FULL PAPERS

DOI: 10.1002/adsc.201100889

Palladium-Catalyzed Heck-Type Reactions of Allylic Esters with Arylboronic Acids or Potassium Aryltrifluoroborates

Bo Yao,^a Yan Liu,^a Meng-Ke Wang,^a Jin-Heng Li,^{b,*} Ri-Yuan Tang,^a Xing-Guo Zhang,^a and Chen-Liang Deng^{a,*}

^a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China Fax: (+86)-577-8668-9372; phone: (+86)-577-8668-9615; e-mail: dengchenliang78@tom.com

^b State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China Fax: (+86)-731-8887-2531; phone: (+86)-731-8887-2576; e-mail: jhli@hnu.edu.cn

Received: November 16, 2011; Revised: January 11, 2012; Published online: April 12, 2012

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201100889.

Abstract: A selective and general route to (E)-1,3diaryl-prop-1-enes and (E)-3-arylallyl acetates has been developed by palladium-catalyzed Heck-type reactions of allylic esters with arylboronic acids or potassium aryltrifluoroborates. The present method selectively proceeds including β -OAc elimination or β -H elimination on the basis of the boronic acids. Whereas a variety of allylic esters were reacted with arylboronic acids, palladium(II) acetate [Pd(OAc)₂], tetra(*n*-butyl)ammonium chloride $[(n-Bu)_4NCl]$ and postassium dihydrogen phosphate (KH_2PO_4) to afford the corresponding diarylation products in moderate to good yields, treatment of allylic esters with potassium aryltrifluoroborates furnished the corresponding monoarylation products.

Keywords: allylic esters; arylboronic acids; Heck reaction; palladium; potassium aryltrifluoroborates

Introduction

The palladium-catalyzed Heck reaction has become a powerful tool for constructing carbon-carbon bonds in organic synthesis^[1] and is of growing importance for the pharmaceutical and material industries.^[2] In the past several decades, the scope of the Heck reaction has been significantly expanded. However, examples of selective Heck reactions of allylic esters are much less abundant.^[3] Lautens and co-workers have

Adv. Synth. Catal. 2012, 354, 1069-1076

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

WILEY CONLINE LIBRARY

reported an intermolecular Heck reaction of allylic acetates with aryl iodides to afford the corresponding monoarylation products in good yields, in which a β -OAc elimination process takes place (Scheme 1, route a). Notably, some diarylation side-products were observed in the Lautens procedures, but poor yields and low selectivity hindered the further exploitation.^[4c-e,g] Recently, Jiao and co-workers found that allylic esters could selectively undergo the Heck reaction with aryl halides or arylboronic acids including a β-H elimination process, offering the monoarylation ester products alone in moderate to good yields (Scheme 1, route b).^[5-6] We also described a selective route for the synthesis of diarylation products by a palladiumcatalyzed Heck-type diarylation reaction of allylic esters with aryl halides through β -OAc elimination (Scheme 1, route c).^[7] In the presence of $Pd(OAc)_2$, $(n-Bu)_4$ NCl and Et₃N, allylic esters reacted with various aryl halides smoothly to furnish the respective products in moderate to good yields. Moreover, this methodology was applied in the synthesis of indoles and benzofurans. As part of our continuing interest in applications of allylic esters, we report here the first diarylation reaction between allylic esters and arylboronic acids to prepare unsymmetrical 1,3-diarylpropenes using the $Pd(OAc)_2/(n-Bu)_4NCl/KH_2PO_4$ catalytic system (Scheme 1). Interestingly, the monoarylation reaction of allylic esters with potassium aryltrifluoroborates also took place, furnishing the corresponding arylallyl acetates in moderate yields. It is noteworthy that the products, unsymmetrical 1,3-diarylpropene compounds, represent the skeleton of colchicine and its derivatives.^[8]

Results and Discussion

The reaction between allyl acetate (1a) and phenylboronic acid (2a) was investigated to optimize the reaction conditions, and the results are summarized in Table 1. Initially, the reaction between allyl acetate (1a) and phenylboronic acid (2a) was tested under the reported reaction conditions:^[7] a trace of diarylation product **3** was observed in the presence of $Pd(OAc)_2$, $(n-Bu)_4$ NCl and Et₃N for 12 h (entry 1). To our delight, the yield of the desired product 3 was enhanced to 41% when K_2CO_3 combined with DMF was used to replace the $Et_3N/MeCN$ system (entry 2). It is noteworthy that the configuration of the carboncarbon double bond in product 3 was determined according to the diagnostic ¹HNMR spectra. Encouraged by this result, a series of bases, such as Cs₂CO₃, NaOMe, NaHCO₃, K₃PO₄, K₂HPO₄ and KH₂PO₄, was examined (entries 3-8). The results demonstrated that the reaction gave the best yield when using KH₂PO₄ base (entry 8). Subsequently, a number of other solvents, including DMSO, toluene, CH₃CN and dioxane,

Table 1. Screening for optimal conditions.^[a]

