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ABSTRACT: This work developed three high-nuclearity {Co14} clusters of
C1−C3 with inner [Co8] backbone fixed by six ambient CoCl2 species. The
catalyst C1 exhibited highly regio- and stereoselective hydrosilylation of alkynes
with primary and secondary silane to produce α-vinylsilanes. More importantly,
C1 shows high regioselectivity for electronically unbiased alkyl alkynes, and the
α-selectivity of some alkyl alkynes has not been achieved in previous reports.
Leaching tests and reusability proved that the reaction is a heterogeneous
process.
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Silyl-substituted alkenes1 are attractive building blocks
because they are innocuous, highly stable, easy to handle

and store, and are widely used in modern intermediates in
organic synthesis,2 polymeric organosilicon materials,3 and fine
chemistry.4,3b Among the synthetic paths to vinylsilanes, the
transition metal-catalyzed hydrosilylation of alkynes is 100%
atom efficient, straightforward, and a convenient route to
obtain valuable vinylsilanes.5 A challenge in the hydrosilylation
of alkynes is controlling regio- and stereoselectivity because
these reactions can potentially produce mixture products, such
as β-(Z)-, β-(E)-, and α-vinylsilanes, and excess hydrosilylation
products (Scheme 1).6

The regioselective and stereoselective hydrosilylation of
alkynes has been well controlled by using R3SiH as a silicon
reagent.7 However, when more active RSiH3 is used as a silicon
reagent, α-selective hydrosilylation of alkynes is still a
challenge.6 Earth-abundant metals are important for the
sustainable future of organic synthesis and manufacturing
because of their low cost, low toxicity, and abundance.8 The
use of earth-abundant metals, such as Co, for hydrosilylation is

becoming increasingly popular. In 2016, Lu and Huang
independently reported the highly selective cobalt-catalyzed
α-selective hydrosilylation of alkynes with Ph2SiH2 to achieve
α-vinylsilanes.6d,9 Unfortunately, Lu and Huang did not report
the α-selective hydrosilylation of alkynes that uses RSiH3 as a
silicon reagent. Moreover, the α-selectivity of alkyl alkynes was
unsatisfactory (branched:linear [b:l] = 69:31−87:13, Scheme
2a1, a2). In 2018, Yang developed the highly α-selective
hydrosilylation of alkynes by using PhSiH3 to access α-
vinylsilanes.10 However, the regioselectivity of alkyl alkynes
was poor (b:l = 45:55, Scheme 2a3). In 2019, Jin et al. used
NN bidentate ligand to achieve the α-selective hydrosilylation
of alkynes by using PhSiH3 and Ph2SiH2 as silicon reagents.11

The α-selectivity of this reaction was also limited to alkyl
alkynes (b:l = 63:37−85:15, Scheme 2a4). Wangelin and Chen
reported the α-selective hydrosilylation of alkynes by using
PhSiH3 or Ph2SiH2 as silicon reagent.12 However, their b:l
ratios were limited to alkyl alkynes (b:l = 73:28−78:22).
Therefore, the development of α-selective hydrosilylation
reactions by using electronically unbiased alkynes especially
for aliphatic alkynes as substrates in a catalytic manner is
challenging.
Our group is committed to solve the selectivity of organic

reactions that cannot be completely solved in homogeneous
catalytic reactions with heterogeneous catalysts. Reports on the
hydrosilylation of alkynes under heterogeneous catalysis are
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Scheme 1. Possible Product of Terminal Alkyne
Hydrosilylation
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limited. In 2012, Ramoń et al. reported the hydrosilylation of
internal alkynes by using PtO/PtO2−Fe3O4 as a heterogeneous
catalyst, but the regioselectivity of terminal alkynes is
unsatisfactory.13 In 2018, Zhan et al. reported the use of
porous organic polymers−Xantphos as a heterogeneous
catalyst to achieve the high β-E-selective hydrosilylation of
terminal alkynes. However, no α-selective hydrosilylation is
reported (Scheme 2b1).14 To the best of our knowledge, the
α-selective hydrosilylation of terminal alkynes under hetero-
geneous conditions has not been reported yet.
The synthesis of high-nuclearity 3d transition metal

coordination clusters is currently a major topic of interest.
Such metals include Fe168, Mn84, Co36, Ni34, and Cu147,

