Chem. Ber. 101, 2998 - 3001 (1968)

Albrecht Franke, Karl-Heinz Scheit 1) und Fritz Eckstein

Selektive Phosphorylierung von Nucleosiden

Aus dem Max-Planck-Institut für Experimentelle Medizin, Abteilung Chemie, Göttingen (Eingegangen am 22. März 1968)

Phosphorsäure-bis- $[\beta,\beta,\beta$ -trichlor-äthylester]-chlorid eignet sich zur selektiven Phosphorylierung von Nucleosiden in 5'-Stellung. Die entstehenden Nucleosid-5'-bis- $[\beta,\beta,\beta$ -trichlor-äthyl]-phosphate lassen sich in Ausbeuten von 40-70% isolieren. Die Triester werden durch Behandeln mit Zinkstaub in Nucleosid-5'-phosphate übergeführt.

.4

Kürzlich konnten wir zeigen, daß sich Phosphorsäure-bis-[β.β.β-β-trichlor-äthylester]-chlorid (1) hervorragend zur Phosphorylierung von geschützten Nucleosiden eignet ²⁾. Die dabei entstehenden Nucleosid-phosphorsäure-bis-[β.β.β-trichlor-äthylester] lassen sich leicht und in guter Ausbeute, meist in kristalliner Form, isolieren. Diese Triester werden durch Behandlung mit Cu/Zn in Dimethylformamid oder Zn-Staub in 80 proz. Essigsäure zu Nucleosidphosphaten gespalten³⁾. Es war anzunehmen, daß 1 auf Grund der beiden raumbeanspruchenden Trichloräthylgruppen eine gewisse Selektivität bei der Phosphorylierung ungeschützter Nucleoside besitzen sollte. Bei der Reaktion von äquiv. Mengen 1 mit Desoxythymidin beobachteten wir tatsächlich nur ein Reaktionsprodukt. Die Analyse der kristallinen Verbindung ergab, daß es sich um Desoxythymidin-phosphorsäure-bis-[β.β.β-trichlor-äthylester] handelte. Den Nachweis dafür, ob Substitution in 5'- oder 3'-Stellung erfolgte, führten wir auf folgende Weise. Der Triester wurde durch Behandeln mit konz. wäßrigem Ammoniak unter Abspaltung einer Trichloräthylgruppe in Desoxythymidin-phosphorsäure-[β.β.β-trichlor-äthylester] übergeführt. Da dieser Diester von

¹⁾ Anfragen können an diesen Autor gerichtet werden.

²⁾ F. Eckstein und K.-H. Scheit, Angew. Chem. **79**, 317 (1967); Angew. Chem. internat. Edit. **6**, 362 (1967).

³⁾ F. Eckstein, Chem. Ber. 100, 2228 (1967).

Schlangengift-Phosphodiesterase quantitativ zu Desoxythymidin-5'-phosphat gespalten wurde, muß die Phosphorylierung von Desoxythymidin durch 1 ausschließlich in 5'-Stellung erfolgt sein.

Kurzes Kochen von 3a in wäßrigem Pyridin mit Zn-Staub führte zu Desoxythymidin-5'-phosphat (5a), welches papierchromatographisch mit authentischer Substanz identisch war. Ähnliche Ergebnisse erhielten wir bei der Phosphorylierung von Desoxy-4-thio-thymidin (2b), Desoxy-4-thio-uridin (2c) und Uridin (2d). Die entsprechenden Triester wurden in Ausbeuten von 75–42% durch Umkristallisation des Rohproduktes erhalten. Der Triester 3d wurde in amorpher Form durch präparative Dünnschichtchromatographie an Kieselgel isoliert. Bei der Anwendung eines Überschusses an Phosphorylierungsreagens 1 beobachteten wir die Bildung von Disubstitutionsprodukten.