	OAc +	PhB(OH) ₂ —	<u>[Pd]</u> → Pł	nF	Ph
	1a	2a		3	
#	[Pd]	Additive	Base	Solvent	Yield [%] ^[b]
1	$Pd(OAc)_2$	$(n - \mathbf{p})$	Et ₃ N	MeCN	trace
2	$Pd(OAc)_2$	(n-	K_2CO_3	DMF	41
3	$Pd(OAc)_2$	(n-	Cs ₂ CO ₃	DMF	52
4	Pd(OAc) ₂	$Bu)_4NCl$ (<i>n</i> -	NaOMe	DMF	trace
5	Pd(OAc) ₂	(n-	NaHCO ₃	DMF	56
6	Pd(OAc) ₂	(n-	K_3PO_4	DMF	51
7	Pd(OAc) ₂	(n-	K ₂ HPO ₄	DMF	40
8	Pd(OAc) ₂	(n-	KH ₂ PO ₄	DMF	68
9	Pd(OAc) ₂	(n-	KH ₂ PO ₄	DMSO	20
10	Pd(OAc) ₂	(n-	KH ₂ PO ₄	toluene	36
11	Pd(OAc) ₂	(n-	KH ₂ PO ₄	MeCN	28
12	Pd(OAc) ₂	(n-	KH ₂ PO ₄	dioxane	48
13	Pd(PPh ₃) ₂ Cl ₂	(n-	KH ₂ PO ₄	DMF	25
14	PdCl ₂	(n-	$\mathrm{KH}_{2}\mathrm{PO}_{4}$	DMF	45
15	Pd ₂ (dba) ₃	(n-	$\mathrm{KH}_{2}\mathrm{PO}_{4}$	DMF	32
16 17	$Pd(OAc)_2$ $Pd(OAc)_2$	$(n-\mathrm{Bu})_4\mathrm{NF}$ $(n-\mathrm{Bu})_4\mathrm{NF}$	KH ₂ PO ₄ KH ₂ PO ₄	DMF DMF	trace 41
18	$Pd(OAc)_2$	(n-	KH ₂ PO ₄	DMF	37
19 ^[b]	Pd(OAc) ₂	$Bu)_4$ NOAc (<i>n</i> -	KH ₂ PO ₄	DMF	88
20 ^[b,c]	$Pd(OAc)_2$	$Bu)_4NCI$ (<i>n</i> -	KH ₂ PO ₄	DMF	65
21 ^[b,d]	Pd(OAc) ₂	(n-	KH ₂ PO ₄	DMF	90
22 ^[b,e]	$Pd(OAc)_2$	(n-	KH ₂ PO ₄	DMF	51
23 ^[b,f]	Pd(OAc) ₂	Bu) ₄ NCl (n- Bu) ₄ NCl	KH ₂ PO ₄	DMF	83

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.5 mmol), [Pd] (10 mol%), additive (1.5 equiv.) and base (2 equiv.) in solvent (2 mL) at 120 °C for 12 h under N₂ atmosphere.

^[b] DMF (anhydrous) as solvent for 6 h.

[c] $Pd(OAc)_2$ (5 mol%).

^[d] **1a** (1.0 mmol) and **2a** (2.5 mmol) for 6 h.

^[e] At 100 °C for 12 h.

^[f] Under air atmosphere.

(r) (r)						
		1	2 DMF, 120 °C	C (Ĕ)-isomer	
Entry	Allylic ester 1		Arylboronic acid 2		Time [h]	Yield ^[b] (Product)
1	OAc	1a	B(OH) ₂	2b	8	72% (4)
2	OAc	1 a	B(OH) ₂	2c	6	76% (5)
3	OAc	1a	MeO B(OH)2	2d	6	84% (6)
4	OAc	1a	Me	2e	6	66% (7)
5	OAc	1 a	MeB(OH)2	2f	7	82% (8)
6	OAc	1 a	CI	2g	7	56% (9)
7	OAc	1 a	CI-B(OH) ₂	2h	8	72% (10)
8	OAc	1a	B(OH) ₂ OMe	2i	8	62% (11)
9	OAc	1 a	CI CI	2ј	7	72% (12)
10	OAc	1 a	Br B(OH) ₂	2k	8	70% (13)
11	OAc	1a	O B(OH) ₂	21	11	64% (14)
12	OAc	1a	F ₃ CB(OH) ₂	2m	12	72% (15)
13	OAc	1 a	NC B(OH)2	2n	11	77% (16)
14 ^[c]	OAc	1 a	E(OH)₂	20	16	67% (17)
15	Ph O	1b	MeO-B(OH)2	2d	8	71% (6)
16		1c		2d	9	70% (6)
17		1d		2d	6	75% (6)
18 19	OTs OPiv	1e 1f		2d 2d	7 6	81% (6) 80% (6)

Table 2. Palladium-catalyzed diarylation reactions of allylic esters (1) with arylboronic acids (2).^[a]

Pd(OAc)₂

^[a] Reaction conditions: 1 (0.2 mmol), 2 (0.5 mmol), Pd(OAc)₂ (10 mol%), (*n*-Bu)₄NCl (1.5 equiv.) and KH₂PO₄ (2 equiv.) in DMF (2 mL, anhydrous) at 120 °C under N₂ atmosphere.

^[b] Isolated yield.

