
Subscriber access provided by UNIV OF SOUTHERN INDIANA

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

Ligand-free, Quinoline N-assisted Copper-catalyzed Nitrene
Transfer Reaction to Synthesize 8-quinolylsulfimides

Xinsheng Xiao, Sanping Huang, Shanshan Tang, Guokai Jia, Guangchuan Ou, and Yangyan Li
J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b00281 • Publication Date (Web): 24 May 2019

Downloaded from http://pubs.acs.org on May 25, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



Ligand-free, Quinoline N-assisted Copper-catalyzed Nitrene Transfer 

Reaction to Synthesize 8-quinolylsulfimides  

Xinsheng Xiao,* Sanping Huang, Shanshan Tang, Guokai Jia, Guangchuan Ou, and Yangyan Li* 

Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and 
Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China 

N
S R2

R3 S
N3

O

O
R1 N

S
R2

R1

N
S

R3

O

O

CuCN(10 mol%)

DCE, 100 oC

8-Thioquinoline N-directed
.

ligand-free
.

the first examples of Quinolyl sulfimides
.

ABSTRACT: An efficient copper-catalyzed, quinolyl N-directed nitrene transfer reaction to 8-quinolylsulfides was described. A variety 

of 8-quinolylsulfimides with different functional groups were synthesized in moderate to high yields. The obtained 8-quinolylsulfimides 

were proved to be a promising novel type of bidentate ligands in Pd(II)-catalyzed allylic alkylation. 

INTRODUCTION 

Sulfilimines1 (or sulfimides), which are the mono-nitrogen equivalent of sulfoxides2, have been widely used as reagents in organic syn-

thesis or chiral auxiliaries in asymmetric catalysis. For example, the chiral S-N bond of a sulfimide can serve as a chiral auxiliary in the 

preparation of optically active epoxides3 through methylene transfer reactions. [2,3]-sigmatropic rearrangement of chiral allylic sulfimide 

provided an efficient route to enantioenriched allylic sulfenamides.4 By taking full advantage of Pummerer (ene) reaction of this 1,2-

diplolar functionality, a series of fascinating transformations to synthesize aza-heterocycles, natural products or drug molecules have been 

carried out by Padwa et al.5 Studies also indicated that they have not only been explored as ligands in transition metal catalysis6, but also 

have been used as cationic reagents in electrochemical reactions.7 In addition to its great role in organic synthesis, the molecules that com-

prise this structural unit themselves possess interesting  bioactivities.8 Furthermore, oxidation of this simple functionality provides another 

important kind of sulfur-containing compouds, the highly heteroatomized sulfoximines9, which have exhibited significant biological activi-

ties in crop protection10 and medicinal chemistry8a, 11. As their sulfur(IV) precursors (sulfilimines), the sulfoximines have been frequenly 

used as ligands in metal catalysis,12 or reagents13 in organic synthesis as well. However, compared with sulfoxides and sulfoximines, the 

sulfimides are still a relatively poorly studied class of sulfur ylides. Preparation of the ones that consist of specific substitution patterns and 

application of them as ligands in transition-metal catalyzed reaction are especially highly desired.  

Due to the significant role  that the sulfimides play in organic synthesis and life science, preparation of this type of 1,2-dipolar com-

pounds especially the asymmetric catalytic variant have drawed a great of interests in the past few decades.14 The straightforward amina-

tion of thioethers with electrophilic nitrogen reagents is the oldest and most widely reported method to prepare sulfimides, among which 

transition-metal promoted sulfimidations are very efficient conversions as they can not only conducted the transformations in relatively 

mild reaction conditions, but also provide possible approaches to enantiomer enriched products with the assistance of proper chiral ligands. 

Various metal catalyzed procedures, such as Cu,4d, 4e Mn,15 Ru,16 Rh17 Ag18 and Fe4a, 19, were presumably proceeding via the formation of 

metal nitrene species20 with the use of iminoiodinanes, azides etc. as the imidating agents. In recently years, breakthrough in preparation of 
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optically active sulfimides via novel means has also been made (Scheme 1). For example, the group of Lebel delineated a Rh-catalyzed 

stereoselective amination of thioethers with the use of chiral N-mesyloxycarbamate as the nitrogen source in 2014.21 Arnold et al. dis-

closed an enzyme-catalyzed amination of aromatic thioethers at the same year.22 Despite great progress has been made in this field, the 

preparation of simple 8-quinolyl sulfides have never been covered in any imidation reactions before. The fact that the lewis basic nitrogen 

atom is probably poisonous to the metal catalyst and would devitalize the corresponding catalytic activity might be the main reason for this 

absence. As quinolyl nitrogen atom have frequently served as directing group in numerous metal catalyzed C-H bond functionalizations,23 

encouraged by these delighting reaserch works, we put forword a similar 8-quinolyl nitrogen assisted straightforward synthetic strategy to 

prepare the target 8-quinolylsulfimides. Herein, we describe the first synthesis of 8-quinolylsulfimides with a variety of functional groups 

via Cu(I)-catalyzed, ligand-free nitrene transfer reaction to 8-quinolylsulfides and the application as a novel type of bidentate ligand in 

Pd(II)-catalyzed allylic alkylation. 

Scheme 1. Metal-catalyzed Nitrene Transfer Reaction to  Sulfilimine 
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RESULTS AND DISCUSSION 

Initially, in order to verify the feasibility of the ligand-free nitrene transfer process for the preparation of 8-quinolyl alkyl sulfimide, 8-

(methylthio)quinoline (1a) and 4-methylbenzenesulfonyl azide (TsN3, 2a) were chosen as the templet substrates for investigation. When 

we employed 10 mol% CuBr as the catalyst, and conducted the reaction in toluene at 80 °C under argon atmosphere in a sealed reaction 

tube, the expected 8-quinolyl alkyl sulfimide 3aa was produced in 23% yield (Table 1, entry 1). Encouraged by this preliminary result, a 

series of Cu(I) catalysts were subsequently tested (Table 1, entries 2-4), and the outcome indicated that CuCN was slightly superior to CuI 

and CuCl. Replacement of CuBr with other metal catalysts, such as Pd(OAc)2, [Rh2(OAc)4], [RuCl2(p-Cym)]2, FeSO4 and Fe(acac)3 (Table 

1,entries 5-9), or with the absence of CuBr (Table 1,entry 10), the same reaction to form 8-quinolyl alkyl sulfimide 3aa could not occur. 

Thus, CuCN was chosen as the catalyst for solvent screening (Table 1, entries 11-18). We found that changes in the solvent have a signifi-

cant effect on the reaction yield. Among the solvents tested, DCE appeared to be the most suitable reaction media, giving the target product 

in 66% yield (Table 1, entry 18). Gratifyingly, the reaction yield could be further improved to 87% by elevating the reaction temperature 

from 80 °C to 100 oC (Table 1, entry19). However, excessive higher reaction temperature did no help to the reaction, as a futher increase 

from 100 oC to 120 oC led no further increase of yield (Table 1,entry 20). 
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Table 1. Optimization of the Reaction Parameters a 

N
S

Ts N3 N
S

N

catalyst (10 mol%)

solvent, T
Ts

1a 2a 3aa  
Entry Catalyst 

(mol%) Solv.b T (oC) Yield 
(%)c 

1 CuBr toluene 80 23 
2 CuI toluene 80 27 
3 CuCl toluene 80 20 
4 CuCN toluene 80 33 
5 Pd(OAc)2 toluene 80 0 
6 [Rh2(OAc)4] toluene 80 0 

7 [RuCl2(p-
Cym)]2 

toluene 80 0 

8 FeSO4 toluene 80 0 
9 Fe(acac)3 toluene 80 0 
10 - toluene 80 0 
11 CuCN 1,4-dioxane 80 44 
12 CuCN MeOH 80 21 
13 CuCN THF 80 32 
14 CuCN CHCl3 80 54 
15 CuCN DMSO 80 25 
16 CuCN CH3CN 80 36 
17 CuCN EA 80 17 
18 CuCN DCE 80 66 
19 CuCN DCE 100 87 
20 CuCN DCE 120 85 

aUnless otherwise noted, all the reactions were performed with 8-(methylthio)quinoline 
(1a) (0.20 mmol) and 4-methylbenzenesulfonyl azide (2a) (0.24 mmol) with metal cata-
lysts (10 mol%) in solvent (1.0 mL) at the setting temperature for 12 h under Ar in a 
sealed reaction tube. bTHF = tetrahydrofuran, DMSO = dimethyl sulfoxide, EA = ethyl 
acetate , DCE = 1,2-dichloroethane. c Isolated yield. 

