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Abstract The reaction of 2-(2-fluoroaryl) N-heteroaromatic com-
pounds, such as benzimidazole and indole derivatives, with internal
alkynes in the presence of a catalytic amount of a nickel complex results
in C-F/N-H annulation with alkynes. The reaction shows a high func-
tional group compatibility. The presence of a strong base, such as
KOBut or LiOBUY, is required for the reaction to proceed.

Key words C-F bond activation, nickel, alkyne, annulation, N-het-
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Transition-metal-catalyzed functionalization reactions
of aryl halides (Ar-X) have revolutionized the way chemists
approach the synthesis of a variety of molecules.! Com-
pared with C-I, C-Br, and C-CI bonds, the use of C-F bonds
in organic transformation is significantly more challenging
because of their inherent bond strength.? Indeed, C-F bonds
are among the strongest bonds in organic compounds.
Nickel complexes are known to show a high catalytic reac-
tivity for activating C-F bonds.> We recently reported on a
new Ni(0) system for the activation of C-F bonds using an
amidate-promoted strategy. The reaction involves the Ni-
catalyzed C-F/N-H annulation of ortho-fluoro-substituted
aromatic amides with alkynes, leading to the production of
isoquinolin-1(2H)-one derivatives (Scheme 1a).# The reac-
tion proceeds under mild reaction conditions (most reac-
tions can be carried out at 40-60 °C) and even under li-
gand-free conditions. A key to the success of the reaction is
the use of a base, such as KOBu' or even a weak base such as
Cs,CO4, which functions to abstract a proton from an amide
with the generation of an amidate anion. The amidate anion
functions as a directing group to activate a C-F bond.

In 2020, Parthasarathy reported on the Ni-catalyzed
synthesis of pyrroloquinolines, indoloquinolines, and in-
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doloisoquinolines from the reaction of 2-iodo- or 2-bro-
moaryl N-heteroaromatic compounds with alkynes via C-C
and C-N bond formation (Scheme 1b).> The reaction re-
quired higher reaction temperatures, frequently in the 130-
150 °C range, even when 2-iodoaryl N-heteroaromatic com-
pounds were used as the substrates. In contrast, we found
that a similar transformation using 2-fluoroaryl N-het-
eroaromatic compounds proceeds even at 100 °C, by taking
advantage of a base-promoted strategy (Scheme 1).
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Scheme 1 Ni(0)-catalyzed C-X/N-H annulation with alkynes

The reaction of 2-(2-fluorophenyl)-1H-benzo[d]imidaz-
ole (1a) (0.25 mmol) with hex-3-yne (2a) (0.3 mmol) in the
presence of Ni(cod), (0.025 mmol) as the catalyst, PPh;
(0.05 mmol) as the ligand, and KOBu! (0.25 mmol) as the
base in DMA (N,N-dimethylacetamide) (0.25 mL) at 120 °C
for 18 hours gave 5,6-diethylbenzo[4,5]imidazo[2,1-a]iso-
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quinoline (3aa) in 18% NMR yield, along with 30% of 1a be-
ing recovered (Table 1, entry 1). The use of other phos-
phines, such as dppe, dfppe, and DPEphos {bis[(2-diphenyl-
phosphino)phenyl] ether} failed to improve the product
yield, and when NHC ligands were used, the reaction failed
to proceed. Gratifyingly, the use of 2,2'-dipyridine (bpy) and
1,10-phenanthroline (Phen) dramatically improved the
product yield to 92% and 87% NMR yields, respectively (en-
tries 2 and 3). Finally, 3,4,7,8-tetramethyl-1,10-phenanth-
roline (Me,Phen) was found to be the ligand of choice (en-
try 4). The use of strong bases, such as LiOBuf, NaOBu¢, and
KOMe gave 3aa in good yields (entries 5-7), while weak
bases, such as NaOAc, KOAc, and K,CO; gave only trace
amounts of 3aa. Although LiOBu‘ gave a slightly higher
product yield, KOBu‘ was used for further optimization be-
cause it is less expensive. The solvent effects were exam-
ined using dtbbpy [4,4'-bis(di-tert-butyl)-2,2'-bipyridine]
as a ligand. Polar solvents, such as DMF and DMSO gave
higher product yields (entries 10 and 11). Finally, the opti-
mal conditions for this reaction were established to be the
following: 1a (0.25 mmol) with hex-3-yne (2a; 0.3 mmol)
in the presence of Ni(cod), (0.025 mmol) as the catalyst,
Me,Phen (0.05 mmol) as the ligand, and KOBu‘ (0.25 mmol)
as the base in DMF (0.25 mL) at 100 °C for 18 hours (entry
13). We previously reported on the Ni-catalyzed synthesis
of benzo[4,5]imidazo[2,1-a]isoquinoline derivatives via ox-
idative C-H/N-H coupling of 2-phenyl-1H-benzo[d]imidaz-
ole with alkynes, in which the ortho C-H bond participates
in the reaction.® However, such a reaction did not proceed
and the C-F bond was selectively activated under the condi-
tions.