^[c] At 100 °C.

were investigated, but they were inferior to DMF in terms of yields (entries 9–12). Screening revealed that

three other palladium catalysts, $PdCl_2$, $PdCl_2(PPh_3)_2$ and $Pd_2(dba)_3$, have reactivity to catalyze this reac-

Scheme 2. Diarylation of cinnamyl acetate (1g) with 4-methoxyphenylboronic acid (2d).

tion, but they were less efficient than $Pd(OAc)_2$ (entries 13-15). Notably, the phase-transfer catalysts, quaternary ammonium salts, were found to affect the reaction: The yield was lowered to some extent when using $(n-Bu)_4NF$, $(n-Bu)_4NBr$ or $(n-Bu)_4NOAc$ as the phase-transfer catalysts (entries 16–18).^[9] It was interesting to find that the yield of the desired product 3 was increased sharply to 88% when using anhydrous DMF media (entry 19). However, the yield was reduced to 65% when the reaction was carried out at a loading of 5 mol% Pd(OAc)₂ (entry 20). Gratifyingly, a good yield was still achieved from the reaction of allyl acetate (1a) on a 1-mmol scale: a 90% yield of the desired product 3 was obtained in the presence of $Pd(OAc)_2$, $(n-Bu)_4NCl$, KH_2PO_4 and anhydrous DMF (entry 21). Among the reaction temperatures examined, it turned out that the reaction at 120°C offered the best yield (entries 19 and 22). It is noteworthy that the yield of 3 was decreased slightly under an air atmosphere (entries 19 and 23).

As shown in Table 2, the scope of both allylic esters 1 and arylboronic acids 2 reaction partners for the reaction was explored under the optimal reaction conditions. In the presence of $Pd(OAc)_2$, $(n-Bu)_4NCl$, and KH₂PO₄, a variety of arylboronic acids **2b–2n** was employed to react with allyl acetate (1a) (entries 1–13). The results disclosed that several functional groups, including MeO, Me, Cl, acetyl, CF₃ and CN, on the aromatic ring of boronic acids 2 were tolerated well. MeO-substituted arylboronic acids 2b-2d, for instance, underwent the diarylation with substrate 1a in good yields, and the order of their reactivity is: para-MeO>*meta*-MeO>*ortho*-MeO (entries 1-3). We were pleased to observe that substrates 2e and 2f bearing a ortho-Me or a para-Me group were consistent with the optimal conditions (entries 4 and 5). Importantly, the chloro substitution in arylboronic acids **2g-2k** can be tolerated in this diarylation reaction, thereby facilitating additional modifications at the halogenated positions (entries 6-10). Screening also disclosed that the optimal conditions were compatible with electron-deficient arylboronic acids 2l-2n (entries 11–13). Notably, heteroarylboronic acid **20** was also a suitable substrate for the reaction with substrate 1a in moderate yield (entry 14).

A series of allylic esters **1b–1f** was subsequently investigated in the presence of 4-methoxyphenylboronic

acid (2d), Pd(OAc)₂, $(n-Bu)_4NCl$, and KH₂PO₄ (entries 15–19). The results indicated that various allylic esters, including allyl benzoate (1b), allyl 2-phenylacetate (1c), allyl ethyl carbonate (1d), allyl 4-methylbenzenesulfonate (1e) and allyl pivalate (1f), were successfully diarylated with boronic acid 2d in good yields (entries 15–19). For example, the reaction of allyl 4-methylbenzenesulfonate (1e) with 4-methoxyphenylboronic acid (2d), Pd(OAc)₂, $(n-Bu)_4NCl$ and KH₂PO₄ proceeded smoothly to afford the desired product 6 in 81% yield (entry 18).

Notably, cinnamyl acetate (1g) could also react with 4-methoxyphenylboronic acid (2d) smoothly to provide (*E*)-4,4'-(3-phenylprop-1-ene-1,3-diyl)bis(methoxybenzene) (18) in 43% yield (Scheme 2). These findings suggest that the reaction proceeds in a manner involving an olefin isomerization process.

To our surprise, the selectivity was shifted towards the monoarylation products when commercially available potassium aryltrifluoroborates 2 was used to

Table 3. Palladium-catalyzed monoarylation reaction of allylacetate (1a) with potassium aryltrifluoroborates (2).^[a]

/ 1a	OAc + BF	₃K -	Pd(O. n-Bu) ₄ NCl, DMF, 1	Ac) ₂ KH ₂ PO ₄ 20 °C R
Entry	ArBF ₃ K 2		Time [h]	Isolated yield [%] (Product)
1	✓ВЕЗК	20	12	55 (19)
2	о О ВF ₃ К	2p	10	61 (20)
3	BF ₃ K	2q	16	35 (21)
4	NC-BF3K	2r	13	44 (22)
5	CI-BF3K	2s	11	48 (23)

 [[]a] Reaction conditions: 1a (0.2 mmol), 2 (0.5 mmol), Pd(OAc)₂ (10 mol%), (n-Bu)₄NCl (1.5 equiv.) and KH₂PO₄ (2 equiv.) in DMF (2 mL, anhydrous) at 120 °C under N₂ atmosphere.

Scheme 3. Possible mechanism.

react with allyl acetate (1a) under the optimal conditions (Table 3).^[10] For example, treatment of allyl acetate (1a) with potassium phenyltrifluoroborate (2o), Pd(OAc)₂, $(n-Bu)_4$ NCl, and KH₂PO₄ furnished a monoarylation product 18 in 55% yield (entry 1). Substrate 2p with a five-membered oxygen-containing ring was also suitable for the reaction under the same conditions (entry 2). Gratifyingly, several functional groups, NO₂, CN and Cl, on the aryl rings of the potassium aryltrifluoroborates 2 were perfectly tolerated (entries 3–5).

