A Stille cyclisation approach to (-)-periplanone-B: studies in alkene-selective ring-closing metathesis and an improved chromium(II)-mediated synthesis of (E)-alkenylstannanes from aldehydes

David M. Hodgson, *^{*ab*} † Anne M. Foley, ^{*a*} Lee T. Boulton, ^{*b*} Peter J. Lovell ^{*c*} and Graham N. Maw^{*d*}

- ^a Dyson Perrins Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, UK OX1 3QY
- ^b Department of Chemistry, University of Reading, Whiteknights, Reading, UK RG6 2AD
- ^c SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, UK CM19 5AW
- ^d Pfizer Central Research, Ramsgate Road, Sandwich, Kent, UK CT13 9NJ

Received (in Cambridge, UK) 9th July 1999, Accepted 26th August 1999

A synthesis of the dienone 7 *via* an efficient intramolecular Stille cross-coupling reaction, an improved chromium(II)mediated synthesis of (*E*)-alkenylstannanes from aldehydes using Bu_3SnCHI_2 in DMF, and a synthesis of the substituted (–)-dienone 25 *via* ring-closing alkene metathesis to give dihydropyran 22 are described. The synthesis of (–)-dienone 25 constitutes a formal synthesis of (–)-periplanone-B.

Introduction

Intramolecular Pd-catalysed cross-coupling between alkenylstannane and alkenyl halide (or triflate) functionality is now firmly established as important methodology for the construction of unsaturated heterocycles and carbocycles.¹ However, there are only a limited number of efficient ways of introducing both stannane and halide (or triflate) groups into the same substrate. Structural and functional group constraints are particularly apparent for all-carbon backbone cases. We considered that our recently developed chromium(II)-based chemistry for preparing (E)-alkenylstannanes from aldehydes² could potentially provide, in certain cases, an attractive solution to the above problem. This process is highly chemoselective, complementing the Stille reaction, and any pre-existing alkenyl halide (or triflate) functionality should be unaffected by CrCl₂, in the absence of Ni or Pd salts.3 To illustrate this approach we initially decided to examine a medium ring cyclisation strategy for generating the dienone 1 (Scheme 1, R = H),⁴ with the sub-

† Address for correspondence: Dyson Perrins Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, UK OX1 3QY.

sequent aim of applying the methodology in a natural product synthesis by preparing the substituted (-)-dienone 1 (R = Prⁱ).⁵ An elegant related free-radical based cyclisation approach to the germacranes has been described by Parsons and coworkers.⁶ The substituted dienone $1 (R = Pr^{i})$, as the racemate, has been used by Schreiber and co-workers in syntheses of the potent sex attractant pheromone of the American cockroach (±)-periplanone-B⁷ (first prepared by Still)⁸ and (±)germacrene-D.9 Schreiber constructed the dienone 1 via anionic oxy-Cope rearrangement of a 1,2-divinylcyclohexanol. Mori and co-workers have prepared natural (-)-periplanone-B from substituted (-)-dienone 1 ($R = Pr^{i}$).¹⁰ In this latter synthesis, (+)-limonene was elaborated via ozonolytic ring cleavage to an acyclic substituted α -phenylthioacrylate which underwent intramolecular alkylation to provide the tenmembered carbocycle.

Results and discussion

To examine the viability of our strategy in the unsubstituted (nor-Prⁱ) system, the ketoaldehyde **5** was prepared according to Scheme 2. Thus, 2,5-diiodopent-1-ene 3^{11} was conveniently

Scheme 2 Reagents and conditions: i, NaI, butan-2-one, reflux, 15 h; ii, TMSCl, NaI, H₂O, MeCN, 25 °C, 1 h; iii, dihydropyran (4.6 equiv.), Bu^tLi (4.5 equiv.), THF, -78 °C to 0 °C, then added to 3, THF, 0 °C, 0.5 h; iv, 1 M HCl, THF, 25 °C, 1 h; v, PCC, SiO₂, CH₂Cl₂, 25 °C, 1 h.

J. Chem. Soc., Perkin Trans. 1, 1999, 2911–2922 2911

This journal is © The Royal Society of Chemistry 1999

prepared from commercially available 5-chloropent-1-yne 2 via chlorine-iodine exchange¹² (77%) followed by addition of HI (85%).13 It was important to limit the reaction time with HI to 1 h in order to minimize acid-catalysed isomerisation of 2,5-diiodopent-1-ene 3 to 2,5-diiodopent-2-ene. Addition of lithiated dihydropyran¹⁴ to 2,5-diiodopent-1-ene 3 gave the substituted dihydropyran 4 (46%). The modest yield for the alkylation in this case stems from the basicity of lithiated dihydropyran which resulted in competing formation of the corresponding coupled material containing a triple bond instead of the alkenyl iodide unit present in 4. Variation in either the quantity of lithiated dihydropyran used, the order of addition, the use of additives (HMPA or TMEDA) or reduced temperatures did not result in improved yields for this step. The substituted dihydropyran 4 was subjected to hydrolysis and then immediate oxidation using PCC in the presence of SiO₂¹⁵ to give ketoaldehyde 5 (58%). PDC and Swern oxidations were also examined, but were found to give considerably lower yields of ketoaldehyde 5.

Chemoselective conversion of ketoaldehyde **5** to stannane **6** (Scheme 3) proceeded smoothly (60%) using our original condi-

Scheme 3 Reagents and conditions: i, Bu₃SnCHBr₂, LiI, CrCl₂, THF, DMF, 40 h; ii, cat. Pd₂dba₃, AsPh₃, NMP, 70 °C, 12 h.

tions,² although simple methylenation of the aldehyde (20%) and the stannane with the ketone methylenated (9%) were also observed (see Experimental section). Although we had previously found that bromostannane **6** (I = Br) was not a viable precursor to the dienone **7**,¹⁶ we were pleased to observe that cyclisation of stannane **6** under Pd catalysis^{1,17} reproducibly gave the dienone **7** in excellent yields which ranged from 82% for 0.04 M **6** in *N*-methylpyrrolidone (NMP) to 96% at 0.009 M.

The efficiency of the intramolecular Stille reaction may be partly due to the presence of the ketone and diene groups, which result in no serious transannular non-bonded interactions arising during formation of the ten-membered ring. This is evident from a conformational analysis of the dienone 7 using molecular models, and a crystal structure¹⁸ and NOE studies ¹⁹ of **1** (R = Prⁱ). In addition, models indicate that the Pd centre in the intermediate resulting from initial oxidative addition of Pd(0) into the C–I bond of the stannane **6** may be able to form a π -complex¹⁷ with the ketone and then also with the stannyl-substituted alkene thus creating a favourable arrangement from which transmetallation could occur (Fig. 1).

The above results encouraged us to pursue an enantioselective formal synthesis of natural (–)-periplanone-B by preparing the substituted (–)-dienone 1 ($R = Pr^i$). A strategy analogous to that carried out in the nor- Pr^i series would require an asymmetric synthesis of substituted lithiated dihydropyran 8 ($R = Pr^i$, Scheme 4). Although this appeared feasible,²⁰ the number of steps for its preparation together with the problems anticipated on the basis of our above study in its alkylation with 2,5-diiodopent-1-ene 3 to give 9 ($R = Pr^i$) combined to make this a potentially unattractive strategy towards

(–)-periplanone-B. We considered that an attractive alternative would be to examine Grubbs' ring-closing metathesis (RCM) methodology for the synthesis of substituted dihydropyrans. RCM involving an enol ether to generate dihydropyrans usually requires PhCMe₂CH=Mo=N(2,6-Prⁱ₂C₆H₃)[OCMe-(CF₃)₂]₂ (Mo-F₆) as the metathesis catalyst.²¹ Our strategy would require selective RCM in the presence of an alkenyl halide moiety (10–9).

Initial metathesis in a multiply unsaturated substrate usually occurs at the less substituted alkene,²¹ suggesting that intermolecular alkylidene exchange should occur first at the terminal (monoalkyl-substituted) alkene in **10**, followed by RCM onto the proximal enol ether. Tolerance of alkenyl halide functionality during metathesis was unknown at the start of our work. During the course of our studies Kirkland and Grubbs reported that attempted RCM of a 2-bromohepta-1,6-diene using Mo-F₆ or (PCy₃)₂Cl₂Ru=CHPh gave no cyclic product, only starting diene and alkylidene decomposition products were detected.²² Also, Nicolaou and co-workers recently demonstrated that a 2,2-dialkyl-1-iodoalkene survived RCM using (PCy₃)₂Cl₂Ru=CHPh.²³ We first investigated RCM selectivity with trienes **14** (Scheme 5).

Scheme 5 Reagents and conditions: i, B-I-9-BBN, hexane– CH_2Cl_2 , 0 °C, 18 h, then AcOH, 1 h; ii, pentenyl- or hexenylMgBr, Et₂O–benzene, 25 °C, 22 h, then 2 M HCl; iii, CH_2Br_2 , Zn, cat. PbCl₂. TiCl₄, THF, 25 °C, 18 h; iv, Mo-F₆ (12 mol%), pentane, 25 °C, 5 h.

Trienes 14 were prepared in three steps from commercially available hex-5-ynenitrile **11** via iodoboration (74%),²⁴ reaction of the resultant alkenyl iodide 12 with either pent-4-enyl- or hex-5-enylmagnesium bromide (61% and 58%, respectively) and finally methylenation of the resulting ketones 13 under conditions described by Takai and co-workers (88% and 92%).25 Reaction of triene 14b with (PCy₃)₂Cl₂Ru=CHPh under preferred conditions for RCM²² resulted only in dimerisation [44% (E: Z = 73: 27), 61% based on recovered triene **14b**, see Experimental section] arising from metathesis at the terminal (monoalkyl-substituted) alkene. Very recently, Grubbs has reported an imidazolinylidene-Ru catalyst which may be more effective.²⁶ However, using commercially available $Mo-F_6$ we were pleased to observe smooth RCM of trienes 14 to give cycloalkenes 15 (83%). Following the recent demonstration by Grigg and coworkers of RCM-intramolecular Heck reactions using aryl halides,²⁷ our results suggest that tandem RCM-intramolecular Heck reactions using tethered alkenyl halide functionality may also be possible.

In order to examine the synthesis of the substituted (-)-dienone 1 (R = Prⁱ) using the RCM step outlined in Scheme 4, the alcohol 18 was first prepared as a single enantiomer (by

Mosher's ester analysis)²⁸ starting with allylation of the known *N*-isovaleryloxazolidinone 16,²⁹ which gave a single alkene diastereomer 17 (88%) (Scheme 6).

Scheme 6 Reagents and conditions: i, LDA, allyl iodide, THF, -78 °C to 25 °C, 3 h; ii, H₂O₂, LiOH, THF, H₂O, 0 °C to 25 °C, 5 h, then Na₂SO₃; then LiAlH₄, Et₂O, 0 °C, 2 h; iii, hex-5-ynoic acid, DCC, cat. DMAP, CH₂Cl₂, 25 °C, 4 h: iv, *B*-I-9-BBN, pentane, -25 °C, 2 h, then AcOH, 1 h; v, CH₂Br₂, Zn, cat. PbCl₂, TiCl₄, TMEDA, THF, 25 °C, 3.5 h; vi, Mo-F₆ (12 mol%), pentane, 25 °C, 3 h; vii, 2 M HCl, THF, 25 °C, 2 h, then PCC, SiO₂, CH₂Cl₂, 25 °C, 3 h; viii, see text.

Alkene 17 was converted to the alcohol 18 by reaction with $LiOOH\text{--}Na_2SO_3{}^{30}$ to give the intermediate crude acid (96%) [with concomitant recovery (88%) of the chiral auxiliary] followed by reduction with LiAlH₄ (50%). Esterification of the alcohol 18 with commercially available hex-5-ynoic acid to give alkyne 19 (89%), was followed by chemoselective iodoboration²⁴ to give on protonolysis, the alkenyl iodide **20** (90%). Ester methylenation²⁵ of iodide **20** gave the desired substrate for RCM, triene 21 (58%). Pleasingly, RCM of triene 21 (0.06 M in pentane) using Mo- F_6 gave the desired dihydropyran 22 (44%). Due to its sensitive nature, the crude dihydropyran 22 was best converted directly into the aldehyde 23 (55% from triene 21). Homologation of the aldehyde 23 using our original stannylation conditions² gave the stannane 24 (59%); terminal (monoalkyl-substituted) alkene signals could also be clearly observed in the crude ¹H NMR spectrum and were assigned to simple methylenation of the aldehyde (ca. 30%), as in the nor-Prⁱ system.