The results for the reaction of 2-(2-fluorophenyl)-1H-
benzo[d]imidazole (1a) with various alkynes 2 are shown
in Figure 1. Both aliphatic and aromatic internal alkynes
were applicable to this annulation reaction. However, the
reaction of 1a with 1,2-bis[4-(trifluoromethyl)phe-
nylJethyne gave the expected product, but in low yield (data
not shown). Similar to our previous work,* an electron-defi-
cient alkyne retarded the reaction. The reaction with 1-
phenylpent-1-yne (2f) gave 3af in a regioselective manner.
A single crystal of 3af was isolated and the structure was
confirmed by X-ray crystallographic analysis.

The scope for the reaction with respect to the N-het-
eroaromatic substrate 1 is shown in Figure 2. Similar to our
previous work,* the presence of an electron-withdrawing
group on the phenyl ring retarded the reaction and a higher
reaction temperature was required, as in 3ca-ea. These re-
sults suggest that the activation of the C-F bond is not the
rate-determining step. The reaction of Th which contains a
methyl group on the benzimidazole ring gave 3ha as a sin-
gle product and the other isomer was not formed. The reac-
tion was also applicable to 2-(2-fluorophenyl)-1H-indole
(1i) to give 5,6-diethylindolo[2,1-a]isoquinoline (3ia) in
70% yield when LiOBuf was used as a base instead of KOBu.

Special Topic

Table 1 Optimization of the Reaction Conditions
Ni(cod), 10 mol%

N ligand 20 mol‘_’/o a
7| base 1 equiv
N + Et——Et N

A solvent 0.25 mL —

FoH 18h B Et
1a 0.25 mmol 2a 0.3 mmol 3aa

Entry Base Ligand Solvent Temp  NMRyield (%)

(°C) 3a 1a
1 KOBu! PPh; DMA 120 18 30
2 KOBu* bpy DMA 120 92 0
3 KOBut Phen DMA 120 87 (70) 0
4 KOBut Me,Phen DMA 120 93 (78) 0
5  LiOBu'  Me,Phen DMA 120 >99(84) 0
6 NaOBu*  Me,Phen DMA 120 70 0
7 KOMe Me,Phen DMA 120 64 0
8 KOBut dtbbpy 1,4-dioxane® 120 3 32
9 KOBu* dtbbpy toluene 120 33 38
10 KOBu* dtbbpy DMF 120 77 0
1 KOBut dtbbpy DMSO 120 >99 0
12 KOBut Me,Phen DMA 100 53 45
13 KOBu* Me,Phen DMF 100 99 (88) 0

3 Numbers in parentheses refer to isolated yields.
b1,4-Dioxane (0.5 mL).

3af 55%?

3ad 70% 3ae 72% CCDC 2046289

Figure 1 Alkyne scope. Reagents and conditions: 1a (0.25 mmol),
alkyne 2 (0.3 mmol), Ni(cod), (0.025 mmol), Me,phen (0.05 mmol),
KOBut (0.25 mmol), DMF (0.25 mL), 100 °C, 18 h; yields shown are
isolated yields. 2 At 120 °C.

Gratifyingly, it was found that an inexpensive and
benchtop-stable Ni(OAc),/Zn system also gave a good yield
of the corresponding product 3aa. The method was applica-
ble to a gram-scale reaction using the Ni(Il)/Zn system
(Scheme 2).

A proposed mechanism for the above annulation reac-
tion is shown in Scheme 3. The base abstracts an NH proton
in 1a to generate the anion A, which is the actual substrate,
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Figure 2 Substrate scope. Reagents and conditions: 1 (0.25 mmol), hex-
3-yne (2a; 0.3 mmol), Ni(cod), (0.025 mmol), Me,Phen (0.05 mmol),
KOBu! (0.25 mmol), DMF, 100 °C, 18 h. 2 LiOBut was used as a base.

b The reaction was carried out at 120 °C. < Bpy (2,2'-dipyridine) was
used in place of Me,Phen.