The results disclosed that the presence of air lowered the activity of the Pd catalytic system to some extent (Table 1), implying that the present reaction may not proceed *via* an oxidative Heck-type process. Moreover, the monoarylation products were obtained from the reaction between potassium aryltrifluoroborates 2 and allyl acetate (1a) under the present optimal conditions. Therefore, a possible mechanism was proposed as outlined in Scheme 3. Oxidative addition of PdL_n with ArB(OH)₂ takes place to afford intermediate A.^[3a-c] Subsequently, complexation of intermediate A with allyl acetate furnishes intermediate B, followed by addition to give intermediate C. Intermediate C can participate in two pathways: (i) the generation of allyl-Pd intermediate **D** involving decomposition of OAc group using arylboronic acids, and (ii) the ocurrence of reductive elimination to yield 3-arylallyl acetates in the presence of potassium aryltrifluoroborates. The reason is that the potassium aryltrifluoroborate salts are more stable than the boronic acids resulting in the ocurrence of reductive elimination prior to the generation of allylPd intermediate **D**. AllylPd intermediate **D** subsequently undergoes the second addition leading to intermediate E. Finally, reductive elimination of intermediate E takes place to furnish diarylallyl acetates and regenerate the active PdL_n species.

Conclusions

In summary, we have described a new protocol for the selective synthesis of polysubstituted olefins by palladium-catalyzed Heck-type reactions of allylic esters with boronic acids and their salts. The present method selectively proceeds involving β -OAc elimination or β -H elimination in dependence on the boronic acids and their salts, which provides a simple and selective approach to polysubstituted olefins synthesis.

Experimental Section

Typical Experimental Procedure for the Palladium-Catalyzed Diarylation Reactions of Allylic Esters (1) with Arylboronic Acids (2)

To a Schlenk tube were added allylic ester 1 (0.2 mmol), arylboronic acid 2 (0.5 mmol), $Pd(OAc)_2$ (10 mol%), (*n*-Bu)₄NCl (1.5 equiv.), KH_2PO_4 (2.0 equiv.) and anhydrous DMF (2 mL). Then the content of the tube was stirred at 120 °C (oil bath temperature) under an N₂ atmosphere for the indicated time until complete consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in diethyl ether, and washed with brine, extracted with EtOAc, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/ petroleum ether) to afford the desired products.

(*E*)-Prop-1-ene-1,3-diyldibenzene (3):^[7] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ =7.38–7.17 (m, 10H), 6.46 (d, *J*=15.9 Hz, 1H), 6.40–6.31 (m, 1H), 3.55 (d, *J*=6.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ =140.2, 137.5, 131.1, 129.3, 128.7, 128.5, 128.3, 127.1, 126.2, 126.1, 39.4; MS (EI 70 eV): *m/z* (%)=194 (M⁺, 100), 179 (44), 116 (57), 115 (93), 93 (54).

(*E*)-2,2'-(**Prop-1-ene-1,3-diyl)bis(methoxybenzene**) (4):^[7] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ = 7.42 (d, *J* = 7.5 Hz, 1 H), 7.32–7.14 (m, 3 H), 6.92–6.82 (m, 4 H), 6.77– 6.65 (m, 1 H), 6.42–6.32 (m, 1 H), 3.83 (s, 3 H), 3.82 (s, 3 H), 3.56 (d, *J* = 6.9 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃): δ = 157.3, 156.4, 129.8, 129.5, 129.1, 127.9, 127.2, 126.8, 126.5, 125.4, 120.6, 120.5, 110.8, 110.3, 55.4 (2 C), 33.8; MS (EI, 70 eV): *m/z* (%) = 254 (M⁺, 100), 223 (59), 145 (34), 115 (34), 91 (50).

(*E*)-3,3'-(**Prop-1-ene-1,3-diyl**)bis(methoxybenzene) (5): Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ = 7.20 (t, J=7.5 Hz, 2H), 6.97–6.89 (m, 2H), 6.83–6.75 (m, 4H), 6.44 (d, J=15.6 Hz, 1H), 6.39–6.29 (m, 1H), 3.80 (s, 6H), 3.52 (d, J=6.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ =159.8 (2C), 141.7, 138.9, 131.1, 129.4, 129.3, 121.1, 119.7, 118.8, 114.4, 112.9, 111.5, 111.4, 55.2 (2C), 39.3; MS (EI, 70 eV): m/z (%)=254 (M⁺, 100), 223 (59), 145 (34), 115 (34), 91 (50); HR-MS (EI): m/z=254.1305, for C₁₇H₁₈O₂ (M⁺): calcd. 254.1307.

(*E*)-4,4'-(**Prop-1-ene-1,3-diyl**)bis(methoxybenzene) (6):^[7] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ =7.30–7.25 (m, 2H), 7.16 (d, *J*=8.7 Hz, 2H), 6.37 (d, *J*=15.9 Hz, 1H), 6.24–6.14 (m, 1H), 3.79 (s, 6H), 3.46 (d, *J*=6.9 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 158.8$, 158.0, 132.5, 130.4, 130.1, 129.6, 127.5, 127.1, 113.9 (2 C), 55.3 (2 C), 38.4; MS (EI, 70 eV): m/z (%) = 254 (M⁺,100), 223 (49), 145 (38), 115 (32), 121 (23).