Although our original method for preparing (E)-alkenylstannanes in one step from aldehydes using Bu₃SnCHBr₂ in THF with LiI and DMF as additives² has found utility in other syntheses,31 it suffers from cogeneration of simple aldehyde methylenated product, as observed with aldehydes 5 and 23 above. As stated previously,² our initial studies with benzaldehyde originally led to the adoption of CrCl₂-Bu₃SnCHBr₂ in THF with LiI and DMF as additives as the preferred method for aldehyde homologation, since this led exclusively to the (E)-alkenylstannane, whereas CrCl₂-Bu₃SnCHBr₂ in DMF was less stereoselective (E:Z=87:13, by ¹H NMR); however, styrene was only observed as a by-product in the former reaction. On further investigation we found that reaction of nonanal (as a representative aliphatic aldehyde) with CrCl₂-Bu₃SnCHBr₂ in DMF (25 °C, 2.5 h) gives only (E)-alkenylstannane³² (78% vs. 60% reported² in our original study); addition of LiI did not lead to an improvement in yield (75%), however further improvement (85 and 89%, two runs) was observed using Bu₃SnCHI₂ in DMF (Scheme 7);³³ Bu₃SnCHI₂

Scheme 7 Reagents and conditions: i, Bu₃SnCHI₂, CrCl₂, DMF, 25 °C, 3 h.

in THF or THF with DMF as an additive were less effective. Bu_3SnCHI_2 was prepared in quantitative yield from $Bu_3SnCHBr_2^2$ using NaI in acetone and was used directly without further purification and within one week of its preparation. It is important to minimize exposure of this reagent to light.³⁴

Compared with our previous results,² the use of Bu₃SnCHI₂ in DMF also resulted in shorter reaction times and gave significantly improved yields of (E)-alkenylstannanes for cyclohexanecarbaldehyde (80% vs. 62%) and methyl 6-oxohexanoate (82% vs. 61%). However, the yield of stannane from hex-5ynal (59%) was essentially unchanged compared with that reported under the original conditions (60%);² the lack of improvement in yield in this case may suggest competing chromium(II)-mediated reduction of the triple bond in DMF (CrCl₂ is a stronger reducing agent in DMF compared to THF).³ We had also found that hex-5-ynal gave a noticeably lower yield (38%) than most other aldehydes examined (64-94%) yields) in our chromium(II)-mediated synthesis of 1,1-bis-(trimethylsilyl)alkenes in DMF.³⁵ Although aliphatic aldehydes gave only (E)-alkenylstannanes under the modified conditions, the erosion in stereoselectivity seen with benzaldehyde on moving from THF to DMF (E: Z = 76: 24, with CrCl₂-Bu₃SnCHI₂ in DMF) was also paralleled with 3-methylbut-2-enal. Whilst 1,2-addition is observed with α , β -unsaturated aldehydes in chromium(II)-mediated olefinations, the stereoselectivity for the E-isomer is usually slightly lower than that seen with aliphatic (and aromatic) aldehydes.^{3,36,37} We reported 3-methylbut-2-enal gave 1-(tributylstannyl)-3-methylpenta-1,3-diene (58%) as a mixture of geometrical isomers (E:Z=83:17) under the original conditions;² using the modified conditions 77% yield of stannyldiene was obtained (E:Z = 58:42). Under the new conditions improved aldehyde selectivity was also apparent, as cyclododecanone was recovered unchanged after 5 h (96%), whereas we had previously found that it was partially methylenated (45%, 73% based on recovered ketone) using Bu₃Sn-CHBr₂ in THF with LiI and DMF as additives.²

Our present results together with our earlier studies indicate that revision is necessary of our suggestion² regarding the origin of the methylenated material observed in THF with DMF as an additive. Chromium(II)-mediated olefinations using gem-dihalides are generally accepted as proceeding via gemdichromium species.³ The present observations in preparing stannanes together with our earlier studies are consistent with the methylenated material observed (in THF with DMF as an additive) as arising from competitive formation of CH₂-(CrHal₂)₂ [along with the desired Bu₃SnCH(CrHal₂)₂] during chromium(II)-mediated reduction of Bu₃SnCHHal₂. CH₂-(CrHal₂)₂ would be anticipated to be a selective reagent for aldehydes, but also able to react with ketones. For example, reaction of dodecanal with CH₂I₂ using CrCl₂ in THF with DMF as an additive is known to give tridec-1-ene (73%),³⁷ and we find that cyclododecanone is similarly methylenated (59%, 85% based on recovered ketone). Although related chromium(II)-mediated alkylidenations of cyclododecanone have also been observed,37 reaction with Me₃SiCHBr₂ under conditions (CrCl₂, THF) which produce (E)-alkenylsilanes from aldehydes [presumably via Me₃SiCH(CrHal₂)₂] is known to result in quantitative recovery of cyclododecanone;³⁸ the evidence brought together in the present paper suggests that Bu₃SnCH(CrHal₂)₂ is similarly aldehyde selective. Partial generation of CH₂(CrHal₂)₂ from Bu₃SnCHBr₂ using CrCl₂ would then explain why cyclododecanone is methylenated using Bu₃SnCHBr₂ in THF with DMF as an additive to approximately the same level as an aldehyde but with no alkenylstannane observed; it is possible that some CH₂(CrHal₂)₂ is also formed from $Bu_3SnCHHal_2$ in DMF but has too short a lifetime in this solvent ^{3,37} to react with a carbonyl compound. Consistent with this last suggestion we find that attempted reaction of cyclododecanone with CH_2I_2 using $CrCl_2$ in DMF gives quantitative recovery of the ketone.

Application of the new stannylation conditions to aldehyde 23 gave the stannane 24 in improved yield (66%, Scheme 8);

Scheme 8 Reagents and conditions: i, Bu₃SnCHI₂, CrCl₂, DMF, 25 °C, 3.5 h; ii, cat. Pd₂dba₃, AsPh₃. NMP, 70 °C, 6 h.

no methylenated material was observed in the crude ¹H NMR. The yield of stannane **24** could be further improved to 74% by doubling the quantities of reagents used.

Intramolecular cross-coupling of stannane 24 under the conditions used for the nor-isopropyl substrate gave the substituted (-)-dienone **25** {62%, $[a]_{\rm D}^{25}$ -310 (c 1.22 in hexane), lit., ¹⁰ $[a]_{\rm D}^{22}$ -362 (c 1.22 in hexane)}, which constitutes a formal synthesis of (-)-periplanone-B. The apparent optical purity (86%) of substituted (-)-dienone 25 led us to attempt to determine its enantiomeric purity with greater confidence using chiral chromatography. For this study a sample of aldehyde 23 was deliberately partially racemised [AcOH (2 mol dm⁻³ in H₂O), THF, 25 °C, 18 h] and carried through to dienone 25 $\{[a]_{D}^{25} - 236\}$ (c 1.22 in hexane). Accurate determination of the enantiomeric purity of germacrene-D (by derivatisation to an alcohol) was recently reported by HPLC analysis using a Daicel Chiralcel OD column.³⁹ However, we found that for dienone 25 no resolution whatsoever could be observed using a variety of chiral GC and HPLC columns and conditions. Resolution (close to baseline) was only achieved using a β-cyclodextrin (cyclobond I) HPLC column which gave the ee of the substituted (-)-dienone 25 to be 93% (the ee of the partially racemised material was 71%). Success with the β -cyclodextrin column may be due to the 6.0-8.0 Å internal diameter of β -cyclodextrin, which would be a suitable size for complexing the dienone 25.40

As the dienone 25 was derived from the alcohol 18 which had been determined to be enantiomerically pure (by Mosher's ester analysis), we considered that slight reduction in enantiomeric purity of substituted (-)-dienone 25 compared with alcohol 18 could arise during preparation and/or Cr(II)-coupling of the aldehyde 23. Oxidation of primary alcohols bearing an α-stereogenic centre with tetrapropylammonium perruthenate (TPAP) is known to give aldehydes without loss of enantiomeric purity.⁴¹ Using 5 mol% TPAP (with NMO, 4 Å powdered molecular sieves in CH₂Cl₂-MeCN, 25 °C, 12 h) in the preparation of aldehyde 23, though lower yielding [67% from crude (ca. 50% pure) dihydropyran 22], resulted in a slight rise in specific rotation {from $[a]_{D}^{25}$ +16.7 (c 1.0 in CHCl₃) to $[a]_{D}^{26}$ +18.2 $(c 0.5 \text{ in CHCl}_3)$. However, given the uncertainty over drawing conclusions from small changes in low optical rotation values, we also focused on the possible reduction of enantiomeric purity in the chromium(II)-mediated olefination step $(23\rightarrow 24)$.

Under the original stannylation conditions we had previously established that (*R*)-glyceraldehyde acetonide could be converted into the corresponding stannane in \geq 95% ee.² However, an α -alkyl-substituted aldehyde could potentially show reduced tolerence. For example, Burke *et al.* have observed partial epimerisation of such centres in chromium(II)-mediated syntheses of (*E*)-alkenylsilanes from aldehydes.⁴² We first established that (*S*)- α -methylbutyraldehyde **26** (prepared from the corresponding commercially available alcohol by Swern oxidation)⁴³ could be converted without loss of enantiomeric purity to the corresponding stannane **27** {80%, [*a*]₂²⁴ +14.7 (*c* 1.0 in CHCl₃)} under the new stannylation conditions (Scheme 9) {using the original

Scheme 9 Reagents and conditions: i, Bu₃SnCHI₂, CrCl₂, DMF, 25 °C, 3 h; ii, MPTA-Cl, cat. Pd₂dba₃, P(2-furyl)₃, THF, 55 °C, 3 h.

stannylation conditions a similar specific rotation, $[a]_D^{24} + 14.0$ (*c* 1.0 in CHCl₃), was observed but the yield was lower (50%)}. The enantiomeric purity was determined by Pd-catalysed crosscoupling of the stannane **27** with (*S*)-Mosher's acid chloride and inspection of the ¹H NMR alkenyl regions of the resulting enone **28**. Racemic stannane **27** gave a 1 : 1 diastereomeric mixture of enones **28** indicating that during the reactions there was no preference for the formation (or destruction) of a particular diastereomer.

As a structurally closer example to aldehyde **23**, ketoaldehyde **31** was also examined to see if the ketone group promoted racemisation (Scheme 10).

Scheme 10 Reagents and conditions: i, O₃, MeOH, -65 °C, then Me₂S; ii, Bu₃SnCHI₂, CrCl₂, DMF, 3 h; iii, MPTA-Cl, cat. Pd₂dba₃, P(2-furyl)₃, THF, 55 °C, 3 h.

The starting material for the synthesis of ketoaldehyde **31** was commercially available (*S*)-(+)- β -citronellene **29**, whose ee was determined to be 90% following a literature procedure (hydroboration to give β -citronellol and chiral GC analysis of the corresponding trifluoroacetate).⁴⁴ Ozonolysis of the known ketoalkene **30**, derived in two steps from citronellene **29**,⁴⁵ gave the ketoaldehyde **31** (94%),⁴⁶ for which no loss of enantiomeric purity was observed [using the above cross-coupling method with racemic and (*S*)-Mosher's acid chlorides] on stannylation (68%). We conclude that α -alkyl-substituted aldehydes can be used in chromium(II)-mediated synthesis of (*E*)-alkenylstannanes without compromising enantiomeric purity (at least within the limits of the detection methods used here), and that slight reduction in enantiomeric purity of substituted (-)-dienone 25 compared with alcohol 18 arises during the oxidation to aldehyde 23.

In summary, we have demonstrated the tolerance of alkenyl halide functionality in RCM, developed a modified chromium(II)-mediated method for (*E*)-alkenylstannylation of aldehydes (which should be particularly useful with synthetically valuable aldehydes in complex molecule synthesis) and used this chemoselectivity in a Stille cyclisation strategy resulting in a formal synthesis of (-)-periplanone-B.

Experimental

General details

All reactions requiring anhydrous conditions were conducted in flame-dried apparatus under an atmosphere of argon. Syringes and needles for the transfer of reagents were dried at 140 °C and allowed to cool in a desiccator over P2O5 before use. Ethers were distilled from sodium benzophenone ketyl; (chlorinated) hydrocarbons, and amines from CaH_2 . DMF was dried (MgSO₄) and then distilled under reduced pressure. Internal reaction temperatures are reported unless stated otherwise. Reactions were monitored by TLC using commercially available glass-backed plates, pre-coated with either a 0.25 mm layer of SiO₂ containing a fluorescent indicator (Merck), or a 0.2 mm layer of octadecylsilane bonded silica containing a fluorescent indicator (Whatman). Column chromatography was carried out either on Kieselgel 60 (40-63 µm), or on Preparative C-18 (55-105 µm, Millipore). Light petroleum refers to the fraction with bp 40–60 °C. $[a]_D$ Values are given in $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$. IR spectra were recorded as thin films unless stated otherwise. Peak intensities are specified as strong (s), medium (m) or weak (w). ¹H and ¹³C NMR spectra were recorded in CDCl₃ unless stated otherwise with Varian Gemini 200, Bruker AC200, Bruker WM250, Bruker WH300, JEOL EX400, Bruker AM500 or Bruker AMX500 spectrometers. Chemical shifts are reported relative to CHCl₃ [$\delta_{\rm H}$ 7.26, $\delta_{\rm C}$ (central line of t) 77.0]. Coupling constants (J) are given in Hz. HPLC retention times for major $(t_R mj)$ and minor $(t_R mn)$ enantiomers are given in min.

6-(4-Iodopent-4-en-1-yl)-3,4-dihydro-2H-pyran 4

ButLi (1.7 mol dm⁻³ in cyclohexane; 100 cm³, 170 mmol] was added dropwise to a well-stirred solution of 3,4-dihydropyran (14.617 g, 174 mmol) in THF (25 cm³) at -78 °C. The reaction mixture was allowed to warm to room temperature for 10 min, before being recooled to 0 °C. This solution was then added dropwise by cannula to a stirred solution of 2,5-diiodopentene 3^{11,47} (12.161 g, 38 mmol) in THF (20 cm³) at 0 °C over a period of 30 min. Saturated aq. NH₄Cl (5 cm³) was then added cautiously to the reaction. The solvents were removed by evaporation under reduced pressure and the resulting residue was extracted with Et₂O (3×100 cm³). The combined organic layers were washed with brine (50 cm³), dried (Na₂SO₄) and evaporated under reduced pressure. Purification of the residue by bulb-to-bulb distillation, first at 70 °C/0.5 mmHg and then at 120 °C/0.5 mmHg afforded a colourless oil, the dihydropyran 4 (4.849 g, 46%): $R_{\rm f}$ 0.25 (light petroleum); $v_{\rm max}({\rm neat})/{\rm cm}^{-1}$ 3310m, 2927s, 2852s, 1717m, 1674s, 1616m, 1086m, 1064s and 891m; $\delta_{\rm H}$ (300 MHz) 6.01 (1H, s, CHH=CI), 5.70 (1H, s, CHH=CI), 4.48 (1H, br t, J 3, CHCO), 3.97 (2H, dd, J 5 and 5, CH₂O), 2.41 (2H, t, J7, =CICH₂), 2.02–1.98 (4H, m, CH₂CH₂O and CCH₂) and 1.82-1.63 (4H, m, CCH₂CH₂ and CH₂CHCO); $\delta_{\rm C}(75 \text{ MHz})$ 153.4 (=CO), 125.4 (CH₂=), 112.8 (=CI), 95.8 (CH=), 66.0 (CH₂O), 44.5 (CH₂CI), 32.6 (OCCH₂), 26.2 (CH₂), 22.4 (CH₂) and 20.2 (CH₂); m/z (thermospray) 275 (100%), 211 (5), 195 (5) 168 (5) and 151 (10) (Found: (M + H⁺, 279.0246. C₁₀H₁₆IO requires M, 279.0246).