Ni(OAc), 10 mol%
Me4Phen 20 mol%

N Zn 1 equiv N

‘ i <
& . KOBu 1 equiv
N + Et—=—Et N
h DMF 5mL —

F H 100°C, 18 h e mt

1a 4.78 mmol
(1.015 g)

2a 6 mmol 3aa 83% (1.084 g)

Scheme 2 Use of inexpensive and benchtop-stable Ni(OAc),/Zn as cat-
alytic system (gram scale)

because one equivalent of base was used. The reaction of A
with Ni(0) gives the nickelate complex B. Oxidative addition
of the C-F bond gives the nickelacycle C, which is assisted
by the coordination of the potassium cation to the F atom in
B.” The coordination of an alkyne to complex C, followed by
the insertion of an alkyne into the C-Ni bond gives the sev-
en-membered nickalacycle D, which then undergoes reduc-
tive elimination to give the annulated product 3 with the
regeneration of Ni(0).

In summary, we reported on the Ni(0)-catalyzed C-F/N-H
annulation of 2-(2-fluoroaryl) N-heteroaromatic com-
pounds with alkynes. The use of KOBu‘ or LiOBu‘ was essen-
tial for the reaction to proceed. This strategy is a promising
method for the activation of C-F bonds* as well as other un-
reactive bonds, such as C-0, C-S, and C-CN.2 Investigations
on the further use of this methodology for the activation of
unreactive bonds are currently underway and will be re-
ported in due course.
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Scheme 3 A proposed mechanism

'H and 3C NMR spectra were recorded on a JEOL ECZ-400 spectrome-
ter; samples were dissolved in CDCl; with tetramethylsilane as an in-
ternal reference standard. IR spectra were recorded on a JASCO FT/IR-
4200 spectrometer using the ATR method. Mass spectra were ob-
tained using a SHIMDZU QP-2010 spectrometer with a quadrupole
mass analyzer operating at 70 eV. HRMS was carried out on a JEOL
JMS-T100LP spectrometer with a time-of-flight mass analyzer. Melt-
ing points were determined on a Stanford Research Systems MPA100
apparatus equipped with a digital thermometer. Column chromatog-
raphy was performed on silica gel (Silicycle Siliaflash F60; 230-400
mesh).

2-(2-Fluoroaryl) N-Heteroaromatic Compounds 1a-i

2-Fluoroarylbenzimidazoles 1a-h are all known compounds and
were prepared by the reaction of 1,2-phenylenediamine derivatives
with aldehydes in the presence of MgCl,:? 2-(2-fluorophenyl)-1H-
benzo[d]imidazole (1a) [CAS Reg. No. 321-51-7], 2-(2-fluoro-5-me-
thoxyphenyl)-1H-benzimidazole (1b) [CAS Reg. No. 1508940-34-8],
2-(2,5-difluorophenyl)-1H-benzimidazole (1c) [CAS Reg. No.
1097793-36-6], 2-(5-chloro-2-fluorophenyl)-1H-benzimidazole (1d)
[CAS Reg. No. 1094668-22-0], 2-[2-fluoro-5-(trifluoromethyl)phe-
nyl]-1H-benzimidazole (1e) [CAS Reg. No. 1536220-29-7], 2-(2-fluo-
ro-4-methoxyphenyl)-1H-benzimidazole (1f) [CAS Reg. No. 2620-81-7],
2-(2-fluoro-4,5-dimethoxyphenyl)-1H-benzimidazole (1g) [CAS Reg.
No. 2443949-80-0], and 2-(2-fluorophenyl)-7-methyl-1H-benzimid-
azole (1h) [CAS Reg. No. 626606-16-4]. 2-(2-Fluorophenyl)-1H-indole
(1i) [CAS Reg. No. 52765-22-7] was prepared by the Fischer indole
synthesis by the reaction of 2-fluoroacetophenone and phenylhydra-
zine hydrochloride in the presence of polyphosphoric acid.'

