, K.; Weeks, I. Org. Biomol Chem. 2009, 7, 386–394.

(50) Trzybiński, D.; Skupień, M.; Krzymiński, K.; Sikorski, A.; Błażejowski, J. Acta. Crystl.2009, E65, o770-o771.

(51) David-Cordonnier, M-H.; Hildebrand, M-P.; Baldeyrou, B.; Lansiaux, A.; Keuser, C.; Benzschawel, K.; Lemster, T.; Pindur, U. *Eur. J. Med. Chem.* **2007**, *42*, 752–771.

(52) Moteki, S. A.; Takacs, J. M. Angew. Chem. Int. Ed. 2008, 47, 894-897.

(53) Ince, M.; Gartmann, N.; Claessens, C. G.; Torres, T.; Brühwiler, D. Org. Lett. 2011, 13, 4918–4921.

(54) McCapra, F. Acc. Chem. Res. 1976, 9, 201-208.

(55) The pKa values of phenols were obtained from a document entitled pKa Data Compiled

(56) Krzymiński, K.; Ożóg, A.; Malecha, P.; Roshal, A. D.; Wróblewska, A.; Zadykowicz,

B.; Błażejowski, J. J. Org. Chem. 2011, 76, 1072-1085.

(57) Economou, A.; Panoutsou, P.; Themelis, D. G. Anal. Chim. Acta 2006, 572, 140-147.

(58) Shiang, T-C.; Huang, C-C.; Chang, H-T. Chem. Commun. 2009, 3437–3439.

(59) Khajvand, T.; Alijanpour, O.; Chaichi, M. J.; Vafaeezadeh, M.; Hashemi, M. M. Anal. Bioanal. Chem. 2015, 407, 6127–6136.

(60) Rak, J.; Skurski, P.; Błażejowski, J. J. Org. Chem. 1999, 64, 3002-3008.

(61) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-1023.

(62) Gundermann, K. D.; McCapra, F. *Chemiluminescence in Organic Chemistry*, Springer Verlag, Berlin, Heidelberg, New York, **1987**.

(63) Nakamura, H. *Nonadiabatic Transition: Concepts, Basic Theories and Applications*, 2nd revised ed., World Scientific, Singapore, **2012**.

(64) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy,

W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler,

T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A.

J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl,

C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.;

Nicklaß, A.; O'Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki,

T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M. Version 2012.1 (see http://www.molpro.net).

(65) (a) Kobayashi, T.; Kuramochi, H.; Harada, Y.; Suzuki, Y.; Ichimura, T. J. Phys. Chem. A
2009, 113, 12088–12093. (b) Kobayashi, T.; Kuramochi, H.; Suzuki, Y.; Ichimura, T. Phys.
Chem. Chem. Phys. 2010, 12, 5140–5148. (c) Kuramochi, H.; Kobayashi, T.; Suzuki, Y.;
Ichimura, T. J. Phys. Chem. B 2010, 114, 8782–8789.

(66) Radzig A. A.; Smirnov B. M. Springer Series in Chemical Physics, Reference data on atoms, molecules and ions, Springer 1985.

(67) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

(68) Lee, C. T.; Yang, W. T.; Parr., R. G. Phys. Rev. B 1988, 37, 785-789.

(69) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.

(70) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,

G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;
Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.;
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi,
R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,
M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;

Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.;

Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.