9-Iodo-5-oxodec-9-enal 5

Aq. HCl (1 mol dm⁻³, 15 drops) was added to a stirred solution of dihydropyran 4 (4.849 g, 17.4 mmol) in wet THF (20 cm³). After stirring for 1 h, NaHCO₃ (0.5 g) and MgSO₄ (2 g) were added and the reaction mixture was filtered and evaporated under reduced pressure. The residue was dissolved in CH2Cl2 (10 cm³) and added slowly dropwise to a stirred slurry of PCC (7.517 g, 34.9 mmol) and SiO₂ (7.5 g) in CH₂Cl₂ (15 cm^3) . After 1 h, the reaction mixture was diluted with Et₂O (50 cm³), filtered through a pad of Florisil® and evaporated under reduced pressure. Purification of the residue by column chromatography (50% Et₂O-light petroleum) gave a colourless oil, the ketoalde*hyde* **5** (3.137 g, 58%); $R_{\rm f}$ 0.23 (50% Et₂O–light petroleum); $v_{\rm max}$ (neat)/cm⁻¹ 2949s, 2895s, 1710s, 1615m, 1429m, 1409m, 1374m, 1198m, 1105m and 898m; $\delta_{\rm H}(300~{\rm MHz})$ 9.75 (1H, s, CHO), 6.02 (1H, d, J 1, CHH=CI), 5.72 (1H, s, CHH=CI), 2.46 [4H, t, J 7, (CH₂)₂CO], 2.42 (2H, t, J 7, CH₂CHO), 2.40 (2H, t, J 7, =CICH₂), 1.90 (2H, quintet, J 7, CH₂) and 1.80 (2H, quintet, J7, CH₂); δ_c(75 MHz) 209.3 [(CH₂)₂CO], 201.7 (CHO), 126.1 (CH₂=), 111.2 (=CI), 44.1 (=CICH₂), 42.8 (CH₂CO), 41.3 (CH₂CO), 40.5 (CH₂CO), 22.7 (CH₂) and 15.9 (CH₂); m/z (thermospray) 312 (100%), 259 (35), 278 (10), 196 (5) and 167 (10) (Found: $M + NH_4^+$, 312.0461. $C_{10}H_{19}INO_2$ requires M, 312.0461).

(E)-11-(Tributylstannyl)-2-iodoundeca-1,10-dien-6-one 6

Dry, deoxygenated DMF (0.78 ml, 10 mmol) was added dropwise to a well-stirred slurry of CrCl₂ (Aldrich, 95% w/w pure; 1.33 g, 10 mmol) in dry, deoxygenated THF (16 cm³) under argon at room temperature. After 15 min a mixture of ketoaldehyde 5 (0.294 g, 1.0 mmol) and $Bu_3SnCHBr_2^2$ (926 mg, 2 mmol) in dry, deoxygenated THF (4 cm³) was added dropwise to the reaction mixture. The flask was covered with aluminium foil to exclude light and then anhydrous LiI (1 mol dm⁻³ in dry, deoxygenated THF; 4 cm³, 4 mmol) was added dropwise. After 40 h at room temperature, water (30 cm³) was added and the mixture was extracted with light petroleum $(3 \times 20 \text{ cm}^3)$. The combined organic layers were washed with water (20 cm³), brine (20 cm³), dried (MgSO₄), and evaporated under reduced pressure. The residue was purified by reversed-phase flash chromatography (C-18, 5% CH2Cl2-MeCN). First to elute was a colourless oil, the stannane 6 (0.351 g, 60%); $R_{\rm f}$ 0.20 (C-18 reversed-phase, 5% CH₂Cl₂–MeCN); $v_{max}(neat)/cm^{-1}$ 2956s, 2925s, 2871s, 2851s, 1716s, 1616m, 1599m, 1415m, 1375m and $1072w; \delta_{H}(300 \text{ MHz}) 6.06 (1\text{H}, \text{s}, CHH=CI), 5.93-5.92 (2\text{H}, \text{m}, \text{s})$ CH=CHSn), 5.75 (1H, s, CHH=CI), 2.43 [6H, br, (CH₂)₂C=O and =CICH2], 2.18-2.14 (2H, m, CH2CH=CHSn), 1.82 (2H, quintet, J 7, CH₂), 1.69 (2H, quintet, J 7, CH₂), 1.58-1.42 [6H, m, Sn(CH₂CH₂)₃], 1.41–1.26 [6H, m, Sn(CH₂CH₂CH₂)₃] and 1.05-0.71 [15H, m, Sn(CH₂CH₂CH₂Me)₃, incl. at 0.92 (9H, t, J 7, $3 \times Me$)]; δ_{c} (75 MHz) 210.3 (C=O), 148.2 (CH=CHSn), 128.5 ($J_{119Sn-C}$ 386, $J_{117Sn-C}$ 375, =CHSn), 126.0 (CH₂=), 111.3 (=CI), 44.2 (CH₂), 41.9 (CH₂), 40.5 (CH₂), 37.0 (CH₂), 29.0 $[J_{\text{Sn-C}} 19, \text{Sn}(\text{CH}_2\text{CH}_2)_3], 27.2 [J_{\text{Sn-C}} 52, \text{Sn}(\text{CH}_2\text{CH}_2\text{CH}_2)_3], 22.8$ (CH₂), 22.6 (CH₂), 13.6 (3 × Me) and 9.4 [$J_{119Sn-C}$ 330, $J_{117Sn-C}$ 316, Sn(CH₂)₃]; m/z (thermospray) 582 (10%), 350 (10), 323 (40), 307 (45), 291 (100) and 287 (30) (Found: $M + H^+$, 583.1460. C₂₃H₄₄IO¹²⁰Sn requires M, 583.1459].

Second to elute was a colourless oil, (E)-10-(tributyl-stannyl)-2-iodo-6-methyleneundeca-1,10-diene, (0.047 g, 8%); $R_{\rm f}$ 0.16 (C-18 reversed-phase, 5% CH₂Cl₂–MeCN); $v_{\rm max}$ (neat)/cm⁻¹ 2955s, 2928s, 2871s, 2853s, 1642m, 1616m, 1598m, 1457m, 987m and 891m; $\delta_{\rm H}$ (250 MHz) 6.02 (1H, d, J 1, CHH=CI), 5.95 (1H, t, J 5, CH=CHSn), 5.92 (1H, s, $J_{1198n-H}$ 78, $J_{1178n-H}$ 75, =CHSn), 5.71 (1H, s, CHH=CI), 4.75 [2H, d, J 3, (CH₂)₂C= CH₂], 2.40 (2H, t, J 7, =CICH₂), 2.15 (2H, td, J 7 and 5, CH₂CH=), 2.03 [4H, t, J 7, (CH₂)₂C=CH₂], 1.67 (2H, quintet, J 7, CH₂), 1.58–1.46 [8H, m, CH₂ and Sn(CH₂CH₂)₃], 1.39–1.26 (6H, m, 3 × CH₂Me) and 0.93–0.85 [15H, m, Sn(CH₂CH₂-

CH₂*Me*)₃, incl. at 0.90 (9H, t, *J* 7, $3 \times Me$)]; $\delta_{C}(100 \text{ MHz})$ 149.2 (CH=CHSn), 148.8 [(CH₂)₂C=CH₂], 127.5 (*J*_{119Sn-C} 398, *J*_{117Sn-C} 379, =CHSn), 125.4 (CH₂=CI), 112.3 (=CI), 109.4 [(CH₂)₂C=CH₂], 44.7 (CH₂), 37.4 (CH₂), 35.2 (CH₂), 34.2 (CH₂), 29.6 (CH₂), 29.0 [*J*_{Sn-C} 21, Sn(CH₂CH₂)], 27.2 (*J*_{Sn-C} 53, $3 \times CH_2$ -Me), 26.9 (CH₂), 13.7 ($3 \times Me$) and 9.3 [*J*_{119-C} 342, *J*_{117Sn-C} 325, Sn(CH₂)₃]; *m*/*z* (EI) 483 (5%), 348 (20), 323 (60), 308 (70), 291 (100) and 165 (10) (Found: M – Bu⁺, 523.0844. C₂₀H₃₆I¹²⁰Sn requires *M*, 523.0884).

Fractions collected before elution of compound 6 were combined and evaporated under reduced pressure to give a residue which was purified by column chromatography (SiO₂, 15%) Et₂O-light petroleum) to give a colourless oil, 2-iodoundeca-1,10-dien-6-one (0.056 g, 19%); Rf 0.35 (15% Et₂O-light petroleum); v_{max}(neat)/cm⁻¹ 2929s, 2854m, 1712s, 1638m, 1616m, 1433m, 1410m, 1371m, 911m and 897m; $\delta_{\rm H}$ (250 MHz) 6.02 (1H, t, J1, CHH=CI), 5.80-5.73 (1H, m, CH=CH₂), 5.72 (1H, s, CHH=CI), 5.06 (1H, ddt, J 12, 1 and 1, CH=CHH), 4.99-4.96 (1H, m, CH=CHH), 2.42-2.38 [6H, m, (CH₂)₂CO and CH2=CICH2], 2.06 (2H, dt, J7 and 7, CH2CH=CH2), 1.80 (2H, quintet, J 7, CH₂) and 1.69 (2H, quintet, J 7, CH₂); $\delta_{\rm C}$ (75 MHz) 210.2 (C=O), 137.8 (CH2=CH), 126.1 (CH2=CI), 115.2 (CH2= CH), 111.3 (=CI), 44.1 (=CICH₂), 41.8 (CH₂CO), 40.5 (CH₂-CO), 33.0 (CH₂CH=), 29.6 (CH₂) and 22.8 (CH₂); m/z (thermospray) 310 (100%), 292 (15), 279 (10), 182 (5) and 151 (10) (Found: $M + NH_4^+$, 310.0668. $C_{11}H_{21}INO$ requires M, 310.0668).

(E)-5-Methylenecyclodec-6-en-1-one 7

Pd₂dba₃ (Aldrich, 7 mg, 0.01 mmol) was added to a stirred solution of the stannane 6 (200 mg, 0.34 mmol) and AsPh₃ (70 mg, 0.23 mmol) in degassed NMP (40 cm³) at 25 °C under N₂. The reaction vessel was then wrapped in aluminium foil to exclude light, and heated to 70 °C. After 12 h the reaction mixture was cooled, diluted with water (50 cm³) and extracted with Et_2O (3 × 30 cm³). The combined organic layers were washed with aq. $CuSO_4$ (1 mol dm⁻³; 2 × 20 cm³), brine (20 cm³), dried (MgSO₄) and evaporated under reduced pressure. The crude oil was diluted with 10% $Et_2O\text{-pentane}\ (0.5\ cm^3).\ DBN^{48}\ (0.1\ cm^3)$ was then added and the resultant mixture was purified by column chromatography (10% Et₂O-pentane) to give a colourless oil, the dienone 7 (0.054g, 96%); R_f 0.27 (10% Et₂Opentane); $\delta_{\rm H}(250 \text{ MHz}) 6.10 (1\text{H}, \text{d}, J 16, \text{CH=CHC}), 5.36 (1\text{H}, J 16, \text{CH=CH$ dt, J 16 and 7, CH=CHC), 4.88 (1H, s, CC=HH), 4.86 (1H, s, CC=HH) and 2.51–1.95 (12H, m, $6 \times CH_2$); δ_c (75 MHz) 212.8 (C=O), 146.5 (C=CH₂), 133.9 (CH=CH), 132.7 (CH=CH), 113.2 (C=CH₂), 42.8 (CH₂CO), 42.2 (CH₂CO), 33.1 (CH₂), 30.4 (CH₂), 27.5 (CH₂) and 23.9 (CH₂). UV, IR, ¹H NMR and MS data were consistent with those previously reported.⁴⁹

5-Iodohex-5-enenitrile 12

Hex-5-ynenitrile 11 (2.57 cm³, 24.5 mmol) was added dropwise to a stirred solution of B-I-9-BBN [(Aldrich) 1 mol dm⁻³ in hexane; 54 cm³, 54 mmol] in CH_2Cl_2 (100 cm³) at 0 °C. The reaction mixture was then allowed to reach room temperature over 18 h, then cooled to 0 °C and glacial AcOH (30 cm³) added slowly. After 1 h at 0 °C, NaOH (3 mol dm⁻³ in H₂O; 150 cm³) and then H₂O₂ (30% w/w in H₂O, 45 cm³) were carefully added and the reaction stirred for 30 min at room temperature. The organic layer was separated and the remaining aqueous layer was extracted with light petroleum ($6 \times 100 \text{ cm}^3$). The combined organic extracts were washed successively with H_2O (50) cm^3), saturated aq. NaHCO₃ (40 cm³), saturated aq. Na₂SO₃ (25) cm³), H₂O (40 cm³) and brine (25 cm³), dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by bulb-to-bulb distillation (75°C/1 mmHg) gave a light yellow oil, the alkenyl iodide 12 (3.99 g, 74%); R_f 0.56 (10% Et₂O–light petroleum); v_{max}(neat)/cm⁻¹ 2936s, 2247s, 1728m, 1618s, 1453m, 1428m, 1196s, 1185s, 1113s and 901s; $\delta_{\rm H}(200 \text{ MHz})$ 6.16 (1H, d,

J 1, CHH=CI), 5.79 (1H, d, J 1.5, CHH=CI), 2.54 (2H, t, J 7, =CICH₂), 2.35 (2H, t, J 7, CH₂CN) and 1.87 (2H, quintet, J 7.0, CH₂CH₂CN); $\delta_{\rm C}$ (50 MHz) 127.9 (CH₂=CI), 119.0 (CN), 108.8 (CH₂=CI), 43.3 (=CICH₂), 24.4 (CH₂CN) and 15.4 (CH₂CH₂-CH₂); *m*/z (EI) 221 (M⁺, 50%), 127 (15) and 94 (52) (Found: M⁺, 220.9702. C₆H₈IN requires *M*, 220.9702).