(*E*)-2,2'-(**Prop-1-ene-1,3-diyl**)**bis(methylbenzene**) (7):^[7] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ = 7.43–7.39 (m, 1H), 7.21–7.12 (m, 7H), 6.58 (d, *J*=15.6 Hz, 1H), 6.24– 6.14 (m, 1H), 3.54 (m, 2H), 2.35 (s, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ =138.4, 136.7, 136.4, 135.0, 130.2, 130.1, 129.9, 129.1, 128.9, 127.0, 126.4, 126.0, 125.6, 126.1, 37.2, 19.8, 19.4; MS (EI, 70 eV): *m/z* (%)=222 (M⁺, 100), 207 (98), 115 (78), 91 (21).

(*E*)-4,4'-(**Prop-1-ene-1,3-diyl**)**bis(methylbenzene**) (8):^[7] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ = 7.25–7.23 (m, 3 H), 7.12–7.08 (m, 5 H), 6.41 (d, *J* = 15.6 Hz , 1 H), 6.33– 6.23 (m, 1 H), 3.49 (d, *J* = 6.6 Hz, 2 H), 2.33 (s, 3 H), 2.32 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ = 137.2, 136.7, 135.6, 134.7, 130.7, 129.2, 129.1, 128.5, 128.4, 125.9, 38.9, 21.0 (2 C); MS (EI, 70 eV): *m/z* (%) = 222 (M⁺, 100), 207 (98), 115 (78), 91 (21).

(*E*)-2,2'-(Prop-1-ene-1,3-diyl)bis(chlorobenzene) (9): Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ =7.53-7.47 (m, 1H), 7.40-7.12 (m, 8H), 6.87 (d, *J*=15.6 Hz, 1H), 6.37-6.27 (m, 1H), 3.71 (d, *J*=6.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ =138.4, 136.8, 136.4, 135.0, 130.2 (2C), 129.9, 129.1, 129.0, 127.0, 126.4, 126.1, 126.0, 125.6, 37.2; MS (EI, 70 eV): *m*/*z* (%) = 264 (M⁺+2, 27), 262 (M⁺, 41), 227 (100), 192 (58), 115 (78); HR-MS (EI): *m*/*z* = 262.0313, calcd. for C₁₅H₁₂³⁵Cl₂ (M⁺): 262.0316.

(*E*)-4,4'-(**Prop-1-ene-1,3-diyl**)**bis**(**chlorobenzene**) (10):^[11] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ =7.29–7.25 (m, 6H), 7.16 (d, *J*=4.8 Hz, 2H), 6.40–6.36 (m, 1H), 6.31– 6.26 (m, 1H), 3.50 (d, *J*=3.9 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ =138.2, 135.7, 132.8, 132.1, 130.2, 130.0, 129.3, 128.7, 128.6, 127.3, 38.6 (2C); MS (EI, 70 eV): *m/z* (%)= 264 (M⁺+2, 29), 262 (M⁺, 45), 227 (100), 192 (35), 115 (56).

(*E*)-2,2'-(Prop-1-ene-1,3-diyl)bis(4-chloro-1-methoxybenzene) (11): Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ =7.38–7.36 (m, 1H), 7.14–7.10 (m, 3H), 6.79–6.74 (m, 2H), 6.68–6.54 (m, 1H), 6.36–6.26 (m, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.50 (d, *J*=7.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ =155.8, 154.9, 130.5, 129.7, 129.6, 128.1, 127.5, 126.9, 126.2, 125.6, 125.3, 124.9, 111.9, 111.4, 55.7 (2C), 33.62; MS (EI, 70 eV): *m/z* (%)=324 (M⁺+2, 30), 322 (M⁺, 58), 286 (74), 178 (49), 165 (23), 145 (100); HR-MS (EI): *m/ z*=322.0525, calcd. for C₁₇H₁₆³⁵Cl₂O₂ (M⁺): 322.0527.

(*E*)-4,4'-(**Prop-1-ene-1,3-diyl**)bis(1,2-dichlorobenzene) (12):^[11] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): $\delta =$ 7.43–7.39 (m, 1H), 7.37–7.35 (m, 2H), 7.31–7.30 (m, 1H), 7.16 (d, *J*=8.4 Hz, 1H), 7.05 (d, *J*=8.4 Hz, 1H), 6.34 (d, *J*=

15.9 Hz, 1H), 6.30–6.23 (m, 1H), 3.49 (d, J=5.1 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): $\delta=139.7$, 137.1, 132.7, 132.5, 131.1, 130.6, 130.5(2C), 129.9(2C), 129.7, 128.1, 127.9, 125.4, 38.2; MS (EI, 70 eV): m/z (%)=332 (M⁺, 63), 294 (89), 189 (37),149 (100), 94 (46).

(E)-4,4'-(prop-1-ene-1,3-diyl)bis(bromobenzene) (13): White solid; mp 65.9–67.5 °C; ¹H NMR (500 MHz, CDCl₃): δ =7.48–7.44 (m, 4H), 7.25 (d, J=8.5 Hz, 2H), 7.14 (d, J= 8.0 Hz, 2H), 6.42–6.32 (m, 2H), 3.52 (d, J=6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ =138.8, 136.2, 131.7, 131.6, 130.45, 130.4, 129.4, 127.7, 121.0, 120.2, 38.7; LR-MS (EI, 70 eV): m/z (%)=354 (M⁺+2, 10), 352 (M⁺, 20), 350 (M⁺-2, 10), 192 (100), 115 (43), 271 (25), 273 (25); HR-MS (EI): m/z = 349.9306, calcd. for $C_{15}H_{12}^{-79}Br_2$ (M⁺): 349.9310.