5,6-Diethylbenzo[4,5]imidazo[2,1-a]isoquinoline (3aa); Typical
Procedure

To an oven-dried 5 mL screw-capped vial in a glove box, KOBu‘ (28.1
mg, 0.25 mmol), Me,Phen (11.8 mg, 0.05 mmol), Ni(cod), (6.9 mg,
0.025 mmol), 2-(2-fluorophenyl)-1H-indole (1a, 53.1 mg, 0.25
mmol), hex-3-yne (2a, 24.6 mg, 0.3 mmol), and DMF (0.25 mL) were
added in sequential order. The vial was then sealed and the mixture
was stirred for 5 min at room temperature. The vial was then placed
on a preheated aluminum heating block [Thermo Mighty Stirrer HHE-
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19G-USIII (KPI)] and stirred for 18 h at 100 °C and then allowed to
cool to room temperature. The resulting mixture was filtered through
a Celite pad and the filtrate concentrated to dryness in vacuo. The res-
idue was purified by column chromatography (silica gel, hexane/EtOAc,
10:1) to afford the desired product 3aa.

Yield: 59.5 mg (88%); white solid; mp 123 °C; Ry= 0.26 (hexane/EtOAc,
3:1).

IR (ATR): 2970 m, 1630 w, 1523 m, 1450's, 1368 s cm".

TH NMR (400 MHz, CDCl,): 8 = 1.31 (t, = 7.6 Hz, 3 H), 1.48 (t, j = 7.6
Hz, 3 H), 2.99(q,J = 7.6 Hz, 2 H), 3.40 (q, ] = 7.6 Hz, 2 H), 7.33 (t, ] = 7.6
Hz, 1 H), 7.47 (t, ] = 7.6 Hz, 1 H), 7.60 (t, ] = 7.2 Hz, 1 H), 7.66 (td, J =
8.4,1.4 Hz, 1 H), 7.84 (d,J = 8.2 Hz, 1 H), 7.97 (d, ] = 8.5 Hz, 1 H), 8.03
(d,J=8.1Hz, 1H),8.91(d,J=7.6 Hz, 1 H).

13C NMR (100 MHz, CDCl3): & = 13.1, 15.1, 20.4, 22.3, 114.6, 119.6,
120.0, 121.6, 122.9, 123.4, 124.0, 125.6, 126.8, 130.0, 130.6, 131.3,
136.7, 144.4, 148.1.

MS (EI, 70 eV): mjz (%) = 275 (17), 274 [M*] (76), 260 (21), 259 (100),
257(13), 243 (21), 128 (10), 122 (15), 115 (10).

HRMS-TOF: m/z [M + HJ]* calcd for C;qH;gN,: 275.1543; found:
275.1544.

5,6-Diphenylbenzol[4,5]imidazo[2,1-a]isoquinoline (3ab)
[CAS Reg. No. 1037289-22-7]
Yield: 65.5 mg (71%); white solid; R;= 0.36 (hexane/EtOAc, 3:1).

H NMR (400 MHz, CDCl,): & = 6.00 (d, J = 8.5 Hz, 1 H), 6.92 (t, ] = 7.8
Hz, 1 H), 7.20-7.30 (m, 5 H), 7.33-7.42 (m, 7 H), 7.56 (t, ] = 7.7 Hz, 1
H), 7.68 (t,J= 7.5 Hz, 1 H), 7.98 (d, ] = 8.2 Hz, 1 H), 8.99 (d, ] = 8.0 Hz, 1
H).

13C NMR (100 MHz, CDCly): & = 1142, 119.7, 1214, 123.0, 123.6,
124.2, 125.1, 1265, 127.4, 127.9, 128.1, 128.9, 129.3, 130.0, 130.7,
131.3,131.6,132.7, 133.8, 135.2, 135.8, 144.4, 147.9.

5,6-Bis(4-methylphenyl)benzo[4,5]imidazo[2,1-a]isoquinoline
(3ac)

[CAS Reg. No. 2281949-52-6]

Yield: 64.1 mg (67%); white solid; R,= 0.37 (hexane/EtOAc, 3:1).

H NMR (400 MHz, CDCl,): & = 2.33 (s, 3 H), 2.42 (s, 3 H), 6.03 (d, ] =
8.5 Hz, 1 H), 6.94 (t, ] = 7.8 Hz, 1 H), 7.09 (s, 4 H), 7.18-7.23 (m, 4 H),
7.33-7.38 (m, 2 H), 7.56 (t, ] = 7.0 Hz, 1 H), 7.67 (t, ] = 7.0 Hz, 1 H), 7.98
(d,J=82Hz,1H),897(d,J=7.1 Hz, 1 H).

13C NMR (100 MHz, CDCl,): 8 = 21.4, 21.7, 114.4, 119.6, 121.2, 123.0,
123.6, 124.1, 125.1, 126.5, 127.7, 128.9, 129.6, 129.9, 130.6, 131.0,
131.4,132.8, 133.1,135.4, 136.8, 139.1, 144.4, 147.9.