 

 

With the optimized reaction conditions in hand (Table 1, entry 19), various sulfonyl azides were explored to investigate the generality of 

this Cu(I)-catalyzed nitrene transfer reaction, and the results are summarized in Scheme 2. The substrate scope of sulfonyl azides is quite 

general, benzenesulfonyl azide (2b) and various para-substituted benzenesulfonyl azides bearing both electron-withdrawing and electron-

donating groups could smoothly react with the 8-(methylthio)quinoline (1a), providing the expected sulfimides in moderate to good yield 

(3ac-3ag, 62-93%). Ortho- and meta-methyl substituted benzenesulfonyl azide also worked well in this reaction to furnish the correspond-

ing sulfimide 3ah and 3ai in 91% and 73% yield respectively. However, the steric congested 2,3,5,6-tetramethyl benzenesulfonyl azide (2j) 

seemed a reluctant reactant in the reaction as only 49% yield could be obtained. In addition, naphthylsulfonyl azide (2k), 2-

thiophenesulfonyl azide (2l), phenylmethanesulfonyl azide (2m) and methanesulfonyl azide (2n) were compatible in the reaction as well, 

producing the corresponding sulfimidation products 3ak-3an in 86-93% yields. Except sulfonyl azides, other types of organic azides, such 

as benzyl, aryl and Boc azide, have also been examined as the nitrogen source, but unfortunately no targeted imidated product formed. 
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Scheme2. Substrate Scope for the Sulfonyl Azidea, b 
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aUnless otherwise noted, all the reactions were performed with 8-(methylthio)quinoline (1a) (0.20 mmol) 
and sulfonyl azide (2) (0.24 mmol) with CuCN (10 mol%) in DCE (1.0 mL) at the 100℃ for 12 h under Ar 
in a sealed reaction tube. bIsolated yield. 

 

 

Scheme 3. Substrate Scope for the Sulfides a, b 
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aUnless otherwise noted, all the reactions were performed with  sulfide (1) (0.20 mmol) and sulfonyl 
azide (2a) (0.24 mmol) with CuCN (10 mol%) in DCE (1.0 mL) at the 100℃ for 12 h under Ar in a 
sealed reaction tube. bIsolated yield. 
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The scope of sulfides was also evaluated, and the results are exhibited in Scheme 3. 8-Quinolyl sulfide with short chain alkyl, such as 

ethyl (1b) and butyl (1c) could smoothly reacted with the 4-methylbenzenesulfonyl azide 2a, furnishing the targeted sulfimidation product 

3ba and 3ca in 83% and 78% yield respectively. However, variation of the alkyl substitution of the alkyl 8-quinolyl sulfide from short 

chain to longer one, such as dodecyl (1d), the same sulfimidation reaction could not be obseved. In addition to alkyl group, benzyl 8-

quinolyl sulfide (1e) and phenyl 8-quinolyl sulfide (1f) were tolerated in this sulfimidation reaction, giving the corresponding sulfilimine in 

high or moderate yield. Next, various substituted 8-quinolyl methyl sulfide were tested. As revealed by the results of the reations of 2-

methyl (1g), 3-ethyl (1h), 3-phenyl (1i), 6-methyl (1j), 6-methoxyl (1k) substituted 8-quinolyl methyl sulfide, various substitution patterns 

were compatible in the reaction, leading to the corresponding sulfimides in moderate to high yield. Except 8-quinolyl, similar 9-methyl-4-

(methylthio)acridine (1l) was also applicable, affording the corresponding sulfimide 3la in 85% yield. Noteworthy, for the multi methyl-

thio-substituted substrate, such as 2,6,8-tris(methylthio)quinoline (1m), chemoselective sulfimidation occured only at the 8-position, 

providing the mono-sulimide 3ma in 79% yield. 

Scheme 4. Synthetic Application of the 8-Quinolyl Sulfimide 
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In view of synthetic application of the produced 8-quinolyl sulfimides, we envisaged that this type of compounds could function as a 

novel type of bidentate ligands in the Pd(II)-catalyzed allylic substitution. The result of the reaction of 1,3-diphenyl-3-acetoxy-1-propene 

(a) with dimethyl malonate in the presence of a catalytic amount of Pd(II) catalyst showed that the allylated product 6a was obtained in 

good or high yield  when the sulfimide 3aa was employed as the ligand (Scheme 4, Equ (1)).  However, with the absence of the sulfimide 

3aa, the yield for [Pd(η-C3H5)Cl]2-catalyzed allylic substitution dramatically decreased from 92% to 15%. In ligand-free conditions, the 

same allylic substitution even did not occur when PdCl2 was used as catalyst (Scheme 4, Equ (2)). Furthermore, the reaction of allylic ace-

tate 4 with a wide range of 1, 3-dicarbonyl compounds was investigated to examine the generality of the palladium-3aa catalyzed allylic 

substitution. As shown in Scheme 5, except dimethyl malonate 5a, diethyl malonate 5b, methy-substituted diethyl malonate 5c, 1, 3-

diketone (including cyclic 1,3-cyclohexanedione 5d and acyclic acetylacetone 5e), ethyl acetoacetate 5f and ethyl benzoylacetate 5g were 

all compatible in the catalytic system, evolving corresponding alkylated products 6 in good to high yields (84-91%). 
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Scheme 5. Substrate Scope of the 1, 3-Dicarbonyl Compounds for the Pd(II)-
3aa Catalyzed Allylic Alkylation a,b  
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aUnless otherwise noted, all the reactions were performed with 1,3-diphenyl-3-acetoxy-1-propene (4a) 
(0.10 mmol) , 1,3-dicarbonyl compound (5) and N,O-Bis(trimethylsilyl)acetamide (0.44 mL, 1.8 mmol) 
with PdCl2 (2.5 mol%) in toluene (1.0 mL) at the room temperature for 12 h under N2 in a reaction tube. 
bIsolated yield. 

 

 

Scheme 6. Controlled Experiments 
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In order to shed some light on the mechanism of the present sulfimidation reaction, several controlled experiments were conducted. The 

reaction of methyl(phenyl)sulfane (1n) and methyl(naphthalen-1-yl)sulfane (1o) with 4-methylbenzenesulfonyl azide (2a) was performed 

under the standard conditions, respectively, and no sulfimidation products were produced (Scheme 6, Equ (1) and (2)). These results obvi-

ously implied that the quinoline nitrogen played a key role in the chelation-directed sulfimidation process. Moreover, 2-

(methylthio)pyridine (1p) which could hardly chelate with the copper catalyst was identified still inert in this reaction (Scheme 6, Equ (3)). 
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Subsequently, a sulfide substrate N-(2-(methylthio)phenyl)propionamide (1q) which could similarly chelate with the copper catalyst was 

exposed to the ligand-free catalytic system, and to our delight, the corresponding sulfimidation product 10 was obtained in 67% yield. 

On the basis of the results of the above controlled experiment, a plausible mechanism for this ligand-free nitrene-transfer reaction was 

proposed as below (Scheme 7). Firstly, chelation of the Cu(I) salt with the 8-quinolyl sulfide generated a Cu(I)-quinoline complex A; sub-

sequently, Cu(I)-promoted decomposition of sulfonyl azide accompanied by the extrusion of N2 gas resulted in the formation of the Cu-

nitrene intermediate B; finally, nitrene transfer to the sulfide with concurrently release of the Cu(I) catalyst delivered 8-quinolylsulfimide. 

Scheme 7. Possible Mechanism for the Cu(I)-Catalyzed 
Nitrene Transfer Reaction  

TsN3
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N
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N
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N
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CONCLUSION 

In summary, we disclosed herein the first efficient synthesis of a variety of 8-quinolylsulfimides with different functional groups from 

readily accessible sulfonyl azides and 8-quinolyl thioethers via Cu(I)-catalyzed nitrene transfer reaction. This synthetic method is featured 

by environmentally friendly as not only ligand-free cheap metal catalysis was adoptted, but also the nonhazardous nitrogen gas was the 

only by-product. Quinolyl nitrogen atom played a crucial role in the catalytic process probably though chelating with the Cu(I) catalyst to 

assist the nitrene transformation. The obtained 8-quinolylsulfimides proved to be a promising novel type of bidentate ligands in Pd(II)-

catalyzed allylic alkylation. Further studies on the enantioselective synthesis of 8-quinolylsulfimides and applications of this nascent type 

of compounds in organic synthesis and transition-metal catalysis are currently in progress in our laboratory. 

EXPERIMENTAL SECTION 

General Methods. All reactions were carried out in flame-dried sealed tubes with magnetic stirring. Unless otherwise noted, all experi-

ments were performed under argon atmosphere. All reagents were purchased from TCI, Acros or Strem. Solvents were treated with 4 Å 

molecular sieves or sodium and distilled prior to use. Purifications of reaction products were carried out by flash chromatography using 

Qingdao Haiyang Chemical Co. Ltd silica gel (200-300 mesh). Infrared spectra (IR) were recorded on a Brucker TENSOR 27 FTIR spec-

trophotometer and are reported as wavelength numbers (cm -1). Infrared spectra were recorded by preparing a KBr pellet containing the 

title compound. 1H NMR and 13C{1H} NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient tempera-

ture unless otherwise indicated on a Bruker Avance III HD 400 fourier Transform spectrometer operating at 400 MHz for 1H NMR and 

100 MHz for 13C{1H} NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). 

Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), triplet (t). Splitting patterns that could not be interpreted or 

easily visualized are designated as multiple (m). Low resolution mass spectra were recorded using a Waters HPLC/ZQ4000 Mass Spec-

trometer. High resolution mass spectra (HRMS) were recorded on an IF-TOF spectrometer (Micromass). Gas chromatograph mass spectra 

were obtained with a SHIMADZU model GCMS-QP5000 spectrometer. Crystal data were collected on a Bruker D8 Advance employing 
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graphite monochromated Mo - Kα radiation (λ = 0.71073 Å) at 293(2) K and operating in the φ-ω scan mode. The structure was solved by 

direct methods SHELXS-97. The starting materials The starting materials 8-(Thio)quinoline Substrates (1a-1m, 1p), 24 sulfonyl azides25  

and (rac)-(E)-1,3-Diphenyl allyl acetate (4a) 26were prepared according to the previously reported procedures. 