(*E*)-4,4'-(**Prop-1-ene-1,3-diyl**)**bis(acetophenone)** (14):^[7] Colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ =7.86–7.82 (m, 2H), 7.35 (d, *J*=8.7 Hz, 2H), 7.25 (d, *J*=8.7 Hz, 2H), 6.45–6.37 (m, 2H), 3.50 (d, *J*=2.7 Hz, 2H), 2.53 (s, 3H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ =197.8, 197.6, 145.2, 141.8, 135.6, 131.1, 130.9, 128.9, 128.8, 128.7, 128.5, 126.2, 39.3, 26.6 (2C); MS (EI, 70 eV): *m/z* (%)=278 (M⁺, 100), 263 (97), 235 (41), 207 (26), 124 (32).

(*E*)-4,4'-(**Prop-1-ene-1,3-diyl**)**bis**((trifluoromethyl)**benzene**) (15): Colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ =7.51–7.46 (m, 4H), 7.36 (d, *J*=8.0 Hz, 2H), 7.27 (d, *J*= 8.0 Hz, 2H), 6.41 (d, *J*=16.0 Hz, 1H), 6.38–6.32 (m, 1H), 3.50 (d, *J*=6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 143.6, 140.6, 130.8, 130.6, 129.0, 128.7, 126.4 (d, *J*=9.4 Hz, 1C), 125.6 (2C), 125.5 (2C), 124.3 (q, *J*=270.3 Hz, 1C), 39.1; MS (EI, 70 eV): *m/z* (%)=330 (M⁺, 72), 261 (100), 246 (17), 183 (36), 115 (45); HR-MS (ESI): *m/z*=330.0841, calcd. for C₁₇H₁₂F₆ (M⁺): 330.0843.

(*E*)-4,4'-(**Prop-1-ene-1,3-diyl**)dibenzonitrile (16): Colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ = 7.71 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 2H), 6.58 (d, *J* = 16.0 Hz, 1H), 6.36–6.32 (m, 1H), 4.69 (dd, *J* = 5.0 Hz, 1.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ = 143.5, 140.7, 132.9, 132.4, 131.8, 127.9, 127.4, 127.1, 118.8, 118.4, 112.4, 111.3, 30.9; MS (EI, 70 eV): *m/z* (%) = 244 (M⁺, 85), 243 (100), 140 (27), 89 (18), 228 (16); HR-MS (EI): *m/z* = 244.0998, calcd. for C₁₇H₁₂N₂ (M)⁺: 244.1001.

(*E*)-2,2'-(Prop-1-ene-1,3-diyl)dithiophene (17):^[7] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ =7.17–7.11 (m, 2H), 6.96–6.91 (m, 3H), 6.86–6.85 (m, 1H), 6.51 (d, *J*=15.6 Hz, 1H), 6.25–6.16 (m, 1H), 3.70 (d, *J*=6.9 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ =142.7, 142.3, 128.0, 127.3, 127.0, 125.1, 124.9, 124.6, 123.9, 123.8, 33.1; MS (EI, 70 eV): *m/z* (%)=206 (M⁺, 100), 205 (32), 173 (26), 97 (34).

(*E*)-4,4'-(3-Phenylprop-1-ene-1,3-diyl)bis(methoxybenzene) (18):^[7] Colorless liquid; ¹H NMR (300 MHz, CDCl₃): δ =7.33-7.26 (m, 4H), 7.24-7.19 (m, 3H), 7.16-7.13 (m, 2H), 6.86-6.82 (m, 4H), 6.55-6.47 (m, 1H), 6.26 (d, *J*= 14.4 Hz, 1H), 4.82 (d, *J*=7.2 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H); ¹³C (NMR 125 MHz): δ =159.0, 158.1, 144.1, 135.9, 130.8, 130.6, 130.2, 129.6, 128.6, 128.4, 127.4, 126.6, 126.3, 113.9, 113.8, 55.3 (2C), 53.4; MS (EI, 70 eV): *m/z* (%)=330 (M⁺, 100), 299 (56), 222 (90), 221 (33), 121 (41).

(*E*)-Cinnamyl acetate (19):^[5b] Colorless liquid; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.32-7.30$ (m, 2H), 7.26–7.23 (m, 2H), 7.19–7.16 (m, 1H), 6.58 (d, J = 16.0 Hz, 1H), 6.24–6.18 (m, 1H), 4.66–4.64 (m, 2H), 2.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 170.8$, 136.2, 134.2, 128.6, 128.1, 126.6, 123.2, 65.1, 21.0; IR (KBr): $\nu = 1741$ cm⁻¹; MS (EI, 70 eV): m/z (%)=176 (M⁺, 1), 133 (48), 115 (100), 92 (40), 77 (22).

(*E*)-3-(Benzo[*d*][1,3]dioxol-5-yl)allyl acetate (20):^[12] Colorless liquid; ¹H NMR (500 MHz, CDCl₃): $\delta = 6.87-6.86$ (m, 1H), 6.75–6.74 (m, 1H), 6.70–6.68 (m, 1H), 6.49 (d, *J* = 15.1 Hz, 1H), 6.08–6.03 (m, 1H), 6.02–5.89 (m, 2H), 4.62 (d, *J*=4.5 Hz, 2H), 2.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 170.9$, 148.1, 147.7, 134.1, 130.7, 121.5, 121.3, 108.3, 105.8, 101.2, 65.2, 21.0; IR (KBr): $\nu = 1732$ cm⁻¹; MS (EI, 70 eV):

m/z (%)=220 (M⁺, 98), 103 (100), 131 (96), 177 (45), 91 (46).