Die Vorteile dieser Phosphorylierungsmethode scheinen uns diese zu sein:

- 1) Zur Darstellung von Nucleosid-5'-phosphaten ist es nicht mehr erforderlich, geschützte Nucleoside mit freier 5'-OH-Gruppe zu bereiten. (Vgl. auch 1. c. ^{4.5}.)
- 2) Die Stabilität der Triester erlaubt es, die Phosphorylierungsprodukte leicht und in großer Reinheit abzutrennen.
- 3) Die Abspaltung der Trichloräthylgruppen durch Zinkstaub in Pyridin erfolgt unter milden Bedingungen zu 90-95%. Die gebildeten Nucleotide können durch präparative Dünnschichtchromatographie in großer Reinheit, frei von Phosphorsäure, isoliert werden.
- 4) Diese Methode kann auch zur Phosphorylierung großer Mengen Nucleoside benutzt werden.

Beschreibung der Versuche

Allgemeine Bemerkungen: Pyridin wurde über Calciumhydrid getrocknet und destilliert. UV-Spektren wurden mit den Geräten PMQ II und Cary 14 gemessen. Schmelzpunkte wurden mit dem Monoskop (Reichert, Österreich) bestimmt und sind nicht korrigiert.

Papierchromatographie: Papier Schleicher & Schüll 2043 b (gewaschen); Lösungsmittel \ddot{A} thanol/m CH₃CO₂NH₄ = 5:2 (A) bzw. 2n HCl/n-Propanol = 1:3 (B).

Dünnschichtchromatographie: Für analytische Zwecke wurden Silicagel-Dünnschichtplatten F_{254} (Merck AG), für präparative Trennungen Silicagel PF_{254} (Merck AG) verwendet. Lösungsmittel Chloroform/Methanol = 95:5 (C) bzw. Chloroform/Methanol = 7:3 (D) bzw. Propanol-(2)/NH₄OH_{konz.}/H₂O = 7:1:2 (E).

Darstellung der Nucleosid-5'-bis-[β.β.β-trichlor-äthyl]-phosphate: 1 mMol Nucleosid wurde durch mehrmaliges Abdestillieren von Pyridin getrocknet, zum Rückstand wurde in 5 ccm Pyridin 1.2 mMol Phosphorsäure-bis-[β.β.β-trichlor-äthylester]-chlorid (1) unter Kühlung gegeben. Die Reaktionslösung wurde 15 Stdn. bei 3° aufbewahrt und anschließend zur Trockne eingeengt. Den Rückstand löste man in 50 ccm Chloroform und extrahierte mit 4 mal 25 ccm Wasser. Die Chloroformphase wurde eingeengt, der Rückstand aus Äthanol/Petroläther umkristallisiert oder das amorphe Produkt durch präparative Dünnschichtchromatographie an Kieselgel in Lösungsmittel C isoliert.

⁴⁾ M. Yoshikawa, T. Kato und T. Takenishi, Tetrahedron Letters [London] 1967, 5065.

⁵⁾ M. Honjo, T. Masuda, K. Imai und S. J. Fujii, VII. Biochemischer Kongreß, Tokyo 1967, Abstract IV, 620.

Tab. 1. Darstellung von Nucleosid-5'-bis-[\(\beta\).\(\beta\).\(\beta\)-trichlor-\(\attracta\) thyl]-phosphaten