2-Iodoundeca-1,10-dien-6-one 13a

Alkenyl iodide 12 (1.00 g, 4.5 mmol) in Et₂O (3 cm³) was added to a stirred solution of pent-4-enylmagnesium bromide [prepared from Mg (0.440 g, 18.1 mmol) and 5-bromopentene (2.70 g, 18.1 mmol) in Et_2O (15 cm³), then diluted with C_6H_6 (14 cm³)] at room temperature. After 22 h aq. HCl (2.0 mol dm⁻³; 15 cm³) was added and after a further 2 h at room temperature the organic layer was separated and the aqueous layer was extracted with Et_2O (6 × 20 cm³). The combined organic layers were washed with H_2O (2 × 20 cm³), dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by column chromatography (3% Et₂O-light petroleum) gave a colourless oil, the ketone 13a (0.800 g, 61%); Rf 0.40 (10% Et,Olight petroleum); v_{max}(neat)/cm⁻¹ 2932s, 2849w, 1714s, 1641m, 1618m, 1432m, 1410m, 1372m, 1198w, 1167w, 1111w, 998w and 912m; δ_H(200 MHz) 6.03 (1H, d, J 1, CHH=CI), 5.77 (1H, ddt, J 17, 10 and 7, CH=CHH), 5.72 (1H, d, J 1, CHH=CI), 5.07-4.96 (2H, m, CH=CH₂), 2.41 (2H, t, J 8, =CICH₂), 2.40 [4H, t, J 7, (CH₂)C=O], 2.06 (2H, q, J 7, CH₂CH=CH₂) and 1.86-1.61 (4H, 2 × quintet, J 7, 2 × CH₂CH₂CH₂); $\delta_{\rm C}$ (50 MHz) 196.1 (C=O), 137.9 (CH=CH₂), 126.1 (CH₂=CI), 115.2 (CH= CH_2), 112.0 ($CI=CH_2$), 44.2 ($CH_2CI=$), 41.9 ($CH_2C=$ O), 40.6 (CH₂C=O), 33.0 (CH₂CH=CH₂), 22.8 (CH₂CH₂CH₂) and 22.7 $(CH_2CH_2CH_2); m/z$ (CI) 293 (M + H⁺, 5%), 279 (15), 252 (7), 235 (10), 220 (100), 217 (20), 179 (10), 167 (45), 165 (10), 149 (95), 122 (50), 113 (60) and 109 (10) (Found: $M + H^+$, 293.0402. C₁₁H₁₈OI requires M, 293.0402).

2-Iodododeca-1,11-dien-6-one 13b

Following the procedure for the preparation of ketone 13a, but using alkenyl iodide 12 (0.988 g, 4.47 mmol) and 6bromohexene (2.80 g, 17.2 mmol) gave, after purification by column chromatography (3% Et₂O-light petroleum), a colourless oil, the ketone 13b (0.792 g, 58%); R_f 0.50 (10% Et₂O-light petroleum); v_{max}(neat)/cm⁻¹ 2932s, 2857m, 1714s, 1640m, 1617m, 1431m, 1410m, 1372m, 1202w, 1109w, 993m and 909m; $\delta_{\rm H}(200 \text{ MHz}) 6.03 (1 \text{H}, \text{d}, J 1, \text{C}H\text{H=CI}), 5.79 (1 \text{H}, \text{ddt}, J 17,$ 10 and 7, CH=CH₂), 5.73 (1H, d, J 1, CHH=CI), 5.04–4.93 (2H, m, CH=CH₂), 2.40 [6H, t, J 7, =CICH₂ and (CH₂)C=O], 2.06 (2H, q, J 7, CH₂CH=CH₂), 1.79 (2H, quintet, J 7, CH₂CH₂-IC=), 1.59 (2H, quintet, J 7, CH₂CH₂CH=CH₂) and 1.38 (2H, quintet, J 7, CH₂CH₂CH₂CH=CH₂); $\delta_{\rm C}$ (50 MHz) 190.4 (C=O), 138.4 (CH=CH₂) 126.1 (CH₂=CI), 114.7 (CH=CH₂), 111.4 (CI=CH₂), 44.2 (=CICH₂), 42.6 (CH₂C=O), 40.5 (CH₂C=O), 33.5 (CH₂CH=CH₂), 28.4 (CH₂CH₂CH₂), 23.3 (CH₂CH₂CH₂) and 22.9 (CH₂CH₂CH=CH₂); m/z (EI) 179 (M - I⁺, 100%), 123 (10), 109 (7), 95 (15), 83 (20) and 67 (50) (Found: $M - I^+$, 179.1436. C₁₂H₁₉O requires M, 179.1436).

2-Iodo-6-(pent-4-en-1-yl)hepta-1,6-diene 14a

CH₂Br₂ (1.1 cm³, 16 mmol) was added to a stirred suspension of zinc dust (1.86 g, 28.4 mmol) and PbCl₂ (0.40 g, 0.14 mmol) in THF (28 cm³) at room temperature. After 30 min, TiCl₄ (1 mol dm⁻³ in CH₂Cl₂; 3.2 cm³, 3.2 mmol) was added slowly to the reaction mixture at 0 °C and the resulting dark brown solution was stirred at room temperature. After 30 min a solution of ketone **13a** (0.900 g, 3.1 mmol) in THF (3 cm³) was added dropwise to the reaction mixture. After 18 h the mixture was diluted with Et₂O (25 cm³) and the organic layers was washed with aq. HCl (2 mol dm⁻³; 15 cm³), then brine (15 cm³), dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by column chromatography (light petroleum) gave a colourless oil, the triene 14a (0.785 g, 88%); $R_{\rm f}$ 0.82 (10%) Et₂O-light petroleum); v_{max} (neat)/cm⁻¹ 3076m, 2978m, 2935s, 2860m, 1642m, 1618m, 1440m, 1173w, 1108w, 991w, 911m and 891s; δ_H(200 MHz) 6.04 (1H, d, J 1, CHH=CI), 5.84 (1H, ddt, J 17, 10 and 7, CH=CH₂), 5.72 (1H, s, CHH=CI), 5.08-4.95 (2H, m, CH=CH₂), 4.76 (2H, s, C=CH₂), 2.39 (2H, t, J 7, =CICH₂), 2.13–2.00 (6H, m, $2 \times CH_2C$ =CH₂ and CH₂CH= CH₂), 1.66 (2H, quintet, J7, CH₂CH₂CH₂) and 1.54 (2H, quintet, J 7, CH₂CH₂CH₂); δ_C(50 MHz) 148.7 (C=CH₂), 138.7 (CH=CH₂), 125.5 (CH₂=CI), 114.5 (CH=CH₂), 112.3 (CH₂= CI), 109.6 (C=CH₂), 44.7 (=CICH₂), 35.3 (CH₂C=CH₂), 34.3 (CH₂C=CH₂), 33.4 (CH₂CH=CH₂), 27.0 (=CICH₂CH₂) and 26.9 ($CH_2CH_2C=CH_2$); m/z (CI) 308 (M + NH₄⁺, 5%), 291 (5), 218 (100), 173 (12), 163 (25), 149 (20) and 122 (35) (Found: $M + NH_4^+$, 308.0875. $C_{12}H_{23}IN$ requires *M*, 308.0875).

2-Iodo-6-(hex-5-en-1-yl)hepta-1,6-diene 14b

Following the procedure for the preparation of triene 14a, but using ketone 13b (2.93 g, 9.6 mmol) gave after purification by column chromatography (light petroleum) a colourless oil, the *triene* **14b** (2.67 g, 92%); R_f 0.83 (10% Et₂O–light petroleum); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 3076m, 2977m, 2931s, 2857m, 1641m and 1618m, 1439w, 1173w, 1107w, 992w, 910m and 891s; $\delta_{\rm H}(200$ MHz) 6.03 (1H, d, J 1, CHH=CI), 5.82 (1H, ddt, J 17, 10 and 7, CH=CH₂), 5.71 (1H, s, CHH=CI), 5.07-4.92 (2H, m, CH=CH₂), 4.74 (2H, s, C=CH₂), 2.39 (2H, t, J 7, =CICH₂), 2.12-1.98 [6H, m, (CH₂)₂C=CH₂ and CH₂CH=CH₂], 1.66 (2H, quintet, J 7, $CH_2CH_2CH=CH_2$) and 1.58–1.26 (4H, m, 2× CH_2CH_2 -CH₂); $\delta_{\rm C}(50$ MHz) 148.8 (C=CH₂), 138.9 (CH=CH₂), 125.5 (CH₂=CI), 114.3 (CH=CH₂), 112.4 (CH₂=CI), 109.4 (C=CH₂), 44.7 (=CICH₂), 35.7 (CH₂C=CH₂), 34.3 (CH₂C(=CH₂), 33.6 (CH₂CH=CH₂), 28.6 (CH₂CH₂CH=CH₂), 27.2 (=CICH₂CH₂) and 27.0 (CH₂CH₂CH₂); m/z (CI) 305 (M + H⁺, 5%), 233 (15), 232 (100), 177 (25), 173 (30), 149 (20), 124 (35), 122 (100) and 102 (10) (Found: M⁺, 304.0688. C₁₃H₂₁I requires *M*, 304.0688).

Dimerisation of 2-iodo-6-(hex-5-en-1-yl)hepta-1,6-diene 14b

Triene 14b (0.071 g, 0.23 mmol) in CH₂Cl₂ (5 cm³) was added to a stirred solution of bis(tricyclohexylphosphine)benzylideneruthenium dichloride (Strem, 0.010 g, 5 mol%) in CH₂Cl₂ (15 cm³) at room temperature. After 22 h the reaction mixture was exposed to air for 5 h and then evaporated under reduced pressure and the residue purified by column chromatography (light petroleum). First to elute was starting triene 14b (0.020 g). Second to elute was a colourless oil, the *dimer* (0.030 g, 44%, 61% based on recovered triene 14b) (E: Z = 2.7:1, by ¹H NMR analysis of the isomeric =CHs in the δ 5.40–5.37 region); R_f 0.35 (light petroleum); v_{max} (neat)/cm⁻¹ 2929s, 2855m, 1644s, 1617m, 1436m, 968m and 890s; m/z (CI) 598 (10%), 597 (15), 596 (30), 595 (60), 579 (25), 451 (60), 173 (70) and 149 (100) (Found: $M + NH_4^+$, 598.1407. $C_{24}H_{42}I_2N$ requires *M*, 598.1407); data for E-isomer: $\delta_{\rm H}$ (400 MHz) 6.03 (1H, d, J 1, 2 × CHH=CI), 5.71 (1H, s, 2 × CHH=CI), 5.40 (2H, dt, J 4 and 2, CH=CH), 4.75 (2H, d, J 6, C=CH₂), 2.39 (2H, t, J 7, =CICH₂), 2.01 (6H, t, J 7, 2 × CH₂C=CH₂ and CH₂CH=CH), 1.65 (2H, quintet, J 8, $CH_2CH_2CH=CH$) and 1.49–1.32 (4H, m, 2× $CH_2CH_2CH_2$); δ_c(125 MHz) 149.0 (C=CH₂), 130.3 (CH=CH), 125.5 (CH₂=CI), 112.4 (CH₂=CI), 109.4 (C=CH₂), 44.8 (=CICH₂), 35.8 (CH₂C= CH₂), 34.4 (CH₂C=CH₂), 32.4 (CH₂CH=CH), 29.4 (CH₂CH₂-CH=CH), 27.4 (=CICH₂CH₂) and 27.1 (CH₂CH₂CH₂); discernible data for Z-isomer: $\delta_{\rm H}$ (400 MHz) 5.37 (1H, t, J 5, CH=CH); $\delta_{\rm C}(125 \text{ MHz})$ 149.0 (C=CH₂), 129.8 (CH=CH), 35.8 (CH₂C= CH₂), 29.3 (CH₂CH₂CH=CH) and 27.2 (=CICH₂CH₂).

1-(4-Iodopent-4-en-1-yl)cyclopent-1-ene 15a

Triene **14a** (0.650 g, 2.24 mmol) in dry, degassed (freeze–pump– thawed) pentane (20 cm³) was added to a stirred solution of 2,6diisopropylphenylimidoneophylidenemolybdenum bis(hexafluoro-tert-butoxide) (Strem, 0.210 g, 0.27 mmol) in dry, degassed (freeze-pump-thawed) pentane (25 cm³) at room temperature under a gentle flow of argon. The reaction flask was then wrapped in foil to exclude light. After 5 h the reaction mixture was exposed to air for 15 min and then evaporated under reduced pressure. Purification of the residue by column chromatography (light petroleum) gave a colourless oil, the cycloalkene 15a (0.488 g, 83%); R_f 0.57 (light petroleum); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 2937s, 2842s, 1618m, 1428m, 1172m, 1105m, 1040w, 945w, 891s and 816w; $\delta_{\rm H}$ (200 MHz) 6.03 (1H, d, J 1, CHH=CI), 5.71 (1H, s, CHH=CI), 5.36 (1H, t, J 2, CH=C), 2.50-2.21 (6H, m, 2 × CH₂C= and =CICH₂), 2.08 (2H, t, J 7, CH₂C=), 1.84-1.74 (2H, m, CH₂) and 1.67 (2H, quintet, J 7, CH₂); $\delta_{\rm C}(50$ MHz) 143.8 (CH₂C=CH), 125.4 (CI=CH₂), 123.9 (=CH), 112.5 (CI=CH₂), 44.9 (=CICH₂), 35.0 (CH₂C=CH), 32.4 (CH₂C=CH), 29.5 (CH₂CH=C), 27.1 (CICH₂CH₂CH₂) and 23.4 (CH₂CH₂CH₂); m/z (EI) 262 (10%), 261 (100), 259 (15), 175 (15), 151 (25), 149 (25), 134 (15), 133 (65), 122 (30) and 109 (55) (Found: M⁺, 262.0219. C₁₀H₁₆I requires *M*, 262.0219).