15 and
their various remarkable structures and rich functions in single-
molecule magnets, optics, electricity, biology, and cataly-
sis.16−20 The challenge in searching for new atomically precise
catalysts in organic reactions is the control of regio- and
stereoselectivity to produce selective products. Also, the easy
destruction and/or difficult recycling in low-nuclearity
homogeneous metal catalysts and the shape and/or size limit
in heterogeneous metal−organic frameworks/metal−ligand
cluster hosts catalysts with/without endo-open-metal-sites
(OMS) should be addressed.21,22 Thus, heterogeneous
selective high-nuclearity cluster-base catalysts with rich exo
OMS should be developed.
In this work, three high-nuclearity {Co14} clusters of C1−

C3, were obtained from three derivative 5,5′-di(pyridin-2-yl)-
3,3′-bi(1,2,4-triazole) ligands L1, L2, and L3 (Scheme 3),
respectively (synthetic methods and crystal data are shown in
the Supporting Information). Single-crystal X-ray analysis
showed that C1−C3, which had similar structural features,
had a tetrahedral [Co8] inner skeleton fixed by ligands (L1−
L3), thereby further chelating six CoCl2 species as exo-OMS
on the edges. C1−C3 were used as heterogeneous catalysts to
achieve the high regio- and stereoselective hydrosilylation of
alkynes. The reaction had a wide scope of alkynes (36
examples) and good yields. The α-selective hydrosilylation of
challenging alkyl alkynes achieved moderate to excellent
regioselectivity (b:l up to 99:1). Compared with other
activating reagents (e.g., RMgX, RLi, LiAlH4, and NaBHEt3),
NaOtBu was safe, stable in air/moisture, easy to handle, and
inexpensive.

Single-crystal X-ray diffraction studies showed that C1−C3
consisted of a [Co14(μ3−OH/OCH3)4(Lx)6Cl12] (here x = 1
for C1, 2 for C2, and 3 for C3, respectively) cluster and
d iffe ren t l a t t i c e so l ven t s . The [Co1 4 (μ 3−OH/
OCH3)4(Lx)6Cl12] cluster of C1−C3 had a stable [Co8]
backbone composed with an inner cuboidal [Co4(μ3−OH/
OCH3)4] core, which consisted of four octahedral Co atoms in
distorted octahedral CoN3O3 environments held together
tightly by four μ3-CH3O anions in C1−C2 and four μ3−
OHanions in C3, respectively. The [Co4(Lx)6] periphery
consisted of six Lx ligands arranged into a distorted
tetrahedron wrapping the [Co4(μ3−OH/OCH3)4] core tightly
and four Co atoms in CoN6 environments lying at the vertices
of the distorted tetrahedron. Interestingly, the remaining six
Co(II) ions in the distorted N2Cl2 tetrahedron geometry were
chelated by six Lx ligands and 12 Cl anions. Therefore, the
potential active sites (six coordinately unsaturated CoCl2
species as exo-OMS) were fixed on the edges of the tetrahedral
[Co8] inner backbone.
The alkyne hydrosilylation was started by evaluating the

conditions for the reaction between phenylacetylene (1a) and
PhSiH3 (2a, Table 1). The activity of CoCl2 with three dpbt

ligands L1−L3 in catalyzing the hydrosilylation of phenyl-
acetylene with PhSiH3 was tested. Then, 2 mol % ligands L1−
L3, 1.8 mol % CoCl2, 3 mol % activator NatOBu, and
tetrahydrofuran (THF) as solvent were used. The reaction was
carried out for 4 h at room temperature under Ar protection.
Unfortunately, only trace of target products can be observed
under these conditions (entries 1−3 in Table 1).
A remarkable increase in the isolated yield under the above

reaction conditions was achieved when high-nuclearity {Co14}

Scheme 2. Hydrosilylation of Terminal Alkyne Scheme 3. Catalysts L1−L3 and C1−C3

Table 1. Screening of Catalysta

entry catalyst yield (%)b ratio (3a:4a:5a)c

1 L1+CoCl2 trace -
2 L2+CoCl2 trace -
3 L3+CoCl2 trace -
4 C1 86 99:1:nd
5 C2 82 98:2:nd
6 C3 80 93:5:2

aReaction conditions: phenylacetylene (0.5 mmol), PhSiH3 (0.6
mmol), catalyst (0.6 mol %), NatOBu (3 mol %), THF (2 mL), 0 °C
to rt, 4 h. bIsolated yield. cDetermined using 1H NMR spectroscopy.
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cluster C1 was used as catalyst (entry 4, Table 1). The C1
catalyst showed excellent regioselectivity (3a:4a = 99:1), as
shown by the results of 1H NMR spectroscopy. The
hydrosilylation of phenylacetylene with PhSiH3 was tested
using high-nuclearity clusters C2 and C3 as catalyst. Compared
with those of C1, the regioselectivity and yield of C2 and C3
were slightly reduced (entries 5−6, Table 1). The reason for
these results (entries 1−6, Table 1) may be that it is difficult
for L1−L3 and CoCl2 to form a single catalyst to promote the
reaction. Cluster C1−C3 already has a stable coordination
structure of “ligand + metal”, so it can efficiently catalyze the
reaction. Catalyst loading, activator, solvent, and other reaction
conditions were screened (Supporting Information). The
standard conditions chosen were alkynes (0.5 mmol),
PhSiH3 (0.6 mmol), C1 (0.6 mol %), and NatOBu (3 mol
%) in a solution of THF (0.25 M) at 0 °C to room
temperature for 4 h.
The scope of various alkynes that underwent this high-