Typical Procedure for the Preparation of the 8-(Thio)quinoline Substrates (1a-1m, 1p). All of the substrates (1a-1m, 1p) were prepared 

according to the previously reported procedures.24 To a solution of 1.12 g (20 mmol) KOH in anhydrous DMSO (20 mL) were added 50 

mmol of R2SNa and 10 mmol of 8-bromoquinoline derivatives. The resulting mixture was stirred under inert atmosphere (N2) for 5 h at RT 

and overnight at 80 °C. Water (50 mL) was then added, and the reaction products were extracted by Et2O (50 mL). The organic solution 

was dried over MgSO4 (6 h), filtered, and dried under vacuum. The purification of the crude product was achieved by flash chromatog-

raphy through a silica column with ethyl acetate/petroleum as eluent. 

8-(Methylthio)quinoline(1a).27 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) affords 

the title compound as a white solid. 1.61g, 92% yield. 1H NMR (400 MHz, CDCl3) δ 8.92 (dd, J = 4.2, 1.6 Hz, 1H), 8.09 (dd, J = 8.3, 1.5 

Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.41 – 7.35 (m, 2H), 2.55 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.1, 

145.4, 139.9, 136.3, 128.1, 126.6, 123.5, 122.8, 121.6, 14.2. MS (ESI): m/z= 175.1 [M]+. 

8-(Ethylthio)quinoline(1b).28 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) affords the 

title compound as a white solid. 1.72 g, 91% yield.  1H NMR (400 MHz, CDCl3) δ 8.93 (s, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.53 (d, J = 2.0 

Hz, 1H), 7.46 – 7.37 (m, 3H), 3.08 (d, J = 7.2 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.17, 145.5, 138.8, 

136.4, 128.3, 126.6, 123.9, 123.7, 121.6, 25.0, 13.4. MS (ESI): m/z= 189.1 [M]+. 

8-(Butylthio)quinoline(1c). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) affords the 

title compound as a colorless oil. 1.78 g, 82% yield.  1H NMR (400 MHz, CDCl3) δ 8.93 (s, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.53 (d, J = 4.4 

Hz, 1H), 7.45 (d, J = 3.7 Hz, 2H), 7.41 (dd, J = 8.1, 4.1 Hz, 1H), 3.06 (t, J = 7.3 Hz, 2H), 1.85 – 1.78 (m, 2H), 1.57 (dd, J = 14.7, 7.4 Hz, 

2H), 0.97 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.2, 145.6, 139.1, 136.4, 128.3, 126.6, 123.8, 123.6, 121.6, 30.6, 30.4, 

22.3, 13.7. HR-MS (ESI) calcd for [M+H]+: C13H16NS: 218.0998, found: 218.0997; IR (KBr): 2924, 2860, 1599, 1524, 1462, 1170, 810, 

751 cm-1. 

8-(Dodecylthio)quinoline(1d). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) affords 

the title compound as a colorless oil. 2.63 g, 80% yield.  1H NMR (400 MHz, CDCl3) δ 8.94 (d, J = 4.1 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 

7.58 – 7.52 (m, 1H), 7.46 (d, J = 4.9 Hz, 2H), 7.42 (dd, J = 8.2, 4.2 Hz, 1H), 3.06 (t, J = 7.3 Hz, 2H), 1.86 – 1.78 (m, 2H), 1.58 – 1.49 (m, 

2H), 1.26 (s, 16H), 0.88 (t, J = 6.7 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.2, 145.6, 139.2, 136.3, 128.3, 126.6, 123.8, 123.6, 

121.6, 31.9, 31.0, 29.6, 29.6, 29.6, 29.5, 29.3, 29.3, 29.2, 28.4, 22.7, 14.1. HR-MS (ESI) calcd for [M+H]+: C21H32NS: 330.2250, found: 

330.2251; IR (KBr): 3031, 2923, 2861, 1600, 1519, 14612, 1284, 816, 751 cm-1. 

8-(Benzylthio)quinoline(1e).29 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1, v/v) affords 

the title compound as a colorless oil. 2.36 g, 94% yield.  1H NMR (400 MHz, CDCl3) δ 8.96 – 8.90 (m, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.55 

(d, J = 8.0 Hz, 1H), 7.49 – 7.38 (m, 5H), 7.31 – 7.22 (m, 3H), 4.30 (s, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.3, 145.6, 138.4, 136.7, 

136.4, 129.0, 128.5, 128.3, 127.2, 126.6, 124.9, 124.3, 121.6, 36.2. MS (ESI): m/z= 251.1 [M]+. 

8-(Phenylthio)quinoline(1f).30 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1, v/v) affords 

the title compound as a colorless oil. 2.08 g, 88% yield.  1H NMR (400 MHz, CDCl3) δ 8.97 (dd, J = 4.2, 1.6 Hz, 1H), 8.12 (dd, J = 8.3, 1.5 

Hz, 1H), 7.69 – 7.61 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.44 (dd, J = 7.7, 3.0 Hz, 4H), 7.29 (t, J = 7.8 Hz, 1H), 7.06 – 6.99 (m, 1H). 13C{1H} 

NMR (100 MHz, CDCl3) δ 149.4, 144.8, 140.1, 136.3, 135.6, 132.0, 129.7, 128.9, 128.3, 126.7, 125.5, 124.4, 121.8. MS (ESI): m/z= 237.1 

[M]+. 

2-Methyl-8-(methylthio)quinoline(1g).24 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) 

affords the title compound as a white solid. 1.78 g, 94% yield.  1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 7.9 Hz, 

1H), 7.39 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 7.3 Hz, 1H), 7.26 (d, J = 8.3 Hz, 1H), 2.75 (s, 3H), 2.53 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 158.1, 144.9, 139.1, 136.2, 126.1, 125.7, 123.2, 122.6, 122.5, 25.4, 14.2. MS (ESI): m/z= 189.1 [M]+. 
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3-Ethyl-8-(methylthio)quinoline(1h). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) af-

fords the title compound as a white solid. mp 113-115℃. 1.84 g, 90% yield.  1H NMR (400 MHz, CDCl3) δ 8.80 (s, 1H), 7.86 (s, 1H), 7.51 

– 7.41 (m, 2H), 7.30 (d, J = 7.1 Hz, 1H), 2.81 (q, J = 7.6 Hz, 2H), 2.55 (s, 3H), 1.31 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) 

δ 150.5, 143.9, 139.6, 137.3, 133.7, 128.0, 126.6, 123.1, 121.9, 26.2, 15.2, 14.2. HR-MS (ESI) calcd for [M+H]+: C12H14NS: 204.0842, 

found: 204.0841; IR (KBr): 2923, 2860, 1601, 1525, 1462, 1288, 814, 750 cm-1. 

8-(Methylthio)-3-phenylquinoline(1i). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) 

affords the title compound as a white solid. mp 137-139℃. 2.19 g, 87% yield.  1H NMR (400 MHz, CDCl3) δ 9.22 (s, 1H), 8.28 (s, 1H), 

7.72 (d, J = 7.5 Hz, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.54 (t, J = 5.9 Hz, 3H), 7.44 (dd, J = 21.0, 7.3 Hz, 2H), 2.62 (s, 3H). 13C{1H} NMR 

(100 MHz, CDCl3) δ 148.5, 139.9, 137.7, 134.4, 133.5, 129.2, 128.2, 127.9, 127.4, 127.1, 123.7, 122.8, 116.7, 14.3. HR-MS (ESI) calcd 

for [M+H]+: C16H14NS: 252.0842, found: 252.0844; IR (KBr): 3032, 2928, 2861, 1524, 1463, 1189, 820 cm-1. 

6-Methyl-8-(methylthio)quinoline(1j). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) 

affords the title compound as a white solid. mp 104-106℃. 1.75 g, 92% yield.  1H NMR (400 MHz, CDCl3) δ 8.85 (d, J = 4.0 Hz, 1H), 8.02 

(d, J = 8.2 Hz, 1H), 7.37 (dd, J = 8.2, 4.2 Hz, 1H), 7.30 (s, 1H), 7.21 (s, 1H), 2.56 (s, 3H), 2.52 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) 

δ 148.3, 144.1, 139.4, 136.5, 135.6, 128.2, 125.1, 122.6, 121.6, 21.9, 14.3. HR-MS (ESI) calcd for [M+H]+: C11H12NS: 190.0685, found: 

190.0683; IR (KBr): 3030, 2926, 2864, 1599, 1462, 1189, 749 cm-1. 

6-Methoxy-8-(methylthio)quinoline(1k). 30 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1, v/v) 

affords the title compound as a white solid. 1.74 g, 85% yield.  1H NMR (400 MHz, CDCl3) δ 8.79 – 8.71 (m, 1H), 7.97 (d, J = 8.3 Hz, 1H), 

7.34 (dd, J = 8.2, 4.2 Hz, 1H), 7.01 (s, 1H), 6.76 (s, 1H), 3.89 (s, 3H), 2.52 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 157.9, 146.6, 141.8, 

135.0, 129.0, 121.9, 115.6, 100.7, 55.4, 14.2. MS (ESI): m/z= 205.1 [M]+. 