(*E*)-3-(3-Nitrophenyl)allyl acetate (21): Colorless liquid; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.18$ (s, 1H), 8.05–8.03 (m, 1H), 7.64–7.61 (m, 1H), 7.45–7.42 (m, 1H), 6.63 (d, J =16.0 Hz, 1H), 6.39–6.33 (m, 1H), 4.71–4.69 (m, 2H), 2.06 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): $\delta = 170.8$, 148.6, 138.0, 132.4, 131.2, 129.6, 126.7, 122.6, 121.2, 64.3, 20.9; IR (KBr): v = 1726 cm⁻¹; MS (EI, 70 eV): m/z (%) = 221 (M⁺, 17), 162 (13), 161 (29), 115 (100), 77 (13); HR-MS (EI): m/z =221.0686, calcd. for C₁₁H₁₁NO₄ (M)⁺: 221.0688.

(*E*)-3-(4-Cyanophenyl)allyl acetate (22):^[5b] Colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ =7.54 (d, *J*=8.5 Hz, 2H), 7.40 (d, *J*=8.5 Hz, 2H), 6.58 (d, *J*=17.0 Hz, 1H), 6.39–6.30 (m, 1H), 4.69–4.68 (m, 2H), 2.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ =170.7, 140.7, 132.9, 132.5, 131.8, 127.9, 127.4, 127.1, 118.8, 111.3, 64.4, 20.9; IR (KBr): v=1738 cm⁻¹; MS (EI, 70 eV): *m/z* (%)=201 (M⁺, 34), 159 (100), 140 (86), 130 (94), 89 (16).

(*E*)-3-(4-Chlorophenyl)allyl acetate (23):^[5b] Colorless liquid; ¹H NMR (500 MHz, CDCl₃): δ =7.25-7.19 (m, 4H), 6.52 (*J*=16.0 Hz, 1H), 6.21-6.16 (m, 1H), 4.65-4.64 (m, 2H), 2.03 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ =170.8, 134.7, 133.8, 132.8, 128.8, 127.8, 123.9, 64.8, 20.9; IR (KBr): v=1749 cm⁻¹; MS (EI, 70 eV): *m/z* (%)=212 (M⁺+2, 7.5), 210 (M⁺, 22.5), 168 (30), 116 (33), 115 (100).

Acknowledgements

We thank the Natural Science Foundation of China (Nos. 21102104 and 21172060), Zhejiang Provincial Natural Science Foundation of China (Nos. Y4100307 and Y4080169), and Zhejiang Province Department of Education fund (No. 201120337) for financial support. Mr Yao also thank the Emerging Talent Program of Zhejiang Province (No. 2011R424051).

References

- a) T. Mizoroki, K. Mori, A. Ozaki, *Bull. Chem. Soc. Jpn.* **1971**, *44*, 581; b) R. F. Heck, J. P. Nolley Jr, *J. Org. Chem.* **1972**, *37*, 2320–2322.
- [2] a) B. M. Trost, Acc. Chem. Res. 1980, 13, 385–393;
 b) J. E. Bäckvall, Acc. Chem. Res. 1983, 16, 335–342;
 c) R. F. Heck, Palladium in organic synthesis, Academic Press, New York, 1985;
 d) B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395–422;
 e) F. Diederich, P. J. Stang, Metal-Catalyzed Cross-Coupling Reaction, Wiley-VCH, Weinheim, 1998;
 f) J. Tsuji, Pure Appl. Chem. 1999, 71, 1539–1547;
 g) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009–3066;
 h) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921–2943;
 i) J. Tsuji, Palladium Reagents and Catalysts, Wiley, Chichester, U.K., 2004.
- [3] For selected papers, see: a) C. S. Cho, A.-i Motofusa, K. Ohe, S. Uemura, S. C. Shim, *J. Org. Chem.* 1995, 60, 883–888; b) Y. Uozumi, H. Danjo, T. Hayashi, *J. Org. Chem.* 1999, 64, 3384–3388; c) D. Bouyssi, V. Gerusz, G. Balme, *Eur. J. Org. Chem.* 2002, 2445–2448; d) F.

Alonso, I. P. Beletskeya, M. Yus, Tetrahedron 2005, 61, 11771; e) J. D. Crowley, K. D. Hänni, A. L. Lee, D. A. Leigh, J. Am. Chem. Soc. 2007, 129, 12092-12093; f) E. W. Werner, M. S. Sigman, J. Am. Chem. Soc. 2010, 132, 13981-13983; g) X. F. Wu, H. Nermann, A. Spannenberg, T. Schulz, H. J. Jiao, M. Beller, J. Am. Chem. Soc. 2010, 132, 14596-14602; h) J. Liu, J. Zhu, J. L. Jiang, W. Wang, J. Li, Chem. Commun. 2010, 46, 415-417; i) J. G. Talvor, C. R. D. Correia, J. Org. Chem. 2011, 76, 857-869; j) A. V. Moro, F. S. P. Cardoso, C. R. D. Correia, Org. Lett. 2009, 11, 3462-3465; k) Y. X. Zhang, Z. J. Li, Z. Q. Liu, Org. Lett. ASAP. DOI 10.1021/ol203013p; l) Y. X. Zhang, Z. J. Li, Z. Q. Liu, Org. Lett. ASAP. DOI 10.1021/ol202859b; m) G. A. Molander, R. Figueroa, Aldrichimica Acta 2005, 38, 49-56.