5,6-Bis(4-methoxyphenyl)benzo[4,5]imidazo[2,1-a]isoquinoline
(3ad)

[CAS Reg. No. 2281949-53-7]

Yield: 79.3 mg (70%); white solid; Ry= 0.20 (hexane/EtOAg, 3:1).

TH NMR (CDCl,, 399.78 MHz): = 3.80 (s, 3 H), 3.85 (s, 3 H), 6.12 (d, ] =
8.5 Hz, 1H),6.82(d,J = 8.9 Hz, 2 H), 6.90 (d, ] = 8.7 Hz, 2 H), 6.96 (¢, ] =
7.8 Hz, 1H),7.10(d, ] = 8.7 Hz, 2 H), 7.22 (d, ] = 8.7 Hz, 2 H), 7.36 (t, ] =
8.2 Hz, 2 H), 7.56 (t, ] = 7.7 Hz, 1 H), 7.66 (t, ] = 7.7 Hz, 1 H), 7.98 (d, ] =
8.0 Hz, 1 H), 8.97 (dd, J = 8.0, 0.7 Hz, 1 H).

13C NMR (CDCl;, 100.53 MHz): 8 = 55.3, 55.4, 113.6, 114.3, 1144,

119.6, 121.3, 123.0, 123.6, 124.1, 125.1, 126.3, 126.5, 127.7, 128.1,
129.9,131.4,131.9, 132.6,133.2, 135.4, 144.4, 147.9, 158.6, 160.0.

Special Topic

5,6-Bis(4-fluorophenyl)benzo[4,5]imidazo[2,1-alisoquinoline
(3ae)

[CAS Reg. No. 2281949-54-8]

Yield: 72.0 mg (72%); pale yellow solid; Ry= 0.26 (hexane/EtOAc, 3:1).

H NMR (400 MHz, CDCL,): & = 6.08 (d, ] = 8.5 Hz, 1 H), 6.96-7.03 (m, 3
H), 7.09-7.19 (m, 4 H), 7.29-7.34 (m, 3 H), 7.39 (t, ] = 7.7 Hz, 1 H), 7.59
(t,J=7.7Hz, 1 H),7.70 (t, ] = 7.5 Hz, 1 H), 7.99 (d, ] = 8.0 Hz, 1 H), 8.98
(dd,J = 8.0,0.9 Hz, 1 H).

13C NMR (100 MHz, CDCl,): & = 113.9, 115.4 (d, J = 22.2 Hz), 116.3 (d,
J= 222 Hz), 119.9, 121.6, 123.1, 124.4, 125.3, 1263, 1282, 129.8,
130.2, 131.2, 131.5, 132.5, 132.6 (d, ] = 7.7 Hz), 133.2 (d, ] = 7.6 Hz),
134.5,144.4,147.8, 162.1 (d, ] = 247.6 Hz), 163.1 (d, J = 249.5 Hz).

5-Phenyl-6-propylbenzo[4,5]imidazo[2,1-a]isoquinoline (3af)!’
Yield: 45.3 mg (55%); mp 181 °C; Ry= 0.38 (hexane/EtOAc, 3:1).

IR (ATR): 2959 m, 2930 w, 2871 w, 1630 w, 1608 w, 1595 w, 1525 m,
1479 m, 1445 s, 1373 mcm™.

TH NMR (400 MHz, CDCl;): 8 = 0.91 (t, = 7.3 Hz, 3 H), 1.63-1.65 (m, 2
H), 2.65-2.69 (m, 2 H), 5.85 (d, ] = 8.5 Hz, 1 H), 6.89 (t, ] = 7.3 Hz, 1 H),
7.32(t,J = 7.6 Hz, 1 H), 7.47-7.50 (dd, ] = 8.0, 1.6 Hz, 2 H), 7.62-7.76
(m, 5 H), 7.93 (t,] = 7.3 Hz, 2 H), 8.97 (d, ] = 7.2 Hz, 1 H).

13C NMR (100 MHz, CDCLy): & = 14.5, 24.1, 30.3, 113.9, 119.5, 120.3,
121.1, 12356, 123.9, 124.2, 125.7, 127.6, 129.5, 129.9, 130.0, 130.3,
131.3,131.6, 134.5, 134.5, 144.2, 147.6.