9-Methyl-4-(methylthio)acridine (1l). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1, v/v) af-

fords the title compound as a white solid. mp 136-138℃. 2.09 g, 87% yield.  1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 8.7 Hz, 1H), 8.23 

(d, J = 8.8 Hz, 1H), 7.99 (d, J = 8.7 Hz, 1H), 7.77 – 7.73 (m, 1H), 7.59 – 7.54 (m, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.39 (d, J = 7.0 Hz, 1H), 

3.11 (s, 3H), 2.61 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 147.3, 145.8, 142.3, 141.0, 130.8, 129.4, 125.9, 125.7, 125.2, 124.2, 122.1, 

120.0, 14.4, 13.9. HR-MS (ESI) calcd for [M+H]+: C15H14NS: 240.0842, found: 240.0846; IR (KBr): 2929, 2860, 1603, 1522, 1463, 1289, 

814, 749 cm-1. 

2,6,8-Tris(methylthio)quinoline(1m). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1, v/v) af-

fords the title compound as a white solid. mp 164-166℃. 1.77 g, 66% yield.  1H NMR (400 MHz, CDCl3) δ 8.85 (d, J = 8.3 Hz, 2H), 7.51 

(dd, J = 8.4, 4.3 Hz, 1H), 7.22 (s, 1H), 2.61 (d, J = 3.7 Hz, 6H), 2.31 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 147.9, 145.0, 143.7, 

142.7, 134.0, 129.9, 123.3, 122.9, 118.3, 18.6, 15.8, 14.2. HR-MS (ESI) calcd for [M+H]+: C12H14NS3: 268.0283, found: 268.0286; IR 

(KBr): 3032, 2928, 2861, 1603, 1515, 1462, 1189, 810, 720 cm-1. 

Methyl(naphthalen-1-yl)sulfane(1p).31 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1, v/v) 

affords the title compound as a colorless oil. 1.55 g, 89% yield.  1H NMR (400 MHz, CDCl3) δ 8.26 (d, J = 8.2 Hz, 1H), 7.81 – 7.76 (m, 

1H), 7.61 (d, J = 8.0 Hz, 1H), 7.48 (dtd, J = 13.3, 6.8, 5.5 Hz, 2H), 7.39 – 7.30 (m, 2H), 2.50 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

135.9, 133.7, 131.7, 128.6, 126.3, 126.2, 125.8, 125.8, 124.4, 123.5, 16.2. MS (ESI): m/z= 174.1 [M]+. 

Procedure for the preparation of N-(2-(methylthio)phenyl)propionamide (1q).32 2-Methylthioaniline (3.0 g, 21.5 mmol) and Et3N (3.1 

mL, 22.2 mmol) were dissolved in dichloromethane (20 mL) followed by dropwise addition of propionic acid anhydride (2.8 mL, 21.5 

mmol). The resulting mixture was stirred overnight. The reaction mixture was diluted with dichloromethane and washed twice with 1M 

HCl, once with saturated aqueous NaHCO3, and once with water. Organic layer was dried over MgSO4. Evaporation of solvent gave 4.11 g 

(99% yield) of white crystals 2-Methylthio-N-propionylaniline(1q).1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 7.6 Hz, 2H), 7.46 (d, J = 7.6 

Hz, 1H), 7.33 – 7.24 (m, 1H), 7.05 (t, J = 7.5 Hz, 1H), 2.47 (q, J = 7.5 Hz, 2H), 2.37 (s, 3H), 1.28 (t, J = 7.6 Hz, 3H). 13C{1H} NMR (100 

MHz, CDCl3) δ 172.1, 138.4, 132.9, 128.9, 125.1, 124.2, 120.6, 31.1, 18.9, 9.7. 

General Procedure for the Preparation of Sulfonyl Azides.25 To a solution of sodium azide (1.95 g, 30.0 mmol) in water (10 mL) was 

added dropwise over 1 h a solution of sulfonyl chloride (20.0 mmol) in acetone (20 mL) at 0 °C. The reaction mixture was warmed up to 
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room temperature and stirred for 12 h. Acetone was removed under reduced pressure and the reaction mixture was extracted with EtOAc 

(30 mL × 3). The combined organic layers were dried over MgSO4 and solvent was removed under reduced pressure. Crude product was 

used without further purification. 

Procedure for the preparation of (rac)-(E)-1,3-Diphenyl allyl acetate(4a).26 In an oven dried, one neck, 50 mL round bottom flask 

equipped with a magnetic stir bar and septum, was placed (rac)-(E)-1,3-diphenyl allyl alcohol (1.0 g, 4.76 mmol) followed by dichloro-

methane (10 mL) and triethylamine (1.33 mL, 9.52 mmol) via syringe, under argon. The flask was placed into an ice-water bath and acetic 

anhydride (0.90 mL, 9.52 mmol) was slowly added via syringe. The reaction was allowed to stir overnight at room temperature, when TLC 

showed no remaining alcohol. The organic layer was extracted with saturated NaHCO3 (1 x 10 mL), water (1 x 10 mL), brine (1 x 10 mL), 

dried (Na2SO4) and concentrated to yield a dark yellow oil that was purified by flash chromatography to yield (rac)-(E)-1,3-diphenyl allyl 

acetate (4a) (1.03 g, 4.25 mmol, 90%) as a clear oil. (rac)-(E)-1,3-Diphenyl allyl acetate (4a), 1.03 g, yield 90%. 1H NMR (400 MHz, 

CDCl3) δ 7.50 – 7.41 (m, 6H), 7.37 (ddd, J = 9.6, 6.8, 1.5 Hz, 3H), 7.32 – 7.28 (m, 1H), 6.70 (d, J = 15.8 Hz, 1H), 6.51 (d, J = 6.7 Hz, 1H), 

6.47 – 6.38 (m, 1H), 2.19 (d, J = 2.6 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 170.1, 139.3, 136.2, 132.6, 128.7, 128.6, 128.2, 128.1, 

127.5, 127.1, 126.7, 76.2, 21.4. 

Typical Procedure for the Quinoline N-assisted Cu(I)-Catalyzed Nitrene Transfer Reactions (3aa-3ma). All of the products (3aa-3ma) 

were obtained according to the following procedure. To a screw capped vial with a spinvane triangular-shaped Teflon stir bar were added 

8-(thio)quinoline (0.20 mmol), azide (0.24 mmol), CuCN (1.8 mg, 0.01 mmol, 10 mol %) and 1, 2-dichloroethane (1.0 mL) under Ar at-

mosphere conditions. The reaction mixture was stirred at 100 oC for 12 h, filtered through a pad of celite and then washed with ethyl ace-

tate (10 mL × 3). Organic solvents were removed under reduced pressure and the residue was purified by chromatography on silica gel 

with ethyl acetate/petroleum as the eluent to give the desired products. All of the yields are isolated yield. 

S-Methyl S-(quinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3aa). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 112-114℃. 59.8 mg, 87% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.89 (dd, J = 4.2, 1.5 Hz, 1H), 8.53 (dd, J = 7.4, 0.8 Hz, 1H), 8.27 (dd, J = 8.3, 1.4 Hz, 1H), 8.03 – 7.97 (m, 1H), 7.86 (d, J = 8.2 

Hz, 2H), 7.70 (t, J = 7.8 Hz, 1H), 7.54 (dd, J = 8.3, 4.3 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 3.04 (s, 3H), 2.36 (s, 3H). 13C{1H} NMR (100 

MHz, CDCl3) δ 150.6, 143.8, 141.6, 141.6, 136.6, 133.9, 131.6, 129.3, 128.5, 128.5, 126.9, 126.4, 122.6, 38.6, 21.4. HR-MS (ESI) calcd 

for [M+H]+: C17H17N2O2S2: 345.0726, found: 345.0732; IR (KBr): 3028, 2927, 1598, 1484, 1250, 1197, 1163,  809, 780, 756, 731, 672, 

664 cm-1. 

S-Methyl S-(quinolin-8-yl) N-(benzenesulfonyl)sulfimide (3ab). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 108-110℃. 54.1 mg, 82% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.90 (d, J = 3.9 Hz, 1H), 8.50 (d, J = 7.4 Hz, 1H), 8.27 (d, J = 8.3 Hz, 1H), 7.99 (t, J = 8.9 Hz, 3H), 7.69 (t, J = 7.8 Hz, 1H), 7.55 

(dd, J = 8.1, 4.1 Hz, 1H), 7.43 (d, J = 6.4 Hz, 3H), 3.05 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 150.6, 144.4, 143.7, 136.6, 133.8, 

131.7, 131.2, 128.7, 128.5, 128.4, 126.9, 126.3, 122.6, 38.6. HR-MS (ESI) calcd for [M+H]+: C16H15N2O2S2: 331.0569, found: 331.0571; 

IR (KBr): 3012, 2926, 1590, 1572, 1483, 1285, 1260, 1193, 758,  698 cm-1.  

S-Methyl S-(quinolin-8-yl) N-(4-chlorobenzenesulfonyl) sulfimide (3ac). Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 137-139℃. 62.1 mg, 85% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.91 (d, J = 1.6 Hz, 1H), 8.50 (d, J = 7.4 Hz, 1H), 8.29 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.91 (d, J = 8.5 Hz, 2H), 

7.72 (t, J = 7.8 Hz, 1H), 7.60 – 7.53 (m, 1H), 7.39 (d, J = 8.4 Hz, 2H), 3.07 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 150.7, 143.7, 

143.0, 137.4, 136.6, 133.6, 131.8, 128.9, 128.6, 128.3, 127.9, 126.9, 122.7, 38.7. HR-MS (ESI) calcd for [M+H]+: C16H14ClN2O2S2: 

365.0180, found: 365.0183; IR (KBr): 3023, 2940, 1601, 1485, 1455, 1402, 1275,1232, 1163, 1094, 1074, 1033, 830, 794, 714, 641 cm-1. 