- [4] a) P. Gomes, C. Gosmini, J. Périchon, Org. Lett. 2003, 5, 1043–1045; b) L. Botella, C. Nájera, J. Organomet. Chem. 2002, 663, 46–57; c) M. Lautens, E. Tayama, C. Herse, J. Am. Chem. Soc. 2005, 127, 72–73; d) B. Mariampillai, C. Herse, M. Lautens, Org. Lett. 2005, 7, 4745–4747; e) F. Menard, T. M. Chapman, C. Dockendorff, M. Lautens, Org. Lett. 2006, 8, 4569–4572; f) S. E. Denmark, S. T. Nguyen, Org. Lett. 2009, 11, 781–784; g) M. Lautens, J. Org. Chem. 2010, 75, 4056–4068; h) H. Ohmiya, Y. Makida, T. Tanaka, M. Sawamura, J. Am. Chem. Soc. 2008, 130, 17276–17277; i) H. Ohmiya, Y. Makida, D. Li, M. Tanabe, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 879–889; j) Y. Makida, H. Ohmiya, M. Sawamura, Chem. Asian J. 2011, 6, 410–414.
- [5] a) D. Pan, A. Chen, Y. Su, W. Zhou, S. Li, W. Jia, J. Xiao, Q. Liu, L. Zhang, N. Jiao, Angew. Chem. 2008, 120, 4807–4810; Angew. Chem. Int. Ed. 2008, 47, 4729–4732; b) Y. J. Su, N. Jiao, Org. Lett. 2009, 11, 2980–2983; c) W. Chen, M. Yu, D. Pan, N. Jiao, Chin. J. Org. Chem. 2010, 30, 469–473; d) D. Pan, N. Jiao, Synlett 2010, 1577–1588; e) D. Pan, M. Yu, W. Chen, N. Jiao, Chem. Asian J. 2010, 5, 1090–1093.
- [6] For other diarylation processes in Heck reactions, see:
 a) F. Naso, O. Sciacovelli, *Tetrahedron Lett.* 1983, 24, 4603–4606;
 b) L. S. Hegedus, P. U. Harrington, J. Org. Chem. 1984, 49, 2657–2662;
 c) S. Cacchi, G. Palmieri, Synthesis 1984, 575–576;
 d) N. D. Buezo, I. Alonso, J. C. Carretero, J. Am. Chem. Soc. 1998, 120, 7129–7130;
 e) C. Gurtler, S. L. Buchwald, Chem. Eur. J. 1999, 5, 3107–3112;
 f) L. Bagnell, U. Kreher, C. R. Strauss, Chem. Commun. 2001, 1, 29–30;
 g) P. Nilsson, M. Larhed, A. Hallberg, J. Am. Chem. Soc. 2001, 123, 8217–8225;
 h) S. M. Sarkar, Y. Uozumi, Y. M. A. Yamada, Angew. Chem. Int. Ed. 2011, 50, 9437–9441.
- [7] Y. Liu, B. Yao, C.-L. Deng, R.-Y. Tang, X.-G. Zhang, J.-H. Li, Org. Lett. 2011, 13, 1126–1129.
- [8] a) K. Hackeloer, G. Schnakenburg, S. R. Waldvogel, Org. Lett. 2011, 13, 916–919; b) E. ter Haar, H. S. Rosenkranz, E. Hamel, B. W. Day, *Bioorg. Med. Chem.* 1996, 4, 1659–1671.
- [9] a) I. Beletskaya, A. V. Cheprakov, *Chem. Rev.* 2000, 100, 3009–3066; b) M. T. Reetz, J. G. de Vries, *Chem. Commun.* 2004, 1559–1563; c) K. C. Nicolaou, P. G. Bulger, D. Sarlah, *Angew. Chem.* 2005, 117, 4516–4563; *Angew. Chem. Int. Ed.* 2005, 44, 4442–4489; d) W.-J.

Adv. Synth. Catal. 2012, 354, 1069-1076

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Liu, Y.-X. Xie, Y. Liang, J.-H. Li, *Synthesis* **2006**, 860–864; e) D. L. Priebbenow, L. C. Henderson, F. M. Pfeffer, S. G. Stewart, *J. Org. Chem.* **2010**, *75*, 1787–1790.

[10] a) M. Arthuis, A. Lecup, E. Roulland, *Chem. Commun.* **2010**, 46, 7810–7812; b) A. S. Vieira, R. L. O. R. Cunha, C. G. Klitzke, J. Zukerman-Schpectro, H. A. Stefani, *Tetrahedron* **2010**, 66, 773–779; c) O. M. Demchuk, K. M. Pietrusiewicz, *Synlett* **2009**, 1149–1153; d) D.-H.

Wang, T.-S. Mei, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 17676–17677; e) J. L. Zhao, Y. H. Zhang, K. Cheng, J. Org. Chem. 2008, 73, 7428–7431.

- [11] J.-L. Wang, W. Huang, Z.-X. Zhang, X. Xiang, R.-T. Liu, X.-G. Zhou, J. Org. Chem. 2009, 74, 3299–3304.
- [12] V. Kumar, A. Sharma, M. Sharma, U. K. Sharma, A. K. Sinha, *Tetrahedron* **2007**, *63*, 9718–9723.