1-(4-Iodopent-4-en-1-yl)cyclohex-1-ene 15b

Following the procedure for the preparation of cycloalkene **15a**, but using triene **14b** (0.100 g, 0.33 mmol) gave, after purification by column chromatography (light petroleum), a colourless oil, the *cycloalkene* **15b** (0.075 g, 83%); $R_{\rm f}$ 0.65 (light petroleum); $v_{\rm max}$ (neat)/cm⁻¹ 2930s, 2856s, 2834s, 1617m, 1447m, 1437m, 1108m, 918w and 891s; $\delta_{\rm H}$ (200 MHz) 6.02 (1H, d, *J* 1, CHH=CI), 5.70 (1H, d, *J* 1, CHH=CI), 5.41 (1H, s, CH=C), 2.37 (2H, t, *J* 7, =CICH₂), 1.94 (6H, t, *J* 7, 3 × CH₂C=) and 1.72–1.50 (6H, m, 3 × CH₂); $\delta_{\rm C}$ (50 MHz) 136.9 (CH₂C=CH), 125.3 (CI=*C*H₂), 121.5 (CH=), 112.7 (*C*I=CH₂), 44.8 (=CICH₂), 36.4 (CH₂C=CH), 28.2 (*C*H₂C=CH), 27.0 (CICH₂CH₂CH₂C), 25.2 (CH₂CH=C), 23.0 (CH₂) and 22.5 (CH₂); *m/z* (EI) 149 (M – I⁺, 75%), 121 (5), 108 (35), 93 (57), 81 (100) and 67 (95) (Found: M – I⁺, 149.1330). C₁₁H₁₇ requires *M*, 149.1330).

(4*S*)-3-[(2*S*)-2-(1-Methylethyl)pent-4-enoyl]-4-(phenylmethyl)oxazolidin-2-one 17

 $Bu^{n}Li$ (2.5 mol dm⁻³ in hexanes; 142.0 cm³, 354.8 mmol) was added dropwise to a stirred solution of diisopropylamine (48.4 cm^3 , 369.0 mmol) in THF (160 cm^3) at 0 °C. After 15 min, the solution was cooled to -78 °C and N-isovaleryloxazolidinone 16²⁹ (74.16 g, 283.8 mmol) in THF (100 cm³) was added dropwise. After 1 h at -78 °C, allyl iodide (39.0 cm³, 426 mmol) in THF (36 cm³) was added dropwise, the cooling bath was then removed and the reaction mixture allowed to reach room temperature. After 3 h saturated aq. NH₄Cl (30 cm³) was added cautiously to the reaction mixture, which was then evaporated under reduced pressure. The resulting concentrate was extracted with Et_2O (3 × 300 cm³) and the combined organic layers were washed with H₂O (30 cm³), brine (30 cm³), dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by column chromatography (30% Et₂O-light petroleum) gave a light yellow oil, the alkene 17 (75.07 g, 88%); $R_{\rm f}$ 0.50 (35% Et₂O-light petroleum); $[a]_{D}^{24}$ +67.6 (c 1.0 in CHCl₃); v_{max} (neat)/cm⁻¹ 3029m, 2963s, 1781s, 1695s, 1641w, 1454m, 1386s, 1349s, 1291m, 1208s, 1100m, 1051m, 999m, 917m, 747m and 703s; $\delta_{\rm H}$ (500 MHz) 7.35–7.23 [5H, m, Ar, incl. at 7.33 (2H, t, J 7, 2 × ArH)], 5.88–5.79 (1H, m, CH=CH₂), 5.10 (1H, dd, J 17 and 1, CH=CHH), 5.03 (1H, d, J 10, CH=CHH), 4.72-4.68 (1H, m, NCH), 4.16 (1H, d, J 9, NCHCHHO), 4.14 (1H, d, J 9 and 3, NCHCHHO), 3.87 (1H, ddd, J 11, 7 and 4, NC=OCH), 3.32 (1H, dd, J 13 and 3, CHHPh), 2.65 (1H, dd, J 13 and 10, CHHPh), 2.52–2.38 (2H, m, CH₂CH=CH₂), 2.00 (1H, app. sextet, J 7, CHMe₂), 1.00 (3H, d, J 7, Me) and 0.98 (3H, d, J 7, Me); δ_{c} (125 MHz) 175.8 (OC=O), 153.2 (C=O), 135.6 (CH=CH₂), 135.5 (Ar, quat.), 129.4 (2 × Ar), 128.9 (2 × Ar), 127.3 (Ar), 116.9 (=CH₂), 65.9 (CH₂O), 55.6 (NCH),

48.2 (NC=OCH), 38.0 (CH₂Ar), 33.7 (CH₂CH=CH₂), 30.3 (CHMe₂), 20.9 (Me) and 19.2 (Me); m/z (EI) 301 (M⁺, 35%), 259 (50), 178 (20), 170 (15), 125 (100), 117 (25), 97 (90) and 85 (60) (Found: M⁺, 301.1678. C₁₈H₂₃NO₃ requires M, 301.1678).

(2S)-2-(1-Methylethyl)pent-4-en-1-ol 18

H₂O₂ (35% w/w in H₂O, 66.4 cm³, 684 mmol] was added dropwise to a stirred solution of alkene 17 (25.75 g, 85.4 mmol) in THF (800 cm³) and $\rm H_2O$ (250 cm³) at 0 °C. LiOH (4.1 g, 170 mmol] in H_2O (167 cm³) was added portionwise to the reaction mixture which was then allowed to warm to room temperature. After 5 h the reaction mixture was recooled to 0 °C, and aq. Na_2SO_3 (1.5 mol dm⁻³; 513 cm³, 770 mmol) was added and the reaction mixture was then evaporated under reduced pressure. The resulting concentrate was adjusted to pH 12-13 using aq. NaOH (1.5 mol dm⁻³) and extracted with CH_2Cl_2 (5 × 200 cm³). The combined organic extracts were washed with brine (50 cm³), dried (MgSO₄) and evaporated under reduced pressure to give an off-white solid, the chiral auxiliary, (4S)-4benzyloxazolidin-2-one (13.32 g, 88%). The combined aqueous layers were acidified to pH 1 at 0 °C with aq. HCl (5 mol dm⁻³) and extracted with EtOAc ($5 \times 200 \text{ cm}^3$). The combined organic layers were washed with brine (50 cm³), dried (MgSO₄) and concentrated under reduced pressure to give a light yellow oil, (2S)-2-(1-methylethyl)pent-4-enoic acid⁵⁰ (11.64 g, 96%) which was used in the next stage without further purification; $R_{\rm f}$ 0.20 (35% Et₂O-light petroleum); $[a]_{D}^{24}$ +5.6 (c 1.0 in CHCl₃); v_{max}(neat)/cm⁻¹ 3081m, 2965s, 1707s, 1643w, 1470w, 1440m, 1285m, 1244m, 1212m, 995w and 917m; $\delta_{\rm H}(500~{\rm MHz})$ 5.79 (1H, ddt, J 17, 10 and 7, CH=CH₂), 5.09 (1H, dq, J 17 and 1, cis-CHH=CHCH₂), 5.03 (1H, dd, J 10 and 1, trans-CHH= CHCH₂), 2.39–2.24 (3H, m, CH₂CHC=O), 1.93 (1H, app. sextet, J 7, CHMe₂), 1.00 (3H, J 7, Me) and 0.99 (3H, J 7, Me); δ_C(125 MHz) 180.5 (C=O), 135.6 (CH=CH₂), 116.7 (=CH₂), 52.1 (CH₂CH=CH₂), 33.6 (CHC=O), 30.0 (CHMe₂), 20.2 (Me) and 20.1 (Me); m/z (EI) 143 (M + H⁺, 40%), 125 (35), 100 (75), 99 (100), 97 (30), 55 (60), 43 (45), 41 (40) and 39 (30).

LiAlH₄ (2.76 g, 72.7 mmol) was added portionwise to a stirred solution of the above acid (10.36 g, 72.9 mmol) in Et₂O (520 cm³) at 0 °C. After 2 h H₂O (2.76 cm³), aq. NaOH (15% w/w, 2.76 cm³) and H₂O (8.28 cm³) were cautiously added successively to the reaction mixture. The resulting very thick white precipitate was slowly filtered on a sinter funnel and washed with Et₂O (250 cm³). The filtrate was evaporated under reduced pressure to give a colourless oil, the alcohol 18 (4.70 g, 50%) which was used in the next stage without further purification; $R_{\rm f}$ 0.29 (35% Et₂O-light petroleum); $[a]_{D}^{24}$ +10.1 (c 1.0 in CHCl₃); v_{max} (neat)/cm⁻¹ 3340br, 2959s, 2874s, 1640w, 1467w, 1387w, 1368w, 1043m, 994w and 910m; $\delta_{\rm H}(200~{\rm MHz})$ 5.92–5.71 (1H, m, CH=CH₂), 5.09–4.96 (2H, m, CH=CH₂), 3.62 (1H, d, J 6, CHHOH), 3.55 (1H, s, CHHOH), 2.22-1.94 (2H, m, CH₂CH=CH₂), 1.87-1.71 (1H, m, CHMe₂), 1.49-1.34 (1H, m, CHCHMe₂), 0.89 (3H, d, J 7, Me) and 0.88 (3H, d, J 7, Me); δ_C(50 MHz) 138.2 (CH=CH₂), 115.9 (CH=CH₂), 63.4 (CH₂-OH), 46.3 (CHCHMe₂), 32.7 (CH₂CH=CH₂), 27.6 (CHMe₂), 19.6 (Me) and 19.1 (Me); m/z (CI) 129 (10%), 111 (15), 57 (100) and 43 (15) (Found: M + H⁺, 129.1280. C₈H₁₇O requires M, 129.1279).

(2S)-2-(1-Methylethyl)pent-4-en-1-yl hex-5-ynoate 19

DMAP (0.98 g, 8.0 mmol) was added to a stirred solution of alcohol **18** (9.33 g, 72.8 mmol), hex-5-ynoic acid (8.97 g, 80.0 mmol) and DCC (16.5 g, 80.0 mmol) in CH₂Cl₂ (725 cm³) at room temperature. After 4 h Et₂O (250 cm³) was added and the reaction mixture was filtered through Celite and the precipitate washed with further Et₂O (200 cm³). The combined organic filtrates were evaporated under reduced pressure and the residue was purified by column chromatography (5% Et₂O–light petroleum) to give a colourless oil, the *alkyne* **19** (14.42 g, 89%);

 $R_{\rm f}$ 0.64 (35% Et₂O-light petroleum); $[a]_{\rm D}^{22}$ +9.1 (c 1.0 in CHCl₃); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 3308m, 2961s, 2360w, 1735s, 1641w, 1467w, 1388w, 1370w, 1313w, 1161s, 996w and 915m; $\delta_{\rm H}(200 \text{ MHz})$ 5.77 (1H, ddt, J 17, 10 and 7, CH=CH₂), 5.07-4.99 (2H, m, CH=CH₂), 4.05 (1H, d, J 6, CHHOC=O), 4.04 (1H, d, J 6, CHHOC=O), 2.45 (2H, t, J 7, CH2C=O), 2.27 (2H, td, J 6 and 3, C=CCH₂), 2.21–2.10 (2H, m, CH₂CH=CH₂), 1.98 (1H, t, J 3, C=CH), 1.94-1.65 (3H, m, CH2CH2C=O and CHMe2), 1.64-1.56 (1H, m, CHCHMe₂), 0.92 (3H, d, J7, Me) and 0.90 (3H, d, J 7, Me); δ_c(50 MHz) 173.1 (C=O), 136.9 (CH=CH₂), 116.2 (CH=CH₂), 83.2 (C≡CH), 69.1 (C≡CH), 64.9 (OCH₂), 42.9 (CHCHMe₂), 32.9 (CH₂C=O), 32.8 (CH₂CH=CH₂), 28.0 (CHMe₂), 23.6 (=CCH₂), 19.5 (Me), 19.4 (Me) and 17.8 (CH₂CH₂C=O); *m*/*z* (EI) 223 (10%), 111 (50), 95 (75), 81 (15), 69 (100), 55 (50) and 41 (65) (Found: $M + H^+$, 223.1698. C₁₄H₂₃O₂ requires *M*, 223.1698).

(2S)-2-(1-Methylethyl)pent-4-en-1-yl 5-iodohex-5-enoate 20

Alkyne 19 (7.40 g, 33.3 mmol) in pentane (25 cm³) was added slowly to a stirred solution of B-I-9-BBN [(Aldrich) 1 mol dm⁻³ in hexanes; 73.2 cm³, 73.2 mmol] in *n*-pentane (240 cm³) at -25 °C. After 2 h glacial acetic acid (37 cm³) was added to the reaction mixture which was then stirred at 0 °C. After 1 h aq. NaOH (3 mol dm⁻³; 265 cm³) and H_2O_2 (35% w/w in H_2O , 51 cm³) were cautiously added to the reaction mixture which was then allowed to warm to room temperature. After 30 min the organic layer was separated and the aqueous layer further extracted with light petroleum (5 \times 100 cm³) and Et₂O (1 \times 100 cm³). The combined organic layers were washed with H₂O (20 cm³), saturated aq. NaHCO₃ (20 cm³), saturated aq. Na₂SO₃ (20 cm^3) , H₂O (20 cm^3) , brine (20 cm^3) , dried (MgSO₄) and evaporated under reduced pressure. Purification of the residue by column chromatgraphy (5% Et₂O-light petroleum) gave a light yellow oil, the alkenyl iodide 20 (10.48 g, 90%); $R_{\rm f}$ 0.65 (35% Et₂O-light petroleum); $[a]_{D}^{24}$ +5.7 (c 1.0 in CHCl₃); $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 2959s, 1735s, 1640w, 1617w, 1466w, 1388w, 1369w, 1167s, 1110w, 995w and 912w; $\delta_{\rm H}$ (400 MHz) 6.05 (1H, q, J1, CHH=CI), 5.76 (1H, ddt, J17, 10 and 7, CH=CH₂), 5.74 (1H, d, J 1, CHH=CI), 5.07–5.01 (2H, m, CH=CH₂), 4.07 (1H, dd, J11 and 6, OCHH), 4.02 (1H, dd, J11 and 6, OCHH), 2.44 (2H, t, J7, CH₂C=O), 2.32 (2H, t, J7, CH₂CI=), 2.21–2.13 (1H, m, CHHCH=CH₂), 2.07-1.99 (1H, m, CHHCH=CH₂), 1.89-1.75 (3H, m, CH₂CH₂C=O and CHMe₂), 1.63-1.59 (1H, m, CHCHMe₂), 0.93 (3H, d, J 7, Me) and 0.92 (3H, d, J 7, Me); δ_c(100 MHz) 173.2 (C=O), 136.9 (CH=CH₂), 126.3 (CH₂=CI), 116.3 (CH=CH₂), 110.9 (CH₂=CI), 65.0 (OCH₂), 44.3 (=CICH₂), 43.0 (CHCHMe₂), 32.8 (CH₂C=O), 32.5 (CH₂CH= CH₂), 28.1 (CHMe₂), 24.2 (CH₂CH₂C=O), 19.5 (Me) and 19.4 (Me); *m*/*z* (EI) 351 (M+H⁺, 25%), 222 (15), 195 (10), 113 (80) and 69 (100) (Found: $M + H^+$, 351.0821. $C_{14}H_{24}IO_2$ requires M, 351.0821).