S-Methyl S-(quinolin-8-yl) N-(4-bromobenzenesulfonyl) sulfimide (3ad). Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 142-143℃.72.0 mg, 88% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.92 (d, J = 4.1 Hz, 1H), 8.50 (d, J = 7.4 Hz, 1H), 8.29 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.0 Hz, 2H), 

7.73 (t, J = 7.8 Hz, 1H), 7.56 (t, J = 7.6 Hz, 3H), 3.07 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 150.7, 143.8, 143.5, 136.6, 133.6, 131.9, 
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131.82, 128.6, 128.4, 128.0, 126.9, 125.8, 122.7, 38.7. HR-MS (ESI) calcd for [M+H]+: C16H14BrN2O2S2: 408.9675, found: 408.9675; IR 

(KBr): 3022, 2980, 1501, 1460, 1270, 1179, 1153, 831, 810, 725,  691, 638 cm-1.  

S-Methyl S-(quinolin-8-yl) N-(4-trifluoromethylbenzenesulfonyl) sulfimide (3ae). Purification by column chromatography on silica gel 

(petroleum ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 132-134℃. 74.0 mg, 93% yield. 1H NMR (400 

MHz, CDCl3) δ 8.94 – 8.88 (m, 1H), 8.48 (d, J = 7.4 Hz, 1H), 8.30 (d, J = 8.3 Hz, 1H), 8.11 (d, J = 8.1 Hz, 2H), 8.04 (d, J = 8.2 Hz, 1H), 

7.71 (dd, J = 14.2, 7.9 Hz, 3H), 7.57 (dd, J = 8.3, 4.3 Hz, 1H), 3.09 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 150.8, 147.981, 143.7, 

136.7, 133.4, 132.9(d, J = 32.0 Hz), 131.9, 128.6, 128.2, 126.8, 125.8(q, J = 3.0 Hz) , 123.5(d, J = 271.0 Hz) 122.8, 38.7. HR-MS (ESI) 

calcd for [M+H]+: C17H14F3N2O2S2: 399.0443, found: 399.0439; IR (KBr):2923, 2853, 1612, 1513, 1281, 1157, 1108, 844, 804, 741, 710, 

618 cm-1.  

S-Methyl S-(quinolin-8-yl) N-(4-methoxybenzenesulfonyl)sulfimide (3af). Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 1:1, v/v) affords the title compound as a white solid. m.p. 145-147℃. 44.6 mg, 62% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.91 (d, J = 4.0 Hz, 1H), 8.54 (d, J = 7.4 Hz, 1H), 8.27 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.3 Hz, 2H), 

7.72 (t, J = 7.8 Hz, 1H), 7.55 (dd, J = 8.2, 4.2 Hz, 1H), 6.90 (d, J = 8.3 Hz, 2H), 3.82 (s, 3H), 3.04 (s, 3H). 13C{1H} NMR (100 MHz, 

CDCl3) δ161.8, 150.6, 143.8, 136.6, 136.5, 134.0, 131.6, 128.5, 128.5, 128.3, 126.9, 122.6, 113.8, 55.5, 38.6. HR-MS (ESI) calcd for 

[M+H]+: C17H17N2O3S2: 361.0675, found: 361.0673; IR (KBr): 2981, 2935, 1502, 1463, 1271, 1231, 1179, 1104, 1069, 832, 810, 724, 690 

cm-1. 

S-Methyl S-(quinolin-8-yl) N-(4-acetamidobenzenesulfonyl) sulfimide (3ag). Purification by column chromatography on silica gel (petro-

leum ether/ethyl acetate = 1:1, v/v) affords the title compound as a white solid. m.p. 125-127℃. 71.4 mg, 92% yield.  1H NMR (400 MHz, 

DMSO) δ 10.19 (s, 1H), 9.02 – 8.95 (m, 1H), 8.54 (d, J = 8.3 Hz, 1H), 8.34 (d, J = 7.4 Hz, 1H), 8.25 (d, J = 8.1 Hz, 1H), 7.85 (t, J = 7.8 

Hz, 1H), 7.71 (dt, J = 15.8, 8.5 Hz, 5H), 3.05 (s, 3H), 2.07 (s, 3H). 13C{1H} NMR (100 MHz, DMSO) δ 168.7, 151.3, 142.9, 141.7, 138.4, 

136.9, 133.6, 132.0, 128.2, 127.6, 126.7, 123.0, 118.4, 37.6, 24.0. HR-MS (ESI) calcd for [M+H]+: C18H18N3O3S2: 388.0784, found: 

388.0787; IR (KBr): 3024, 2982, 2846, 1711, 1494, 1452, 1387, 1151, 1017, 785, 734, 697 cm-1. 

S-Methyl S-(quinolin-8-yl) N-(2-methylbenzene sulfonyl) sulfimide (3ah). Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 106-108℃. 62.6 mg, 91% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.90 – 8.83 (m, 1H), 8.59 (d, J = 7.4 Hz, 1H), 8.26 (d, J = 8.3 Hz, 1H), 8.02 (dd, J = 16.8, 8.0 Hz, 2H), 7.71 (t, J = 7.8 Hz, 1H), 

7.52 (dd, J = 8.1, 4.1 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.24 (dt, J = 15.2, 6.9 Hz, 2H), 3.02 (s, 3H), 2.82 (s, 3H). 13C{1H} NMR (100 MHz, 

CDCl3) δ 150.6, 143.7, 142.1, 136.8, 136.6, 134.1, 132.0, 131.7, 131.4, 128.5, 128.1, 126.9, 125.6, 122.6, 38.4, 20.7. HR-MS (ESI) calcd 

for [M+H]+: C17H17N2O2S2: 345.0726, found: 345.0724; IR (KBr):3313, 3059, 2324, 2099, 1663, 1591, 1539, 1324, 1074, 1021, 961 cm-1. 

S-Methyl S-(quinolin-8-yl) N-(3-methylbenzene sulfonyl) sulfimide (3ai).  Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 115-117℃. 50.2 mg, 73% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.93 – 8.87 (m, 1H), 8.52 (d, J = 7.4 Hz, 1H), 8.27 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.83 – 7.74 (m, 2H), 7.70 (t, J = 

7.8 Hz, 1H), 7.55 (dd, J = 8.2, 4.2 Hz, 1H), 7.30 (t, J = 7.3 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 3.05 (s, 3H), 2.36 (s, 3H). 13C{1H} NMR 

(100 MHz, CDCl3) δ 150.6, 144.3, 143.7, 138.6, 136.6, 133.9, 132.0, 131.7, 128.6, 128.5, 128.4, 126.8, 126.8, 123.4, 122.6, 38.6, 21.3. 

HR-MS (ESI) calcd for [M+H]+: C17H17N2O2S2: 345.0726, found: 345.0732; IR (KBr): 3022, 2980, 1631, 1445, 1367, 1257, 1213, 1087, 

1029, 838, 726, 685 cm-1. 

S-Methyl S-(quinolin-8-yl) N-( 2,3,5,6-tetramethylbenzene sulfonyl) sulfimide (3aj). Purification by column chromatography on silica gel 

(petroleum ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 122-124℃. 37.8 mg, 49% yield.  1H NMR (400 

MHz, CDCl3) δ 8.89 (d, J = 4.2 Hz, 1H), 8.65 (d, J = 7.4 Hz, 1H), 8.26 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.75 (t, J = 7.8 Hz, 

1H), 7.54 (dd, J = 8.3, 4.2 Hz, 1H), 7.04 (s, 1H), 3.03 (s, 3H), 2.69 (s, 6H), 2.25 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ150.5, 143.9, 

142.5, 136.5, 135.2, 134.7, 134.4, 134.3, 131.5, 128.9, 128.5, 127.0, 122.4, 38.4, 20.9, 18.4. HR-MS (ESI) calcd for [M+H]+: 

C20H23N2O2S2: 387.1195, found: 387.1197; IR (KBr): 3012, 2927, 1534, 1361, 1256, 1217, 821 cm-1. 
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S-Methyl S-(quinolin-8-yl) N-(naphthalen-1-ylsulfonyl) sulfimide (3ak). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 3:1, v/v) affords the title compound as a white solid. m.p. 134-136℃. 65.4 mg, 86% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.87 (d, J = 4.2 Hz, 1H), 8.55 (d, J = 7.4 Hz, 1H), 8.51 (s, 1H), 8.23 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.6 Hz, 1H), 7.96 (d, J = 8.2 

Hz, 1H), 7.89 (t, J = 6.9 Hz, 2H), 7.84 (d, J = 7.7 Hz, 1H), 7.67 (t, J = 7.8 Hz, 1H), 7.57 – 7.50 (m, 3H), 3.03 (s, 3H). 13C{1H} NMR (100 

MHz, CDCl3) δ 150.6, 143.7, 141.3, 136.5, 134.3, 133.8, 132.3, 131.7, 129.1, 129.0, 128.5, 128.5, 127.9, 127.7, 127.0, 126.8, 126.7, 122.8, 

122.6, 38.6. HR-MS (ESI) calcd for [M+H]+: C20H17N2O2S2: 381.0726, found: 381.0722; IR (KBr): 3014, 2920, 1591, 1347, 1263, 1213, 

1089, 1034, 973, 822, 727 cm-1. 