MS (I, 70 eV): m/z (%) = 337 (11), 336 [M"] (49), 308 (22), 307 (100),
306 (24), 305 (19), 153 (10).

HRMS-TOF: mjz [M + HJ* caled for C,4H,;N,: 337.1700; found:
337.1693.

5,6-Diethyl-2-methoxybenzo[4,5]imidazo[2,1-alisoquinoline
(3ba)

Yield: 55.5 mg (75%); white solid; mp 118 °C; R;= 0.20 (hexane/EtOAc,
3:1).

IR (ATR): 2969 m, 2902 w, 2837 w, 1614 m, 1521 m, 1499 s, 1359 s,
1231 scm™.

H NMR (400 MHz, CDCl;): & = 1.28 (t, ] = 7.6 Hz, 3 H), 1.46 (t, ] = 7.6
Hz, 3 H),2.94 (q,]J = 7.6 Hz, 2 H), 3.36 (q,] = 7.6 Hz, 2 H), 4.02 (s, 3 H),
7.25-7.28 (m, 1 H), 7.32 (t,J = 7.8 Hz, 1 H), 7.47 (t,] = 7.7 Hz, 1 H), 7.74
(d,]=8.9Hz, 1H),7.97 (d,]=8.5Hz, 1 H), 8.03 (d, ] = 8.2 Hz, 1 H), 8.27
(d,J=2.7Hz, 1 H).

13C NMR (100 MHz, CDCl;): & = 13.2, 15.2, 20.5, 22.1, 55.9, 105.6,
114.7, 119.6, 119.9, 120.7, 121.5, 124.0, 124.2, 125.2, 125.5, 130.8,
134.4, 144.4, 147.9, 158.5.

MS (EI, 70 eV): m/z (%) = 305 (24), 304 [M*] (100), 290 (20), 274 (10),
246 (16), 245 (10).

HRMS-TOF: m/z [M + HJ* caled for C,H,;N,0: 305.1648; found:
305.1650.

5,6-Diethyl-2-fluorobenzo[4,5]imidazo[2,1-alisoquinoline (3ca)
Yield: 43.4 mg (60%); white solid; mp 225 °C; Ry= 0.43 (hexane/EtOAc,
3:1).

IR (ATR): 2970 m, 1631 w, 1526 w, 1450 m, 1367 m, 1289 w cm™".

H NMR (400 MHz, CDCl3): 8 = 1.31 (t, J = 7.6 Hz, 3 H), 1.48 (¢, ] = 7.6
Hz, 3 H),2.98 (q,] = 7.6 Hz, 2 H), 3.39 (q,J = 7.6 Hz, 2 H), 7.35-7.37 (m,
2 H), 7.48 (td, ] = 8.0, 0.9 Hz, 1 H), 7.79-7.82 (m, 1 H), 7.97 (d, ] = 8.5
Hz, 1 H),8.01(d,J=8.2 Hz, 1 H), 8.52 (dd, = 9.2, 2.7 Hz, 1 H).
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13C NMR (100 MHz, CDCl5): & = 13.1, 15.1,20.7, 22.3, 110.8 (d, = 23.1
Hz), 114.7,118.5 (d, J = 24.1 Hz), 119.2, 120.2, 122.1, 124.2, 124.5 (d,
J=9.6 Hz), 125.9 (d, J = 8.7 Hz), 127.9, 130.7, 136.1, 144.4, 147.2,
161.3 (d,J = 247.6 Hz).

MS (EI, 70 eV): m/z (%) = 293 (17), 292 [M*] (72), 278 (21), 277 (100),
275 (13), 261 (20), 167 (17), 149 (47), 131 (14), 71 (19), 57 (25).
HRMS-TOF: m/z [M + H]* caled for C;qH;gN,F: 293.1449; found:
293.1451.

2-Chloro-5,6-diethylbenzo[4,5]imidazo[2,1-alisoquinoline (3da)
Yield: 15.4 mg (20%); white solid; mp 190-191 °C; R;= 0.50 (hexane/
EtOAc, 3:1).

IR (ATR): 2970 m, 1629 w, 1525 m, 1452 m, 1368 s, 740 s cm™".

H NMR (400 MHz, CDCl,): § = 1.33 (t, ] = 7.6 Hz, 3 H), 1.53 (t, ] = 7.6
Hz,3H),3.02(q,/ = 7.6 Hz, 2 H), 3.45 (q,J = 7.6 Hz, 2 H), 7.39 (t, ] = 7.8
Hz, 1 H),7.51 (t,J = 7.7 Hz, 1 H), 7.63 (dd, J = 8.9, 2.3 Hz, 1 H), 7.81 (d,
J=8.7Hz, 1H),8.01-8.04 (m, 2 H), 8.91 (d, ] = 2.3 Hz, 1 H).