(2S)-[2-(1-Methylethyl)pent-4-en-1-yloxy]-6-iodohepta-1,6diene 21

TiCl₄ (1 mol dm⁻³ in CH₂Cl₂; 3.9 cm³, 3.9 mmol] and TMEDA (1.17 cm³, 7.8 mmol) were successively added slowly dropwise to THF (2.5 cm³) at 0 °C. After 20 min a mixture of zinc dust (0.572 g, 8.75 mmol) and PbCl₂ [(Aldrich) 0.013 g, 0.047 mmol] was added portionwise to the reaction mixture which was then allowed to warm to room temperature. After 30 min a solution of alkenyl iodide **20** (0.227 g, 0.65 mmol) and CH₂Br₂ (0.150 cm³, 2.14 mmol) in THF (1.2 cm³) was added dropwise to the reaction mixture was cooled to 0 °C then Et₃N (1.0 cm³) and saturated aq. K₂CO₃ (1.3 cm³) were added. After 15 min the reaction mixture was filtered through a pad of basic alumina (activity III, 40 g) using 1% Et₃N–Et₂O (100 cm³) as eluent and then evaporated under reduced pressure. Purification of the residue by column chromatography (10% Et₂O–light petroleum) gave a clear col-

ourless oil, the triene 21 (0.131 g, 58%); Rf 0.78 (35% CH₂Cl₂light petroleum with 1% Et₃N); $[a]_{D}^{24}$ +1.5 (c 1.0 in CHCl₃); v_{max}(neat)/cm⁻¹ 2957s, 2929s, 2873m, 1652s, 1617m, 1466w, 1438w, 1282m, 1265m, 1174m, 1071m, 912w, 893w and 798m; δ_H(500 MHz) 6.08 (1H, d, J 1, CHH=CI), 5.84 (1H, ddt, J 17, 10 and 7, CH=CH₂), 5.76 (1H, d, J 1, CHH=CI), 5.10-5.04 (2H, m, CH=CH₂), 3.88 (1H, d, J9, C=CHH), 3.89 (1H, s, C=CHH), 3.67-3.60 (2H, m, COCH₂), 2.45 [2H, t, J 7, CH₂C(=CH₂)], 2.26–2.08 [4H, m, CH₂CH=CH₂ and =CICH₂, incl. at 2.15 (2H, t, J7, =CICH₂)], 1.93-1.87 (1H, m, CHMe₂), 1.77 (2H, quintet, J7, =CICH₂CH₂), 1.71-1.64 (1H, m, CHCHMe₂) and 0.97 (6H, t, J 6, 2 × Me); $\delta_{\rm C}$ (125 MHz) 162.5 (C=CH₂), 137.5 (CH=CH₂), 125.6 (CH₂=CI), 115.9 (CH=CH₂), 112.2 (CH₂=CI), 80.9 (C=CH₂), 67.3 (OCH₂), 44.4 (=CICH₂), 43.5 (OCH₂CH), 33.5 (CH₂C=CH₂), 33.0 (CH₂CH=CH₂), 28.3 (CHMe₂), 26.6 (=CICH₂CH₂), 19.7 (Me), and 19.6 (Me); m/z (EI) 349 $(M + H^+, 100\%), 305 (15), 279 (35), 151 (10), 141 (30), 120 (30),$ 111 (70), 99 (40), 81 (55) and 70 (45) (Found: $M + H^+$ 349.1028. C₁₅H₂₆IO requires M, 349.1028).

(3*S*)-6-(4-Iodopent-4-en-1-yl)-3-(1-methylethyl)-3,4-dihydro-2*H*-pyran 22

A solution of triene 21 (0.123 g, 0.35 mmol) in dry, degassed pentane (3.5 cm³) was added dropwise to a stirred solution of 2,6-diisopropylphenylimidoneophylidenemolybdenum bis-(hexafluoro-tert-butoxide) [(Strem) 0.037 g, 0.05 mmol] in dry, degassed pentane (4 cm³) at 25 °C under a gentle flow of Ar. The reaction vessel was wrapped in aluminium foil to exclude light and after 5 h the reaction mixture was exposed to air. After 15 min the reaction was diluted with 1% Et₃N-Et₂O (10 cm³), filtered through a pad of basic alumina (activity III, 10 g) and evaporated under reduced pressure. Purification of the residue by column chromatography (1% Et₂O–light petroleum with 1% Et_3N) gave a light yellow oil, the *dihydropyran* 22 (0.050 g, 44%); R_f 0.64 (5% Et₂O-light petroleum with 1% Et₃N); $[a]_{D}^{23} - 28.3 (c \ 1.0 \ in \ CHCl_3); v_{max}(neat)/cm^{-1} \ 2963s, 2928s, 2872s,$ 1679m, 1618w, 1464w, 1386w, 1368w, 1314w, 1173m, 1056m, 1032w, 923w, 882m and 754w; $\delta_{\rm H}$ (500 MHz) 6.03 (1H, d, J 1, CHH=CI), 5.70 (1H, d, J 1, CHH=CI), 4.49 (1H, dd, J 5 and 2, CH=CO), 4.12 (1H, dq, J 10 and 2, CHHO), 3.54 (1H, t, J 10, CHHO), 2.39 (2H, t, J 7, CH₂CI), 2.00 (2H, t, J 7, CH=CCH₂), 1.80-1.74 (1H, m, CHMe₂), 1.72-1.65 (2H, m, CH₂CH=CO), 1.58-1.44 (3H, m, CH₂ and CHCHMe₂), 0.94 (3H, d, J 7, Me) and 0.92 (3H, d, J 7, Me); $\delta_{\rm C}(100 \text{ MHz})$ 153.3 (=CO), 125.5 (=CH₂), 112.2 (=CI), 95.5 (CH=), 69.2 (CH₂O), 44.6 (CH2CI), 38.7 (CHCHMe2), 32.3 (CH2C=CH), 29.6 (CHMe₂), 26.3 (CH₂CH=CO), 24.6 (CH₂), 20.3 (Me) and 19.7 (Me); m/z (CI) 339 (15%), 321 (M + H⁺, 100%), 211 (45), 207 (40), 193 (M - I, 30), 175 (20), 153 (80), 135 (15), 107 (15) and 102 (20) (Found: M + H⁺, 321.0715. $C_{13}H_{22}IO$ requires M, 321.0715).

(2S)-9-Iodo-2-(1-methylethyl)-5-oxodec-9-enal 23

Following the procedure for the preparation of dihydropyran 22, but using triene 21 (0.758 g, 2.18 mmol) and 2,6-diisopropylphenylimidoneophylidenemolybdenum bis(hexafluoro-tertbutoxide) [(Strem) 0.200 g, 0.26 mmol] in dry, degassed pentane (220 cm³), gave crude dihydropyran which was immediately dissolved in THF (12 cm³) and HCl (2 mol dm⁻³ in H_2O , 24 drops) added. After 2 h, NaHCO₃ (2.3 g) was added and the reaction mixture was filtered and evaporated under reduced pressure. The residue was dissolved in CH₂Cl₂ (12 cm³) and PCC (2.10 g, 9.74 mmol) and SiO₂ (2.10 g) added to the stirred solution. After 3 h, the reaction mixture was diluted with Et₂O (20 cm³), filtered through a pad of Florisil[®] (Aldrich) and evaporated under reduced pressure. Purification of the residue by column chromatography (20% Et₂O-light petroleum) gave a colourless oil, the aldehyde 23 (0.400 g, 55% from 21): $R_{\rm f}$ 0.15 (20% Et₂O-light petroleum); $[a]_{D}^{25}$ +16.7 (c 1.0 in CHCl₃);

 $v_{\rm max}({\rm neat})/{\rm cm}^{-1}$ 3429s, 2960s, 2931m, 1716s, 1618m, 1371w, 1166w and 896w; $\delta_{\rm H}(500~{\rm MHz})$ 9.61 (1H, d, J 3, CHO), 6.04 (1H, d, J 1, CHH=CI), 5.73 (1H, d, J 1, CHH=CI), 2.51–2.27 [7H, m, =CICH₂, (CH₂)₂CO and CHCHO], 2.10–2.00 (1H, m, CHMe₂), 1.89–1.75 (4H, m, 2 × CH₂), 1.01 (3H, d, J 7, Me) and 0.98 (3H, d, J 7, Me); $\delta_{\rm C}(125~{\rm MHz})$ 209.5 (CO), 205.3 (CHO), 126.2 (CH₂=), 111.3 (=CI), 57.6 (CHCHO), 44.2 (=CICH₂), 40.7 (CH₂CO), 40.4 (CH₂CO), 28.4 (CHMe₂), 22.8 (CH₂), 20.3 (Me), 19.5 (Me) and 19.4 (CH₂); *m*/*z* (CI, NH₃) 337 (5%), 319 (25), 301 (15), 223 (45), 209 (90), 191 (35), 173 (20), 151 (50) and 113 (100) (Found: M + H⁺, 337.0665. C₁₃H₂₂IO₂ requires *M*, 337.0665).

Tributyl(diiodomethyl)stannane

Dry NaI (0.78 g, 5.2 mmol) was added to a stirred solution of $Bu_3SnCHBr_2^2$ (0.600 g, 1.30 mmol) in acetone (7.7 cm³) at room temperature and the reaction flask was then wrapped in foil to exclude light. After 18 h the reaction mixture was evaporated under reduced pressure. The residue was diluted with hexane (20 cm³), filtered, concentrated under reduced pressure, diluted with CHCl₃ (20 cm³), filtered and further concentrated under reduced pressure to afford a yellow oil, Bu_3SnCHI_2 (0.720 g, quant.); R_f 0.5 (100% light petroleum) (Found: C, 28.4; H, 5.4. C13H28I2Sn requires C, 28.0, H, 5.1%); vmax(neat)/cm⁻¹ 2956s, 2926s, 2851m, 1463w, 1375w, 1071w and 875w; $\delta_{\rm H}$ (400 MHz) 4.27 (1H, s, CHI₂), 1.71-1.55 [6H, m, Sn(CH₂CH₂)₃], 1.33 (6H, sextet, J 7, 3 × MeCH₂), 1.16-1.08 [6H, m, Sn(CH₂)₃] and 0.94 (9H, t, J 7, 3 × Me); $\delta_{\rm C}$ (125 MHz) 28.4 [Sn(CH₂CH₂)₃], 27.3 $(J_{\text{Sn-C}} 60, 3 \times \text{MeCH}_2)$, 16.4 (CHI₂), 13.7 (3 × Me) and 12.9 [Sn(CH₂)₃]; *m*/*z* (CI) 557 (M⁺, 20%), 536 (30), 291 (40), 289 (30), 287 (15), 235 (30), 233 (25), 231 (15), 172.7 (100), 124 (30) and 122 (95).