S-Methyl S-(quinolin-8-yl) N-(thiophen-2-ylsulfonyl) sulfimide (3al). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 110-112℃. 57.8 mg, 86% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.91 (d, J = 4.1 Hz, 1H), 8.53 (d, J = 7.4 Hz, 1H), 8.29 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.62 

– 7.53 (m, 2H), 7.42 (d, J = 4.9 Hz, 1H), 6.97 (t, J = 4.3 Hz, 1H), 3.09 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 150.7, 146.0, 143.7, 

136.6, 133.3, 131.8, 129.9, 129.8, 128.5, 128.4, 126.9, 126.8, 122.7, 38.6. HR-MS (ESI) calcd for [M+H]+: C14H13N2O2S3: 337.0134, 

found: 337.0137; IR (KBr): 3013, 2927, 1591, 1252, 1211, 1097, 1028, 831 cm-1. 

S-Methyl S-(quinolin-8-yl) N-(benzylsulfonyl) sulfimide (3am). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 3:1, v/v) affords the title compound as a white solid. m.p. 124-126℃. 64.0 mg, 93% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.86 – 8.80 (m, 1H), 8.47 (d, J = 7.4 Hz, 1H), 8.24 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.70 (t, J = 7.8 Hz, 1H), 7.55 – 

7.49 (m, 1H), 7.46 (d, J = 7.0 Hz, 2H), 7.27 (d, J = 5.7 Hz, 3H), 4.45 – 4.35 (m, 2H), 2.79 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

150.4, 143.5, 136.4, 134.9, 131.5, 131.2, 130.8, 128.4, 128.3, 128.2, 128.1, 126.8, 122.5, 60.7, 38.3. HR-MS (ESI) calcd for [M+H]+: 

C17H17N2O2S2: 345.0726, found: 345.0729; IR (KBr): 2927, 1601, 1507, 1262, 1208, 1156, 1021, 834, 755, 687 cm-1. 

S-Methyl S-(quinolin-8-yl) N-(methylsulfonyl) sulfimide (3an). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 3:1, v/v) affords the title compound as a white solid. m.p. 101-103℃. 48.2 mg, 90% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.91 – 8.84 (m, 1H), 8.51 (d, J = 7.4 Hz, 1H), 8.23 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.71 (t, J = 7.7 Hz, 1H), 7.51 (dd, 

J = 8.1, 4.1 Hz, 1H), 3.09 (s, 3H), 2.98 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 150.7, 143.8, 136.6, 134.6, 131.7, 128.6, 128.1, 127.0, 

122.7, 42.6, 39.1. HR-MS (ESI) calcd for [M+H]+: C11H13N2O2S2: 269.0413, found: 269.0411; IR (KBr):2923, 2853, 1593, 1502, 1462, 

1325, 1168, 1135, 836, 754, cm-1. 

S-Ethyl S-(quinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ba). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 111-113℃. 59.4 mg, 83% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.90 (d, J = 2.3 Hz, 1H), 8.50 (d, J = 7.3 Hz, 1H), 8.26 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 7.7 Hz, 2H), 

7.71 (t, J = 7.7 Hz, 1H), 7.54 (dd, J = 7.9, 4.0 Hz, 1H), 7.21 (d, J = 7.7 Hz, 2H), 3.47 (dd, J = 13.1, 6.8 Hz, 1H), 3.17 (dd, J = 13.1, 6.8 Hz, 

1H), 2.36 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 150.5, 144.1, 141.6, 141.5, 136.5, 132.1, 131.5, 129.4, 

129.2, 128.5, 126.8, 126.4, 122.5, 46.0, 21.4, 7.4. HR-MS (ESI) calcd for [M+H]+: C18H19N2O2S2: 359.0882, found: 359.0883; IR (KBr): 

2920, 2834, 1603, 1511, 1246, 1170, 1033, 816, 751 cm-1. 

S-Butyl S-(quinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ca). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 3:1, v/v) affords the title compound as a white solid. m.p. 104-106℃. 60.2 mg, 78% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.92 – 8.86 (m, 1H), 8.51 (d, J = 7.4 Hz, 1H), 8.26 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.70 (t, 

J = 7.8 Hz, 1H), 7.53 (dd, J = 8.3, 4.2 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 3.46 (dt, J = 12.4, 8.1 Hz, 1H), 3.11 – 3.02 (m, 1H), 2.37 (s, 3H), 

1.75 – 1.68 (m, 1H), 1.48 – 1.40 (m, 1H), 1.31 (dd, J = 12.7, 7.0 Hz, 2H), 0.80 (t, J = 7.3 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

150.5, 144.0, 141.6, 141.5, 136.5, 133.0, 131.4, 129.1, 128.9, 128.4, 126.9, 126.4, 122.5, 52.1, 25.0, 21.4, 21.1, 13.4. HR-MS (ESI) calcd 

for [M+H]+: C20H23N2O2S2: 387.1195, found: 387.1193; IR (KBr): 3191, 2982, 1529, 1161, 1032, 953, 738, 689 cm-1. 

S-Benzyl S-(quinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ea). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 122-124℃. 65.5 mg, 78% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.97 (s, 1H), 8.44 – 8.34 (m, 1H), 8.30 – 8.19 (m, 1H), 8.03 – 7.92 (m, 1H), 7.68 – 7.51 (m, 4H), 7.21 (d, J = 4.9 Hz, 1H), 7.15 – 
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6.92 (m, 6H), 4.74 (dd, J = 12.3, 3.8 Hz, 1H), 4.24 (dd, J = 12.4, 4.0 Hz, 1H), 2.32 (d, J = 3.8 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

150.6, 144.1, 141.3, 141.1, 136.6, 132.4, 131.5, 130.7, 129.5, 129.0, 128.8, 128.7, 128.4, 126.9, 126.2, 122.5, 57.6, 21.4. HR-MS (ESI) 

calcd for [M+H]+: C23H21N2O2S2: 421.1039, found: 421.1044; IR (KBr): 3191, 2954, 2926, 1446, 1170, 1123, 734, 688 cm-1. 

S-Phenyl S-(quinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3fa). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 112-114℃. 74.7 mg, 92% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.81 (dd, J = 4.2, 1.5 Hz, 1H), 8.70 (dd, J = 7.4, 0.8 Hz, 1H), 8.18 (dd, J = 8.3, 1.4 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 

8.2 Hz, 2H), 7.72 (dt, J = 7.8, 4.0 Hz, 3H), 7.45 (dd, J = 8.3, 4.3 Hz, 1H), 7.35 – 7.25 (m, 3H), 7.12 (d, J = 8.1 Hz, 2H), 2.31 (s, 3H). 

13C{1H} NMR (100 MHz, CDCl3) δ 150.6, 143.9, 141.7, 141.4, 138.0, 136.2, 134.1, 131.9, 131.7, 129.3, 129.1, 128.7, 128.5, 127.7, 126.8, 

126.4, 122.5, 21.3. HR-MS (ESI) calcd for [M+H]+: C22H19N2O2S2: 407.0882, found: 407.0878; IR (KBr): 3052, 1603, 1511, 1445, 1151, 

1038, 830, 770, 734, 687 cm-1. 

S-Methyl S-(2-methylquinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ga). Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 110-112℃. 64.4 mg, 90% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.43 (d, J = 7.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.8 Hz, 1H), 7.39 

(d, J = 8.4 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 3.06 (s, 3H), 2.72 (s, 3H), 2.36 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 160.1, 143.4, 

141.8, 141.5, 136.3, 132.9, 131.2, 129.2, 128.1, 126.7, 126.3, 125.9, 123.4, 38.9, 25.3, 21.4. HR-MS (ESI) calcd for [M+H]+: 

C18H19N2O2S2: 359.0882, found: 359.0880; IR (KBr): 3193, 1590, 1482, 1243, 1085, 1051, 805, 739, 693 cm-1. 

S-Methyl S-(3- ethyl quinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ha).  Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 114-116℃. 66.2 mg, 89% yield.  1H NMR (400 MHz, 

CDCl3) δ 8.76 (s, 1H), 8.42 (d, J = 7.3 Hz, 1H), 8.03 (s, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 7.7 Hz, 2H), 7.64 (t, J = 7.7 Hz, 1H), 

7.20 (d, J = 7.7 Hz, 2H), 3.03 (s, 3H), 2.86 (q, J = 7.4 Hz, 2H), 2.35 (s, 3H), 1.35 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

152.0, 142.1, 141.6, 141.5, 138.5, 133.9, 133.4, 131.3, 129.2, 128.5, 127.3, 126.7, 126.3, 38.6, 26.2, 21.4, 15.0. HR-MS (ESI) calcd for 

[M+H]+: C19H21N2O2S2: 373.1039, found: 373.1038; IR (KBr): 2918, 2834, 1607, 1512, 1447, 1168, 1032, 816, 751 cm-1. 