13C NMR (100 MHz, CDCl5): & = 13.1, 15.2, 20.6, 22.4, 114.7, 119.3,
120.3, 122.2, 124.2, 124.4, 125.1, 125.2, 129.7, 130.5, 130.7, 133.0,
137.1,144.4,147.0.

MS (EI, 70 eV): m/z (%) = 310 (28), 309 (19), 308 [M*] (79), 295 (34),
294 (22),293 (100), 291 (10), 277 (10), 243 (10), 128 (11), 122 (13).
HRMS-TOF: m/z [M + H]* calcd for C,qH;gN,Cl: 309.1153; found:
309.1152.

5,6-Diethyl-2-(trifluoromethyl)benzo[4,5]imidazo[2,1-a]isoquin-
oline (3ea)

Yield: 53.2 mg (63%); white solid; mp 179-180 °C; R;= 0.51 (hexane/
EtOAc, 3:1).

IR (ATR): 2972 m, 1630 w, 1526 m, 1454 w, 1168 s cm™".

TH NMR (400 MHz, CDCl,): 8 = 1.34 (t, ] = 7.6 Hz, 3 H), 1.52 (t, j = 7.6
Hz, 3 H),3.03 (q,J = 7.6 Hz, 2 H), 3.43 (q,] = 7.6 Hz, 2 H), 7.39 (1, = 7.8
Hz,1H),7.51(t,J= 7.7 Hz, 1 H), 7.86 (d, ] = 8.7 Hz, 1 H), 7.93-8.04 (m,
3H),9.20 (s, 1 H).

13C NMR (100 MHz, CDCLy): & = 12.9, 15.0, 20.5, 22.5, 114.7, 119.1,
120.2,122.4,122.7,123.2 (q, ] = 4.8 Hz), 124.2 (q, ] = 272.6 Hz), 124.2,
124.5,125.9 (q, J = 2.9 Hz), 128.6 (q, ] = 33.7 Hz), 130.5, 133.5, 139.0,
1443, 147.2.

MS (EI, 70 eV): m/z (%) = 343 (20), 342 [M*] (89), 328 (22), 327 (100),
325(12),311 (16).

HRMS-TOF: m/z [M + HJ]* calcd for C,0H;gN,F;: 343.1417; found:
343.1418.

5,6-Diethyl-3-methoxybenzo[4,5]imidazo[2,1-a]isoquinoline (3fa)
Yield: 56.8 mg (77%); white solid; mp 150-151 °C; R;= 0.29 (hexane/
EtOAc, 3:1).

IR (ATR): 2969 m, 2904 w, 2837 w, 1631 s, 1525 m, 1451 s, 1381 m,
1370 m, 1222 scm™.

H NMR (400 MHz, CDCL,): & = 1.33 (t, / = 7.6 Hz, 3 H), 1.49 (t, = 7.6
Hz, 3 H),2.97 (q,] = 7.6 Hz, 2 H), 3.40 (q, ] = 7.6 Hz, 2 H), 3.95 (s, 3 H),
7.21-7.26 (m, 2 H), 7.31 (t, ] = 7.8 Hz, 1 H), 7.46 (t, ] = 7.6 Hz, 1 H), 7.97
(t,J = 9.3 Hz, 2 H), 8.83 (d, ] = 8.7 Hz, 1 H).

13C NMR (100 MHz, CDCLy): & = 13.1, 14.9, 20.6, 22.4, 55.5, 106.1,

1144, 115.2, 116.8, 119.2, 119.6, 121.2, 123.9, 127.5, 130.6, 133.2,
137.3,144.6, 148.3,161.2.

Special Topic

MS (EI, 70 eV): m/z (%) = 305 (24), 304 [M*] (100), 290 (20), 289 (88),
246 (15), 245 (10).

HRMS-TOF: m/z [M + H]* calcd for C,H,;N,0: 305.1648; found:
305.1667.

5,6-Diethyl-2,3-dimethoxybenzo[4,5]imidazo[2,1-alisoquinoline
(3ga)

Yield: 70.0 mg (87%); yellow solid; mp 175-176 °C; Ry= 0.43 (hexane/
EtOAc, 1:10).