Typical procedure for the preparation of (E)-alkenylstannanes using Bu₃SnCHI₂

Dry, deoxygenated DMF (7 cm³) was added dropwise to wellstirred CrCl₂ (0.527 g, Aldrich 99.9% w/w pure, 4.3 mmol) in a flask under argon in an ice-bath. After allowing the flask to warm to room temperature over 15 min it was surrounded by aluminium foil to exclude light and then a mixture of nonanal (0.061 g, 0.43 mmol) and Bu₃SnCHI₂ (0.478 g, 0.86 mmol) in dry, deoxygenated DMF (2 cm³) was added dropwise to the reaction mixture. After 2.5 h at 25 °C, H₂O (14 cm³) was added and the mixture extracted with Et₂O (3×10 cm³). The combined organic layers were washed with H₂O (10 cm³) and brine (10 cm³), dried (MgSO₄) and evaporated under reduced pressure. Purification by reversed-phase column chromatography⁵¹ (C-18, 30% CH₂Cl₂–MeCN) gave a colourless oil, (*E*)-tributyl-(dec-1-enyl)stannane (0.157 g, 85%); spectral data as lit.²

(9*S*,10*E*)-11-(Tributylstannyl)-2-iodo-9-(1-methylethyl)undec-1en-6-one 24

Following the typical procedure for the preparation of (E)alkenylstannanes, but using double the relative quantities of reagents [CrCl₂ (0.300 g, 2.4 mmol) and Bu₃SnCHI₂ (0.265 mg, 0.48 mmol)] with aldehyde 23 (0.040 g, 0.119 mmol) in DMF (3.7 cm³) gave, after purification by reversed-phase column chromatography (C-18, 5% CH₂Cl₂-MeCN), a colourless oil, the stannane 24 (0.055 g, 74%); R_f 0.24 (10% CH₂Cl₂-MeCN); $[a]_{D}^{24}$ -11.4 (c 1.0 in CHCl₃); $v_{max}(neat)/cm^{-1}$ 2956s, 2926s, 2871m, 1716m, 1617w, 1596w, 1464w, 1376w, 997w and 893w; $\delta_{\rm H}(500 \text{ MHz}) 6.03 (1\text{H}, \text{d}, J 1, \text{CHH=CI}), 5.79 (1\text{H}, \text{d}, J 19,$ J_{119Sn-H} 81 and J_{117Sn-H} 78, =CHSn), 5.72 (1H, s, CHH=CI), 5.60 (1H, dd, J 19 and 8, CH=CHSn), 2.48–2.29 [7H, m, =CICH₂, (CH₂)₂CO and CHCH=], 1.81-1.69 (4H, m, 2 × CH₂), 1.60-1.42 [7H, m, CHMe2, and Sn(CH2CH2)3] 1.37-1.26 (6H, m, $3 \times CH_2$ Me) and 0.94–0.82 [21H, m, Sn(CH₂CH₂CH₂Me)₃ and 2 × Me, incl. at 0.87 (3H, d, J 8, Me) and 0.85 (3H, d, J 7, Me)];

$$\begin{split} &\delta_{\rm C}(125~{\rm MHz})~210.7~({\rm CO}),~150.8~({\rm CH=CHSn}),~129.5~(J_{\rm Sn-C}~432,\\ ={\rm CHSn}),~126.1~(={\rm CI}),~111.4~({\rm CH}_2=),~54.5~({\rm CHCH=}),~44.3\\ (={\rm CICH}_2),~41.2~({\rm CH}_2{\rm CO}),~40.7~({\rm CH}_2{\rm CO}),~31.8~({\rm CHMe}_2),~29.2\\ [{\rm Sn}({\rm CH}_2{\rm CH}_2)_3],~27.2~(J_{\rm Sn-C}~52,~3\times{\rm CH}_2{\rm Me}),~25.6~({\rm CH}_2),~22.9\\ ({\rm CH}_2),~20.6~({\rm Me}),~19.2~({\rm Me}),~13.8~(3\times{\rm CH}_2{Me})~{\rm and}~9.5~[J_{\rm Sn-C}~325,~{\rm Sn}({\rm CH}_2)_3];~m/z~({\rm CI})~625~({\rm M}+{\rm H}^+,~35\%),~567~(100),~441\\ (55),~360~(65),~308~(80)~{\rm and}~123~(25)~({\rm Found:}~{\rm M}+{\rm H}^+,~625.1948.~{\rm C}_{26}{\rm H}_{50}{\rm IO}^{120}{\rm Sn}~{\rm requires}~M,~625.1928). \end{split}$$

(4S,5E)-7–Methylene-4-(1-methylethyl)cyclodec-5-en-1-one 25

Following the procedure for the preparation of dienone 7, but using stannane 24 (0.307 g, 0.49 mmol), Pd₂(dba)₃ (0.027 g, 0.029 mmol) and AsPh₃ (0.091 g, 0.30 mmol) in NMP (49 cm³) gave, after column chromatography (10% Et₂O-pentane), a colourless oil, the substituted (-)-dienone 25 (0.063 g, 62%); $R_{\rm f}$ 0.24 (10% Et₂O-pentane); $[a]_D^{25}$ -310 (c 1.22 in hexane) [lit.,¹⁰ $[a]_{D}^{22}$ –362 (c 1.22 in hexane)]; $\delta_{H}(500 \text{ MHz}; C_{6}D_{6}; C_{6}H_{6})$ 5.89 (1H, d, J 16, CH₂=CCH=CH), 5.24 (1H, dd, J 16 and 10, CH=CHCH), 4.85 (1H, br s, C=CHH), 4.81 (1H, d, J 2, C=CHH), 2.55 (1H, dt, J 13 and 5, CHHC=CH₂), 2.32-2.23 (2H, m, CH₂CO), 2.09 (1H, app. dq, J 12 and 3, CHHCH-CHMe₂), 1.99 (1H, ddd, J 13, 7 and 2, CHHC=CH₂), 1.89-1.79 (3H, m, CH₂CO and CHHCH₂C=CH₂), 1.59-1.53 (1H, m, CHHCHCHMe₂), 1.47-1.38 (1H, m, CHCHMe₂), 1.35-1.25 (1H, m, CHMe₂), 1.22-1.11 (1H, m, CHHCH₂C=CH₂), 0.79 (3H, d, J 7, Me) and 0.77 (3H, m, J 7, Me); $\delta_{\rm C}$ (125 MHz; C₆D₆; C₆H₆) 210.6 (C=O), 146.9 (C=CH₂), 136.9 (CH=CHC=CH₂), 132.6 (CH=CHCH), 113.4 (C=CH₂), 52.8 (CHCH=), 42.4 (CH₂C=O), 42.0 (CH₂C=O), 31.9 (CHMe₂), 31.7 (CH₂C=CH₂), 30.2 (CH₂CHCH), 24.5 (CH₂CH₂CH₂), 20.9 (Me) and 20.8 (Me). UV, IR, ¹H NMR data were consistent with those previously reported.¹⁰ The ee was determined to be 93% by chiral HPLC [Cyclobond I (β-cyclodextrin) column (4.6 mm × 250 mm), 42:58 MeOH–H₂O, 1 cm³min⁻¹], $t_{\rm R}$ mj, 36.2 min; $t_{\rm R}$ mn, 40.9 min.

(3S,1E)-Tributyl(3-methylpent-1-enyl)stannane 27

Following the typical procedure for the preparation of (E)-alkenylstannanes using Bu_3SnCHI_2 with (S)- α -methylbutyraldehyde **26**⁴³ (0.066 g, 0.77 mmol) gave, after purification by reversed-phase column chromatography (C-18, 10%) CH₂Cl₂-MeCN), a colourless oil, stannane 27 (0.230 g, 80%); $R_{\rm f}$ 0.22 (10% CH₂Cl₂-MeCN); $[a]_{\rm D}^{24}$ +14.7 (c 1.0 in CHCl₃); v_{max} (neat)/cm⁻¹ 2958s, 2925s, 2872m, 2854m, 1597w, 1463m, 1376w, 1071w, 990w and 874w; $\delta_{\rm H}(400~{\rm MHz})$ 5.80 (1H, s, CH=CHSn) 5.80 (1H, d, J 2, $J_{119Sn-H}$ 75, $J_{117Sn-H}$ 72, =CHSn), 2.04 (1H, m, CHMe), 1.56-1.26 [14H, m, Sn(CH₂CH₂CH₂)₃ and MeCH₂] and 0.99-0.78 [21H, m, CHMe, CH₂Me and Sn(CH2CH2CH2Me)3, incl. at 0.98 (3H, d, J 7, CHMe) and 0.89 (9H, t, J 7, $3 \times \text{Me}$)]; $\delta_{c}(125 \text{ MHz})$ 155.3 (CH=CHSn), 124.6 (=CHSn), 43.2 (CHMe), 29.3 (MeCH₂), 29.1 [J_{Sn-C} 20, $Sn(CH_2CH_2)_3$], 27.2 (J_{Sn-C} 52, 3 × CH_2Me), 19.8 (CHMe), 13.7 $(3 \times \text{Me})$, 11.7 (*Me*CH₂) and 9.4 [*J*_{Sn-C} 330, Sn(CH₂)₃]; *m/z* (EI) 317 (M - Bu+, 80%), 291 (100), 269 (80), 235 (40), 205 (40) and 177 (50) (Found: M – Bu⁺, 317.1291. $C_{14}H_{29}^{120}Sn$ requires M, 317.1291).

(2*R*,6*S*,4*E*)-1,1,1-Trifluoro-2-methoxy-6-methyl-2-phenyloct-4en-3-one 28

Pd₂dba₃ (1.5 mg, 1.6×10^{-3} mmol) and tri(2-furyl)phosphine (1.5 mg, 6.5×10^{-3} mmol) were added to a stirred solution of (*S*)-MPTA-Cl (34 µl, 0.18 mmol) in THF (1.5 cm³). After 10 min a solution of (*S*)-stannane **27** (0.061 g, 0.16 mmol) in THF (0.5 cm³) was added, the reaction vessel was wrapped in foil to exclude light and then heated at 55 °C. After 3 h the reaction mixture was cooled to room temperature, then Et₂O (15 cm³) was added, the mixture filtered through a pad of Florisil[®] (Aldrich, 10 g) and concentrated under reduced pressure. The

residue was diluted with 5% Et₂O-pentane, DBN⁴⁸ (1 drop) was then added and the resultant mixture was purified by column chromatography (5% Et₂O-light petroleum) to give a light yellow oil, the enone 28 [0.031 g, 63%, diastereomerically pure (by ¹H NMR comparison with a diastereomeric mixture of similarly prepared enones in the δ 7.1–6.2 region)]; $R_{\rm f}$ 0.50 (5% Et₂O-light petroleum); $[a]_{D}^{24}$ -173.0 (c 0.15 in CHCl₃); v_{max}(neat)/cm⁻¹ 3411br, 2968s, 1707s, 1626s, 1495w, 1452m, 1354w, 1271s, 1226m, 1166s, 1107m, 1079m, 1005m, 948w, 914w, 857w, 762w and 705s; $\delta_{\rm H}(500$ MHz) 7.50–7.29 (5H, m, Ar), 7.01 (1H, dd, J 16 and 8, CH=CHCO), 6.21 (1H, dd, J 16 and 1, =CHCO), 3.61 (3H, q, J_{H-F} 2, OMe), 2.15 (1H, quintet, J 7, CHMe), 1.42–1.20 (2H, m, CH₂), 0.97 (3H, d, J 7, CHMe) and 0.81 (3H, t, J 7, CH₂Me); $\delta_{\rm C}$ (125 MHz) 192.6 (C=O), 156.8 (CH=CHCO), 133.2 (Ar, quat.), 129.9 (Ar), 128.9 (2 × Ar), 127.8 (2 × Ar), 123.4 (Q, J_{C-F} 290, CF₃), 121.5 (=CHCO), 86.0 (CCF₃), 56.3 (OMe), 39.0 (CHMe), 29.2 (CH₂), 19.3 (CHMe) and 11.9 (CH₂Me); $\delta_{\rm F}$ (235 MHz; ref. CFCl₃) -70.17; m/z (CI) 323 (M + Na, 80%), 301 (M + H⁺, 25), 273 (65), 269 (90), 251 (100), 227 (35), 199 (25), 197 (25), 157 (25), 156 (70), 139 (30), 124 (15) and 102 (15) (Found: $M + H^+$, 301.1415. $C_{16}H_{20}F_3O_2$ requires M, 301.1415).

(2S)-2,6-Dimethyl-5-oxoheptanal 31

A mixture of O₂ and O₃ was bubbled through a stirred mixture of (6S)-2,6-dimethyloct-7-en-3-one45 (0.757 g, 4.9 mmol) and NaHCO₃ (0.023 g) in MeOH (10.3 cm³) at $-65 \degree$ C until the appearance of O₃ at the outlet (starch-iodide test). The reaction mixture was then purged with argon until no more O3 expelled, Me₂S (0.915 g, 14.7 mmol) was added and the reaction was allowed to warm to room temperature. After 16 h the reaction mixture was filtered and concentrated under reduced pressure. H_2O (10 cm³) was added to the residue which was then extracted with Et_2O (3 × 20 cm³). The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. Purification of the residue by column chromatography (20% Et₂O-light petroleum) gave a colourless oil, the ketoaldehyde 31 $(0.720 \text{ g}, 94\%); R_{f} 0.15 (15\% \text{ Et}_{2}\text{O}-\text{light petroleum}); [a]_{D}^{23} + 18.0$ (c 0.3 in CHCl₃); v_{max}(neat)/cm⁻¹ 2973s, 2937m, 1709s, 1467m, 1411w, 1384w, 1213w, 1099w and 928w; $\delta_{\rm H}$ (200 MHz); 9.51 (1H, d, J 2, CHO), 2.58–2.23 [4H, m, CH₂C=O and CH₂CHMe, incl. at 2.43 (2H, t, J 7, CH₂C=O)], 1.87 (1H, septet, J 7, CHMe₂), 1.56 (1H, sextet, J 7, CHMe), 1.02 (3H, d, J 7, Me) and 0.99 (6H, d, J 7, 2 × Me); $\delta_{\rm C}$ (50 MHz) 204.5 (C=O), 192.9 (CHO), 45.5 (CHMe), 40.7 (CHMe₂), 37.0 (CH₂C=O), 24.0 (CH₂CHMe), 18.1 (2 × Me) and 13.3 (Me); m/z (CI) $157 (M + H^+, 10\%), 155 (11), 141 (100), 139 (30), 123 (5) and$ 111 (10) (Found: M + H⁺, 157.1229. C₉H₁₇O₂ requires M, 157.1229).

(6S,7E)-8-Tributylstannyl-2,6-dimethyloct-7-en-3-one 32

Following the typical procedure for the preparation of (E)alkenylstannanes using Bu₃SnCHI₂ with ketoaldehyde 31 (0.078 g, 0.50 mmol) gave, after purification by column chromatography (2% Et₂O-light petroleum), a colourless oil, stannane **32** (0.150 g, 68%); $R_{\rm f}$ 0.25 (15% Et₂O-light petroleum); $[a]_{\rm D}^{23}$ +14.5 (c 1.0 in CHCl₃); $v_{max}(neat)/cm^{-1}$ 2958s, 2926s, 2872m, 1715m, 1597w, 1464m, 1376w, 992w and 874w; $\delta_{\rm H}$ (500 MHz) 5.83 (1H, d, J 19, CHSn), 5.72 (1H, dd, J 19 and 7, CH=CHSn), 2.58 (1H, septet, J 7, CHMe₂), 2.43 (2H, t, J 8, CH₂C=O), 2.11 (1H, sextet, J 7, CHMe), 1.66-1.58 (2H, m, CH₂CHMe), 1.55-1.43 [6H, quintet, J 8, Sn(CH₂CH₂)₃], 1.36-1.26 (6H, m, $3 \times CH_2$ Me), 1.08 (6H, d, J 7, CHMe₂), 1.01 (3H, d, J 7, CHMe) and 0.93-0.82 [15H, m, Sn(CH2CH2CH2Me)3, incl. at 0.89 (9H, t, J 7, $3 \times \text{Me}$)]; $\delta_{c}(125 \text{ MHz}) 215.1$ (C=O), 154.3 (CH=CHSn), 126.1 (CH=CHSn), 41.4 (CHMe), 40.9 (CHMe₂), 38.2 (CH₂C=O), 30.0 (CH₂CHMe), 29.1 (Sn(CH₂CH₂), 27.2 $(3 \times CH_2Me)$, 20.5 (CHMe), 18.3 (CHMe₂), 13.7 (3 × Me) and 9.4 $(Sn(CH_2)_3)$; m/z (EI) 443 $(M - H^+, 20\%)$, 387 $(M - Bu^+, 20\%)$

100), 331 (10), 175 (15), 121 (10), 71 (15), 43 (40) and 29 (20) (Found: M – Bu⁺, 387.1710. $C_{18}H_{35}O^{120}Sn$ requires M, 387.1710).