S-Methyl S-(3-phenylquinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ia). Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 158-160℃. 76.4 mg, 88% yield. 1H NMR (400 MHz, 

CDCl3) δ 9.15 (s, 1H), 8.51 (d, J = 7.3 Hz, 1H), 8.39 (s, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 7.8 Hz, 2H), 7.71 (dd, J = 16.4, 7.9 Hz, 

3H), 7.54 (t, J = 7.4 Hz, 2H), 7.50 – 7.44 (m, 1H), 7.21 (d, J = 7.8 Hz, 2H), 3.07 (s, 3H), 2.36 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

150.1, 142.7, 141.6, 141.6, 136.8, 135.5, 133.9, 133.4, 131.7, 129.4, 129.2, 128.8, 128.4, 128.2, 127.5, 127.3, 126.4, 38.7, 21.4. HR-MS 

(ESI) calcd for [M+H]+: C23H21N2O2S2: 421.1039, found: 421.1044; IR (KBr): 3302, 2964, 1447, 1162, 1017, 939, 750, 732, 697 cm-1. 

S-Methyl S-(6-methylquinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ja). Purification by column chromatography on silica gel (petrole-

um ether/ethyl acetate = 2:1, v/v) affords the title compound as a white solid. m.p. 125-127℃. 65.9 mg, 92% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.81 (s, 1H), 8.26 (s, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.73 (s, 1H), 7.49 (dd, J = 7.8, 4.1 Hz, 1H), 7.21 (d, 

J = 7.9 Hz, 2H), 3.01 (s, 3H), 2.54 (s, 3H), 2.37 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.6, 142.3, 141.7, 141.6, 137.4, 135.8, 

133.2, 130.4, 130.2, 129.3, 128.7, 126.4, 122.5, 38.6, 21.6, 21.4. HR-MS (ESI) calcd for [M+H]+: C18H19N2O2S2: 359.0882, found: 

359.0880; IR (KBr): 2965, 2926, 1447, 1170, 1117, 1023, 954, 734, 689 cm-1. 

S-Methyl S-(6-methoxyquinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ka). Purification by column chromatography on silica gel (petro-

leum ether/ethyl acetate = 1:1, v/v) affords the title compound as a white solid. m.p. 128-130℃. 57.7 mg, 72% yield. 1H NMR (400 MHz, 

CDCl3) δ 8.70 (d, J = 3.9 Hz, 1H), 8.17 (s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 7.7 Hz, 2H), 7.45 (dd, J = 8.1, 4.1 Hz, 1H), 7.22 (d, J 

= 7.0 Hz, 3H), 3.92 (s, 3H), 3.02 (s, 3H), 2.37 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 157.9, 147.9, 141.6, 139.5, 135.4, 135.2, 129.9, 

129.3, 126.4, 122.7, 120.8, 109.5, 56.1, 38.6, 21.4. HR-MS (ESI) calcd for [M+H]+: C18H19N2O3S2: 375.0832, found: 375.0815; IR (KBr): 

3065, 3024, 1598, 1509, 1356, 1261, 1083, 749, 691cm-1. 

S-Methyl S-(9-methylacridin-4-yl) N-(p-toluenesulfonyl)sulfimide (3la). Purification by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 3:1, v/v) affords the title compound as a white solid. m.p. 136-138℃. 69.4 mg, 85% yield.  1H NMR (400 MHz, 
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CDCl3) δ 8.57 (d, J = 7.1 Hz, 1H), 8.41 (d, J = 8.8 Hz, 1H), 8.28 (d, J = 8.9 Hz, 1H), 8.17 (d, J = 8.7 Hz, 1H), 7.94 – 7.78 (m, 3H), 7.74 – 

7.57 (m, 2H), 7.22 (d, J = 7.8 Hz, 4H), 3.16 (s, 6H), 2.37 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 147.7, 143.9, 143.7, 141.9, 141.5, 

134.4, 131.1, 130.0, 129.6, 129.2, 128.4, 126.6, 126.4, 126.1, 125.6, 125.0, 124.6, 39.0, 21.4, 14.1. HR-MS (ESI) calcd for [M+H]+: 

C22H21N2O2S2: 409.1039, found: 409.1036; IR (KBr):2924, 2853, 1591, 1484, 1252, 1158, 1084, 835, 750, 695 cm-1. 

S-Methyl S-(2,6-bis(methylthio)quinolin-8-yl) N-(p-toluenesulfonyl)sulfimide (3ma). Purification by column chromatography on silica 

gel (petroleum ether/ethyl acetate = 1:2, v/v) affords the title compound as a white solid. m.p. 145-147℃. 68.9 mg, 79% yield. 1H NMR 

(400 MHz, CDCl3) δ 8.90 (d, J = 8.6 Hz, 1H), 8.80 (d, J = 4.0 Hz, 1H), 8.36 (s, 1H), 7.84 (d, J = 7.6 Hz, 2H), 7.59 (dd, J = 8.4, 3.9 Hz, 

1H), 7.23 (d, J = 7.7 Hz, 2H), 3.10 (s, 3H), 2.60 (s, 3H), 2.38 (d, J = 5.5 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl3) δ 149.0, 147.0, 141.8, 

141.7, 141.5, 135.5, 134.3, 132.1, 130.9, 129.3, 126.3, 123.8, 123.6, 38.4, 21.4, 18.2, 15.6. HR-MS (ESI) calcd for [M+H]+: C19H21N2O2S4: 

437.0480, found: 437.0477; IR (KBr): 3097, 1500, 1447, 1236, 1090, 1054, 1032, 960, 825, 727, 689 cm-1. 

Synthetic Application of This Transformation. Procedure for the Pd(II)-catalyzed Allylic Substitution. To a stirring solution of 

[Pd2(η3-C3H5)2Cl2] or PdCl2 (0.008 mmol) in toluene (1.5 mL) was added the sulfimide ligand (3aa) (10.3 mg, 0.03 mmol) under a nitro-

gen atmosphere. After 30 min, 1,3-diphenyl-3-acetoxy-1-propene (4a) (76 mg, 0.30 mmol) was added. The solution was then stirred for 30 

min. N,O-Bis( trimethylsilyl)acetamide (0.44 mL, 1.8 mmol), dimethylmalonate (0.21 mL, 1.8 mmol), and potassium acetate (3.0 mg, 0.03 

mmol) were added in that order. The reaction was monitored by TLC. After the solvent was evaporated under reduced pressure, silica gel 

column chromatography of  the residue yielded the pure 6a. 

Typical Procedure for the PdCl2-Catalyzed Allylic Substitution (6a-6g). All of the products (6a-6g) were obtained according to the fol-

lowing procedure. To a stirring solution of PdCl2 (0.008 mmol) in toluene (1.5 mL) was added the sulfimide ligand (3aa) (10.3 mg, 0.03 

mmol) under a nitrogen atmosphere. After 30 min, 1,3-diphenyl-3-acetoxy-1-propene (4a) (76 mg, 0.30 mmol) was added. The solution 

was then stirred for 30 min. N,O-Bis( trimethylsilyl)acetamide (0.44 mL, 1.8 mmol), 1, 3-dicarbonyl compounds (1.8 mmol), and potassi-

um acetate (3.0 mg, 0.03 mmol) were added in that order. The reaction was monitored by TLC. Organic solvents were removed under re-

duced pressure and the residue was purified by chromatography on silica gel with ethyl acetate/petroleum as the eluent to give the desired 

products. All of the yields are isolated yield. 

(E)-Dimethyl 2-(1,3-diphenylallyl)malonate (6a).33 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 

5:1, v/v) affords the title compound as a Colorless oil. In the presence of ligand 3aa, the yields were 92%(89.4 mg) for [Pd2(η3-C3H5)2Cl2]  

and 88%(85.5 mg) for PdCl2. Without adding the ligand 3aa, the yield was 15%(14.6 mg) for [Pd2(η3-C3H5)2Cl2] and  no product was 

found using PdCl2 as catalyst.  1H NMR (400 MHz, CDCl3) δ 7.38 – 7.23 (m, 10H), 6.52 (d, J = 15.8 Hz, 1H), 6.37 (dd, J = 15.7, 8.6 Hz, 

1H), 4.31 (dd, J = 10.8, 8.7 Hz, 1H), 4.00 (d, J = 10.9 Hz, 1H), 3.74 (s, 3H), 3.55 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 168.2, 167.8, 

140.2, 136.8, 131.9, 129.1, 128.7, 128.5, 127.9, 127.6, 127.2, 126.4, 57.6, 52.6, 52.5, 49.2. MS (ESI): m/z= 324.1 [M]+. 

(E)-Diethyl 2-(1,3-diphenylallyl)malonate (6b).34 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 

10:1, v/v) affords the title compound as a Colorless oil. 95.1 mg, 90% yield.  1H NMR (400 MHz, CDCl3) δ 7.32 – 7.21 (m, 10H), 6.47 (d, 

J = 15.7 Hz, 1H), 6.34 (dd, J = 15.8, 8.5 Hz, 1H), 4.26 – 4.21 (m, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.97 (qd, J = 7.2, 1.6 Hz, 2H), 1.20 (t, J = 

7.1 Hz, 3H), 1.01 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 167.9, 167.4, 140.3, 136.9, 131.7, 129.4, 128.6, 128.5, 128.0, 

127.5, 127.1, 126.4, 61.6, 61.4, 57.8, 49.2, 14.1, 13.8. MS (ESI): m/z= 352.2 [M]+. 