IR (ATR): 2968 w, 2831 w, 1632 w, 1523 m, 1454 s, 1362 w, 1260 s,
1246 s cm™.

H NMR (400 MHz, CDCl3): 8 = 1.36 (t, J = 7.4 Hz, 3 H), 1.51 (t, ] = 7.4
Hz, 3 H),3.01(q,J = 7.6 Hz, 2 H), 3.44 (q, ] = 7.6 Hz, 2 H), 4.05 (s, 3 H),
4.14(s,3H),7.22 (s, 1H),7.33 (t,J = 7.8 Hz, 1 H), 7.48 (t, ] = 7.7 Hz, 1
H),8.01(d,J = 8.0 Hz, 2 H), 8.27 (s 1 H).

13C NMR (100 MHz, CDCl,): 8 = 13.2, 15.0, 20.8, 22.3, 56.1, 56.5, 104.3,
106.0, 114.6, 117.1, 119.2, 119.6, 121.1, 124.0, 126.5, 130.7, 135.4,
144.6, 147.9, 149.3, 151.8.

MS (EI, 70 eV): m/z (%) = 335 (25), 334 [M*] (100), 320 (12), 319 (52),
303 (19).
HRMS-TOF: m/z [M + HJ* calcd for C,;H,3N,0,: 335.1754; found:
335.1754.

5,6-Diethyl-11-methylbenzo[4,5]imidazo[2,1-alisoquinoline (3ha)
Yield 59.1 mg (84%); pale yellow solid; mp 123 °C; R;= 0.59 (hexane/
EtOAc, 3:1).

IR (ATR): 3022 w, 2970 m, 1629 m, 1525 s, 1451 s, 1367 m cm™".

H NMR (400 MHz, CDCl): & =1.32 (t, ] = 7.6 Hz, 3 H), 1.48 (¢, = 7.6
Hz, 3 H), 2.86 (s, 3 H), 3.00 (q, ] = 7.2 Hz, 2 H), 3.41 (q, ] = 7.2 Hz, 2 H),
7.22-7.29 (m, 2 H), 7.59 (t, ] = 7.5 Hz, 1 H), 7.66 (t, ] = 7.5 Hz, 1 H),
7.82-7.85 (m, 2 H), 8.97 (d, ] = 7.8 Hz, 1 H).

13C NMR (100 MHz, CDCl;): & = 13.1, 15.1, 17.3, 20.4, 22.2, 112.1,
119.5, 121.5, 123.2, 123.3, 124.1, 125.8, 126.7, 129.8, 129.9, 130.3,
131.2,136.8, 143.8, 147.5.

MS (EI, 70 eV): m/z (%) = 289 (24), 288 [M*] (98), 274 (22), 273 (100),
271 (10), 258 (10), 257 (20), 128 (10), 122 (11).

HRMS-TOF: m/z [M + HJ]* calcd for C,oH,;N,: 289.1699; found:
289.1701.

5,6-Diethylindolo[2,1-a]isoquinoline (3ia)
Yield: 46.7 mg (70%); pale yellow solid; mp 106 °C; Ry= 0.22 (hexane/
Et,0, 400:1).

IR (ATR): 2968 m, 1616 w, 1651 w, 1452 m, 1370 m cm™".

TH NMR (400 MHz, CDCl;): & = 1.31 (t, J = 7.6 Hz, 3 H), 1.54 (t, ] = 7.8
Hz,3 H),2.97(q,J=7.6 Hz,2 H), 3.45(q,J = 7.6 Hz, 2 H), 7.25-7.34 (mm,
3 H), 7.43-7.51 (m, 2 H), 7.74 (d, ] = 7.6 Hz, 1 H), 7.83 (d, ] = 7.6 Hz, 1
H), 8.07 (d,J = 8.7 Hz, 1 H), 8.23 (d, J = 7.6 Hz, 1 H).

13C NMR (100 MHz, CDCly): 6 = 13.3, 15.0, 20.5, 22.7, 94.0, 115.1,
117.3, 120.6, 120.6, 121.4, 123.3, 123.8, 125.5, 126.2, 127.5, 128.6,
129.9,132.0,136.2, 137.5.

MS (EI, 70 eV): m/z (%) = 274 (23), 273 [M*] (100), 272 (13), 259 (19),
258 (88), 257 (12), 243 (18), 242 (18), 241 (14), 121 (11), 121 (18).
HRMS-TOF: m/z [M + H]" calcd for CyyH,oN: 274.1590; found:
274.15875.
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