Synthese- produkt	Ansatz	Ausb.	Schmp.	Summenformel (MolGew.)	Analyse C H N P S	UV-Spektrum (in Methanol)
	1.0 mMol 2a (250 mg) 1.2 mMol 1 (450 mg)	450 mg ≙75%	139°	C ₁₄ H ₁₇ Cl ₆ N ₂ O ₈ P (385.0)	Ber. 28.87 2.92 4.81 5.33 — Gef. 28.99 3.73 4.85 5.11 —	λ _{max} 265 m/2, ε 9100; λ _{min} 232 m/2, ε 2600
	1 mMol 2b (450 mg) 1.2 mMol 1 (450 mg)	370 mg <u>~</u> 60.5%	158 – 159°	C ₁₄ H ₁₇ Cl ₆ N ₂ O ₇ PS (601.1)	Ber. 28.09 2.84 4.68 5.18 5.35 Gef. 28.06 3.02 4.71 5.20 5.45	λ _{max} 323 mμ, ε 20500; λ _{max} 236 mμ, ε 5000; λ _{min} 273 mμ, ε 2080; λ _{min} 222 mμ, ε 4040
	1.5 mMol 2c (360 mg) 1.8 mMol 1 (685 mg)	370 mg <u>△</u> 42%	150 – 151°	C ₁₃ H ₁₅ Cl ₆ N ₂ O ₇ PS (587.1)	Ber. 26.71 2.57 4.79 5.31 5.48 Gef. 26.92 2.56 4.70 5.17 5.32	λπαχ 330 mμ, ε 18400; λπαχ 249 mμ, ε 5950; λπιπ 280 mμ, ε 2500; λπιπ 225 mμ, ε 3150
	1 mMol 2d (244 mg) 1.2 mMol 1 (450 mg)	1.10 g <u>△</u> 45.5%	amorph	C ₁₃ H ₁₅ Cl ₆ N ₂ O ₉ P (587.0)	Ber. 26.80 2.57 4.80 5.32 Gef. 26.87 2.77 4.64 5.15	λ _{max} 260 m/ι, ε 9900; λ _{min} 229 m/ι, ε 3100

Tab	2	R _E -Werte

	Lösungsmittel-System						
Substanz	A	В	C	D	E		
2a			0.14				
2 b			0.22				
2 c			0.09				
2d			0				
4a	0.75			0.15	0.76		
4b	0.87			0.27	0.66		
4c	0.79			0.22			
4d	0.76			0.05	0.53		
3a			0.35				
3 b			0.51				
3c			0.23				
3 d			0.10				
5a	0.26	0.78			0.23		
Desoxythymidin-							
3'-phosphat		0.86					
5 b	0.35	0.77			0.24		
Desoxy-4-thio-							
thymidin-3'-phosphat		0.86					
5c	0.26						
5d	0.14	0.55			0.11		
Uridin-3'-phosphat		0.66					

Spaltung der Nucleosid-5'-bis-[β.β.β-trichlor-äthyl]-phosphate zu den Nucleosid-5'-[β.β.β-trichlor-äthyl]-phosphaten: 0.1 mMol Triester wurde in 5 ccm Pyridin/NH₄OH_{konz.} (1:1) gelöst. Nach 2 Stdn. bei Raumtemperatur wurde eingeengt und der Diester durch präparative Dünnschichtchromatographie in Lösungsmittel D isoliert.

Spaltung der Nucleosid-5'-bis-[β.β.β-trichlor-äthyl]-phosphate zu Nucleosid-5'-phosphaten: 0.1 mMol Triester wurde in 3 ccm Pyridin/Wasser (9:1) mit 50—100 mg Zinkstaub 5 Min. unter Rückfluß gekocht. Nach Abzentrifugieren des Zinkstaubes wurden die Zn⁺⁺-Kationen durch Filtrieren der Lösung über Ionenaustauscher (H⁺, Merck) entfernt. Das Filtrat wurde eingeengt und das Nucleotid durch präparative Dünnschichtchromatographie an Silicagel in Propanol-(2)/0.5 m Triäthylammoniumhydrogencarbonat (9:2) isoliert.

Enzymatische Hydrolyse der Nucleosid-5'-[β,β,β-trichlor-äthyl]-phosphate durch Schlangengift-Phosphodiesterase: 1 μMol Diester wurde in 0.2 ccm 0.1 m Tris-Puffer pH 8 mit 10 μg Enzym (E. C. 3.1.4.1, Fa. Böhringer, Mannheim) 10 Stdn. bei 37° inkubiert. Das Hydrolysat wurde papierchromatographisch im Lösungsmittel A getrennt.

[119/68]