(E)-diethyl 2-(1,3-diphenylallyl)-2-methylmalonate (6c).35 Purification by column chromatography on silica gel (petroleum ether/ethyl 

acetate = 10:1, v/v) affords the title compound as a Colorless oil. 100.0 mg, 91% yield.  1H NMR (400 MHz, CDCl3) δ 7.37 – 7.31 (m, 4H), 

7.28 (dt, J = 7.4, 3.5 Hz, 4H), 7.24 – 7.16 (m, 2H), 6.70 (dd, J = 15.7, 8.9 Hz, 1H), 6.44 (d, J = 15.7 Hz, 1H), 4.29 (d, J = 8.9 Hz, 1H), 4.18 

(td, J = 7.1, 2.2 Hz, 2H), 4.08 (q, J = 7.1 Hz, 2H), 1.47 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (100 MHz, 

CDCl3) δ 171.2, 170.9, 139.5, 137.4, 132.6, 129.6, 128.9, 128.4, 128.2, 127.3, 127.1, 126.3, 61.4, 61.3, 58.9, 53.7, 18.8, 14.0, 14.0. MS 

(ESI): m/z= 366.2 [M]+. 

(E)-2-(1,3-diphenylallyl)cyclohexane-1,3-dione (6d).36 Purification by column chromatography on silica gel (petroleum ether/ethyl ace-

tate = 2:1, v/v) affords the title compound as a white solid. 78.5 mg, 86% yield.  1H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 7.6 Hz, 2H), 

7.26 (dt, J = 7.8, 5.6 Hz, 6H), 7.18 (t, J = 7.3 Hz, 2H), 6.80 (dd, J = 15.9, 7.8 Hz, 1H), 6.41 (d, J = 15.9 Hz, 1H), 5.18 (d, J = 7.7 Hz, 1H), 
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2.35 (t, J = 6.4 Hz, 4H), 1.91 – 1.81 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3) δ 142.7, 137.4, 131.5, 130.8, 128.5, 128.4, 127.8, 127.3, 

126.3, 126.2, 117.6, 42.2, 20.6. MS (ESI): m/z= 304.1 [M]+. 

(E)-3-(1,3-diphenylallyl)pentane-2,4-dione (6e).37 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 

20:1, v/v) affords the title compound as a white solid. 79.7 mg, 91% yield.  1H NMR (400 MHz, CDCl3) δ 7.31 – 7.18 (m, 10H), 6.42 (d, J 

= 15.9 Hz, 1H), 6.19 (ddd, J = 15.8, 5.5, 2.5 Hz, 1H), 4.38 – 4.28 (m, 2H), 2.23 (s, 3H), 1.91 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 

202.8, 202.6, 140.2, 136.6, 131.7, 129.3, 129.1, 128.6, 128.0, 127.7, 127.3, 126.4, 74.5, 49.2, 30.1, 29.8. MS (ESI): m/z= 292.1 [M]+. 

(E)-ethyl 2-acetyl-3,5-diphenylpent-4-enoate (6f).37 Purification by column chromatography on silica gel (petroleum ether/ethyl acetate 

= 5:1, v/v) affords the title compound as a Colorless oil. 82.2 mg, 85% yield.  1H NMR (400 MHz, CDCl3) δ 7.34 – 7.15 (m, 10H), 6.44 (t, 

J = 15.4 Hz, 1H), 6.27 (ddd, J = 20.5, 15.8, 8.3 Hz, 1H), 4.34 – 4.24 (m, 1H), 4.21 – 4.05 (m, 2H), 3.92 (q, J = 7.1 Hz, 1H), 2.28 (s, 1.42H), 

2.02 (s, 1.54H), 1.19 (t, J = 7.1 Hz, 1.56H), 0.96 (t, J = 7.1 Hz, 1.43H). 13C{1H} NMR (100 MHz, CDCl3) δ 201.7, 201.4, 168.0, 167.6, 

140.4, 140.2, 136.9, 136.7, 131.9, 131.5, 129.6, 129.4, 128.9, 128.7, 128.5, 128.1, 128.0, 127.6, 127.6, 127.2, 127.1, 126.4, 126.4, 65.6, 

65.3, 61.6, 61.4, 49.0, 48.8, 30.0, 29.9, 14.2, 13.8. MS (ESI): m/z= 322.2 [M]+. 

(E)-ethyl 2-benzoyl-3,5-diphenylpent-4-enoate (6g).38 Purification by column chromatography on silica gel (petroleum ether/ethyl ace-

tate = 5:1, v/v) affords the title compound as a Colorless oil. 96.8 mg, 84% yield.  1H NMR (400 MHz, CDCl3) δ 8.13 – 8.04 (m, 1.12H), 

7.98 – 7.89 (m, 0.92H), 7.52 – 7.08 (m, 13H), 6.58 – 6.19 (m, 2H), 5.03 (dd, J = 10.9, 4.8 Hz, 1H), 4.68 – 4.54 (m, 1H), 4.15 – 4.04 (m, 

0.88H), 3.90 – 3.78 (m, 1.10H), 1.10 (t, J = 7.1 Hz, 1.41H), 0.88 (d, J = 7.1 Hz, 1.62H). 13C{1H} NMR (100 MHz, CDCl3) δ 193.2, 192.7, 

168.1, 167.6, 141.0, 140.5, 137.0, 137.0, 137.0, 136.7, 133.7, 133.6, 131.9, 131.7, 130.0, 129.9, 128.9, 128.8, 128.7, 128.7, 128.7, 128.6, 

128.4, 128.0, 127.6, 127.4, 127.2, 126.9, 126.4, 126.3, 61.8, 61.5, 59.9, 59.7, 49.1, 49.0, 14.2, 13.8. MS (ESI): m/z= 384.2 [M]+. 

Control Experiments for the Mechanism Studies. Procedure for the Cu(I)-Catalyzed nitrene transfer reactions of methyl(phenyl) sul-

fane (1n) with TsN3 (2a). To a screw capped vial with a spinvane triangular-shaped Teflon stir bar were added methyl(phenyl)sulfane (1o) 

(0.2 mmol), 4-methylbenzenesulfonyl azide (2a) (0.4 mmol), CuCN (1.8 mg, 0.02 mmol, 10 mol %) and 1, 2-dichloroethane (1.0 mL) 

under Ar atmosphere conditions. The reaction mixture was stirred at 100 oC for 12 h. The reaction mixture was detected by TLC and no 

new spot was found. 

Procedure for the Cu(I)-Catalyzed Nitrene Transfer Reactions of 2-(Methylthio)pyridine(1o) with TsN3 (2a). To a screw capped vial 

with a spinvane triangular-shaped Teflon stir bar were added methyl(naphthalen-1-yl)sulfane (1o) (0.2 mmol), 4-methylbenzenesulfonyl 

azide (2a) (0.24 mmol), CuCN (1.8 mg, 0.02 mmol, 10 mol %) and 1, 2-dichloroethane (1.0 mL) under Ar atmosphere conditions. The 

reaction mixture was stirred at 100 oC for 12 h. The reaction mixture was detected by TLC and no new spot was found. 

Procedure for the Cu(I)-Catalyzed Nitrene Transfer Reactions of Methyl(naphthalen-1-yl)sulfane (1p) with TsN3 (2a). To a screw 

capped vial with a spinvane triangular-shaped Teflon stir bar were added 2-(methylthio)pyridine (1p) (0.2 mmol), 4-

methylbenzenesulfonyl azide (2a) (0.24 mmol), CuCN (1.8 mg, 0.02 mmol, 10 mol %) and 1, 2-dichloroethane (1.0 mL) under Ar atmos-

phere conditions. The reaction mixture was stirred at 100 oC for 12 h. The reaction mixture was detected by TLC and no new spot was 

found. 

Procedure for the Cu(I)-Catalyzed Nitrene Transfer Reactions of  N-(2-(methylthio)phenyl)propionamide (1q) with TsN3 (2a). The prod-

ucts 9 was obtained according to the following procedure. To a screw capped vial with a spinvane triangular-shaped Teflon stir bar were 

added N-(2-(methylthio)phenyl)propionamide (1q, 0.2 mmol), 4-methylbenzenesulfonyl azide (2a) (0.24 mmol), CuCN (1.8 mg, 0.02 

mmol, 10 mol %) and 1, 2-dichloroethane (1.0 mL) under Ar atmosphere conditions. The reaction mixture was stirred at 100 oC for 12 h, 

filtered through a pad of celite and then washed with ethyl acetate (10 mL × 3). Organic solvents were removed under reduced pressure 

and the residue was purified by chromatography on silica gel with petroleum / ethyl acetate (1:1, v/v)  as the eluent to give the desired 

products 10.  

(E)-N-(2-(S-methyl-N-tosylsulfinimidoyl)phenyl)propionamide (10).White solid. m.p. 114-116℃. 48.7mg, 67% yield. 1H NMR (400 

MHz, CDCl3) δ 9.89 – 9.77 (m, 1H), 7.82 (dd, J = 15.0, 7.6 Hz, 1H), 7.70 – 7.65 (m, 2H), 7.65 – 7.60 (m, 1H), 7.46 (ddd, J = 8.0, 3.5, 2.1 

Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 7.8 Hz, 2H), 2.99 (s, 3H), 2.47 – 2.39 (m, 2H), 2.36 (s, 3H), 1.27 – 1.21 (m, 3H).13C{1H} 
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NMR (100 MHz, CDCl3) δ 173.8, 142.1, 140.6, 138.1, 133.7, 129.3, 127.7, 126.0, 125.7, 124.6, 36.1, 30.4, 21.4, 9.6. HR-MS (ESI) calcd 

for [M+H]+: C17H21N2O3S2: 365.0987, found: 365.0989; IR (KBr):2923, 1746, 1590, 1484, 1250, 1158, 1084, 954, 820, 750, 696 cm-1. 
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