(2R,6S,4E)-1,1,1-Trifluoro-2-methoxy-6,10-dimethyl-2-phenylundec-4-ene-3,9-dione 33

Following the procedure for the preparation of enone 28, but using stannane 32 (0.019 g, 0.04 mmol), Pd₂(dba)₃ (0.4 mg, 4.4×10^{-4} mmol), tri(2-furyl)phosphine (0.4 mg, 1.7×10^{-3} mmol) and (S)-MPTA-Cl (8.9 µl, 0.048 mmol) in THF (0.3 cm^3) gave, after column chromatography (5% Et₂O-pentane), a light, yellow oil, the enone 33 [0.013 g, 81%, diastereomerically pure (by ¹H NMR comparison with a diastereomeric mixture of similarly prepared enones in the δ 7.0–6.2 region)]; $R_{\rm f}$ 0.10 (5% Et₂O-light petroleum); $[a]_{D}^{23}$ +54.0 (c 0.1 in CHCl₃); $v_{max}(neat)/cm^{-1}$ 2970m, 2360m, 1708s, 1626m, 1272m, 1166s, 1005w and 708m; $\delta_{\rm H}$ (500 MHz) 7.78–7.32 (5H, m, Ar), 6.95 (1H, dd, J 16 and 9, CH=CHCO), 6.19 (1H, dd, J 16 and 1, CH=CHCO), 3.61 (3H, q, J_{H-F} 1.5, OMe), 2.35 (1H, septet, J 8, CHMe₂), 2.22 (2H, t, J 7, CH₂C=O), 1.56-1.43 (2H, m, CH₂CHMe), 1.39-1.26 (1H, m, CHMe), 1.02 (3H, d, J 7, CHMe) and 1.00–0.93 (6H, m, CHMe₂); δ_c(125 MHz) 213.9 (CH₂CO), 192.4 (CHCO), 155.2 (CH=CHCO), 132.5 (Ar, quat.), 129.4 (Ar), 128.4 (2 × Ar), 127.2 (2 × Ar), 123.4 (=CHCO), 122.1 (CF₃), 86.0 (CCF₃), 55.8 (OMe), 40.8 (CHMe₂), 37.4 (CH₂CO), 36.4 (CHMe), 29.3 (CH₂CHMe), 19.6 (CHMe), 18.2 (Me) and 18.1 (Me); $\delta_{\rm F}(235$ MHz; ref. $CFCl_3$) -70.07; m/z (CI) 393 (M + Na, 20%), 371 (M + H⁺, 80%), 339 (100), 319 (60), 253 (50), 235 (10), 149 (10), 124 (15) and 122 (45) (Found: M + H⁺, 371.1834. C₂₀H₂₆F₃O₃ requires *M*, 371.1834).

Acknowledgements

We thank the EPSRC and Pfizer Central Research for a CASE award (to L. T. B.), SmithKline Beecham Pharmaceuticals and the EPSRC for an Industrial CASE award (to A. M. F.), Zeneca (Strategic Research Fund) and Pfizer for additional financial support, Professor V. C. Gibson for initial assistance with RCM of triene 21, Dr J. Zukowski (SmithKline Beecham Pharmaceuticals) for expert HPLC analysis and the EPSRC National Mass Spectrometry Service Centre for mass spectra.

References

- 1 M. A. J. Duncton and G. Pattenden, J. Chem. Soc., Perkin Trans. 1, 1999, 1235; V. Farina, V. Krishnamurthy and W. J. Scott, Org. React., 1997, 50, 1; T. N. Mitchell, 'Organotin Reagents In Cross-Coupling', in Metal-Catalyzed Cross-Coupling Reactions, eds. F. Diederich and P. J. Stang, Wiley-VCH, Chichester, 1997, pp. 167-202; A. G. Davies, Organotin Chemistry, VCH, Weinheim, 1997; V. Farina and G. P. Roth, 'Recent Advances In The Stille Reaction', in Advances In Metal-Organic Chemistry, ed. L. S. Liebeskind, JAI Press, Greenwich, CT, 1995, vol. 5, pp. 1-53.
- 2 D. M. Hodgson, L. T. Boulton and G. N. Maw, Tetrahedron, 1995, 51. 3713.
- 3 Recent reviews: A. Fürstner, Chem. Rev., 1999, 99, 991; L. A. Wessjohann and G. Scheid, Synthesis, 1999, 1; M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez and J. C. Palacios, Chem. Soc. Rev., 1999, 169; D. M. Hodgson and P. J. Comina, 'Chromium-Mediated C-C Coupling Reactions', in Transition Metals For Organic Synthesis, eds. M. Beller and C. Bolm, Wiley-VCH, Chichester, 1998, pp. 418-424; A. S. K. Hashmi, J. Prakt. Chem., 1996, 338, 491; D. M. Hodgson and L. T. Boulton, 'Chromium- And Titanium-Mediated Synthesis Of Alkenes From Carbonyl Compounds', in *Preparation Of Alkenes: A Practical Approach*, ed. J. M. J. Williams, OUP, Oxford, 1996, pp. 81–93; D. M. Hodgson, J. Organomet. Chem., 1994, 476, 1.
- 4 Preliminary communication: D. M. Hodgson, L. T. Boulton and G. N. Maw, Synlett, 1995, 267.
- 5 Preliminary communication: D. M. Hodgson, A. M. Foley and P. J. Lovell, Synlett, 1999, 744.
- 6 D. Jonas, Y. Özlü and P. J. Parsons, Synlett, 1995, 255.
- 7 S. L. Schreiber and C. Santini, J. Am. Chem. Soc., 1984, 106, 4038.

- 9 S. L. Schreiber and R. C. Hawley, Tetrahedron Lett., 1985, 26, 5971.
- 10 T. Kitahara, M. Mori and K. Mori, Tetrahedron, 1987, 43, 2689.
- 11 T. L. Gilchrist, L. Thomas, P. D. Kemmitt and A. L. Germain, *Tetrahedron*, 1997, **53**, 4447. 12 P. M. Jackson, C. J. Moody and P. Shah, J. Chem. Soc., Perkin Trans.
- 1, 1990, 2909.
- 13 N. Kamiya, Y. Chikami and Y. Ishii, Synlett, 1990, 675.
- 14 R. K. Boeckman, Jr. and K. J. Bruza, Tetrahedron, 1981, 37, 3997.
- 15 L. L. Adams and F. A. Luzzio, J. Org. Chem., 1989, 54, 5387.
- 16 L. T. Boulton, PhD Thesis, University of Reading, 1994 17 V. Farina and B. Krishnan, J. Am. Chem. Soc., 1991, 113, 9585.
- 18 R. C. Hawley and S. L. Schreiber, *Synth. Commun.*, 1990, **20**, 1159. 19 M. Mori, K. Okada, K. Shimazaki, T. Chuman, S. Kuwahara, T. Kitahara and K. Mori, J. Chem. Soc., Perkin Trans. 1, 1990, 1769.
- 20 C. Barber, K. Jarowicki and P. Kocienski, Synlett, 1991, 197; M. T. Crimmins and R. O'Mahony, J. Org. Chem., 1989, 54, 1157.
- 21 O. Fujimura, G. C. Fu and R. H. Grubbs, J. Org. Chem., 1994, 59, 4029. Reviews: R. R. Schrock, Tetrahedron, 1999, 55, 8141; R. R. Schrock, Top. Organomet. Chem., 1998, 1, 1; A. Fürstner, Top. Organomet. Chem., 1998, 1, 37; R. H. Grubbs and S. Chang, Tetrahedron, 1998, 54, 4413; S. K. Armstrong, J. Chem. Soc., Perkin Trans. 1, 1998, 371; A. Fürstner, Top. Catal., 1997, 4, 285; M. Schuster and S. Blechert, Angew. Chem., Int. Ed. Engl., 1997, 36, 2036. Certain unsubstituted enol ethers have recently been shown to undergo RCM using (PCy₃)₂Cl₂Ru=CHPh: C. F. Sturino and J. C. Y. Wong, *Tetrahedron Lett.*, 1998, **39**, 9623. 22 T. A. Kirkland and R. H. Grubbs, *J. Org. Chem.*, 1997, **62**, 7310.
- 23 K. C. Nicolaou, Y. He, F. Roschangar, N. P. King, D. Vourloumis and T. Li, Angew. Chem., Int. Ed., 1998, 37, 84. K. C. Nicolaou, N. P. King, M. R. V. Finlay, Y. He, F. Roschangar, D. Vourloumis, H. Vallberg, F. Sarabia, S. Ninkovic and D. Hepworth, Bioorg. Med. Chem., 1999, 7, 665. See also footnote 18 in: S.-H. Kim, W. J. Zuercher, N. B. Bowden and R. H. Grubbs, J. Org. Chem., 1996, 61, 1073.
- 24 S. Hara, H. Dojo, S. Takinami and A. Suzuki, Tetrahedron Lett., 1983, 24, 731.
- 25 K. Takai, T. Kakiuchi, Y. Kataoka and K. Utimoto, J. Org. Chem., 1994, 59, 2668; K. Takai, Y. Kataoka, J. Miyai, T. Okazoe, K. Oshima and K. Utimoto, Org. Synth., 1995, 73, 73.
- 26 M. Scholl, T. M. Trnka, J. P. Morgan and R. H. Grubbs, Tetrahedron Lett., 1999, 40, 2247.
- 27 R. Grigg, V. Sridharan and M. York, Tetrahedron Lett., 1998, 39, 4139
- 28 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543.
- 29 D. A. Evans, T. C. Britton, R. L. Dorow and J. F. Dellaria, Jr., Tetrahedron, 1988, 44, 5525.
- 30 D. A. Evans, T. C. Britton and J. A. Ellman, Tetrahedron Lett., 1987, 28, 6141; J. R. Gage and D. A. Evans, Org. Synth., 1993, Coll. Vol. VIII. 339.
- 31 R. J. Boyce and G. Pattenden, Tetrahedron Lett., 1996, 37, 3501; A. B. Smith, III and G. R. Ott, J. Am. Chem. Soc., 1998, 120, 3935.
- 32 J. M. Chong and S. B. Park, J. Org. Chem., 1993, 58, 523. 33 Preliminary communication: D. M. Hodgson, A. M. Foley and P. J. Lovell, Tetrahedron Lett., 1998, 39, 6419.
- 34 D. Seyferth and R. L. Lambert, Jr., J. Organomet. Chem., 1973, 54, 123
- 35 D. M. Hodgson, P. J. Comina and M. G. B. Drew, J. Chem. Soc., Perkin Trans. 1, 1997, 2279.
- 36 K. Takai, K. Nitta and K. Utimoto, J. Am. Chem. Soc., 1986, 108, 7408.
- 37 T. Okazoe, K. Takai and K. Utimoto, J. Am. Chem. Soc., 1987, 109, 951.
- 38 K. Takai, Y. Kataoka, T. Okazoe and K. Utimoto, Tetrahedron Lett., 1987, 28, 1443.
- 39 Y. Nishii, T. Yoshida and Y. Tanabe, Biosci. Biotechnol., Biochem., 1997, 61, 547.
- 40 S. M. Han, Biomed. Chromatogr., 1997, 11, 259.
- 41 S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639.
- 42 S. D. Burke and D. N. Neaton, Tetrahedron Lett., 1991, 32, 4651; S. D. Burke, K. Takeuchi, C. W. Murtiashaw and D. W. M. Liang, Tetrahedron Lett., 1989, 30, 6299.
- 43 C. M. J. Fox, R. N. Hiner, U. Warrier and J. D. White, Tetrahedron Lett., 1988, 29, 2923; J. D. White, G. L. Bolton, A. P. Dantanarayana, C. M. J. Fox, R. N. Hiner, R. W. Jackson, K. Sakuma and U. S. Warrier, J. Am. Chem. Soc., 1995, 117, 1908.
- 44 L. R. Sita, Macromolecules, 1995, 28, 656.

J. Chem. Soc., Perkin Trans. 1, 1999, 2911–2922 2921

- 45 F. Näf, R. Decorzant, W. Giersch and G. Ohloff, *Helv. Chim. Acta*, 1981, **64**, 1387; R. Sudha, K. M. Narasimhan, V. G. Saraswathy and S. Sankararaman, *J. Org. Chem.*, 1996, **61**, 1877.
 46 M. P. Polovinka, L. V. Porubleva, D. V. Korchagina and V. A. Barkhash, *J. Org. Chem. USSR (Engl. Transl.)*, 1992, **28**, 351.
 47 E. Piers and T. Wong, *J. Org. Chem.*, 1993, **58**, 3609.
 48 D. P. Curran and C.-T. Chang, *J. Org. Chem.*, 1989, **54**, 3140.

- 49 S. L. Schreiber and C. Santini, Tetrahedron Lett., 1981, 22, 4651.
- 50 M. Inês de Almeida, A. T. do Amaral, L. do Amaral, J. Org. Chem., 1982, **47**, 1567.
- 51 V. Farina, J. Org. Chem., 1991, 56, 4985.

Paper 9/05560F