nuclearity {Co14} cluster catalyzed through α-selective hydro-
silylation was studied using C1 as the heterogeneous catalyst.
Results are summarized in Table 2. Overall, a wide range of

electron-donating or electron-withdrawing substituent aryl
alkynes underwent the reaction with PhSiH3. The correspond-
ing hydrosilylation product had good yield and excellent
regioselectivities (b:l up to 99:1, 3a−3i). Para-electron-
donating substituted phenylacetylenes, such as methyl (1b)
and methoxy (1c), could react well with good yield and
excellent regioselectivities. Para-halogen-substituted phenyl-
acetylenes (1e−1g) resulted in α-vinylsilanes in moderate to

good yield with high regioselectivity (b:l > 98:2) without
dehalogenation byproducts. The α-selectivities of para-tert-
butyl alkyne (1d), ortho-methyl alkyne (1h), and 2-naphthyl
alkyne (1i) were slightly reduced. This result might be due to
the steric hindrance that the regioselectivity was slightly
reduced. Heteroaromatic alkynes, such as 2-ethynylthiophene
(1j) and 3-ethynylpyridine (1k), proceeded smoothly to
deliver the corresponding hydrosilylation product with
moderate yield and excellent regioselectivities (b:l > 99:1).
Given that the regioselectivity of the electronically unbiased

alkyl alkynes α-selective hydrosilylation is difficult to control,
alkyl alkyne hydrosilylation remains a challenge. 1-Octyne (1l)
was chosen as the alkyne substrate reaction with PhSiH3 to test
the selectivity of the catalyst for alkyl alkynes. The value of b:l
product was up to 92:8 and 90% isolated yield. The
hydrosilylation of other alkyl alkynes, such as 4-phenyl-1-
butyne (1m) and 5-chloro-1-pentyne (1n), also resulted in
good yield and excellent regioselectivities (b:l up to 98:2).
Subsequently, the hydrosilylation of a series of heteroaliphatic
alkynes, such as those containing TBSO (1o), cyano (1p),
ether (1q), acetal (1r), sulfone (1s), and protected primary
amine (1t), were tested. All hydrosilylation products showed
moderate to good yield and high regioselectivities (b:l > 93:7).
Furthermore, internal alkynes 1,2-diphenylethyne (1u), 3-
hexyne (1v), and 5-decyne (1w) were tolerated, providing syn-
addition products in good yield (E:Z up to 99:1).
This catalyzed hydrosilylation was examined with a

secondary hydrosilane Ph2SiH2 (2b) in Table 3. Under
standard conditions, the reaction of Ph2SiH2 with phenyl-
acetylene (1a) resulted in 86% isolated yield and high
regioselectivity (b:l > 96:4) of product 7a. Ortho-, meta-, and
para-electron-donating substituted or electron-accepting sub-
stituted phenylacetylenes could react well with good yields

Table 2. Scope of Alkynes for the Hydrosilylation Reaction
with PhSiH3

a

aConditions: 1 (0.5 mmol), PhSiH3 (0.6 mmol), C1 (0.6 mol %),
NatOBu (3 mol %) in THF (0.25 M), isolated yield. The value of b:l
and E/Z was determined using 1H NMR spectroscopy.

Table 3. Scope of Alkynes for Hydrosilylation Reaction with
Ph2SiH2

a

aConditions: 1 (0.5 mmol), Ph2SiH2 (0.6 mmol), C1 (0.6 mol %),
NatOBu (3 mol %) in THF (0.25 M), isolated yield, the ratio of b:l
and E/Z determined using 1H NMR.
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(7b−7e) and high regioselectivities (b:l > 93:7). The structure
of 7c was further confirmed via X-ray crystallography. The
heteroaromatic terminal alkyne 3-ethynylthiophene typically
provided good isolated yield and excellent regioselectivitity (7f,
b:l > 99:1). The hydrosilylation of 1-ethynylcyclohexane
provided the desired α-vinylsilane 7g in high yield with
excellent regioselectivity (b:l > 95:5). The hydrosilylation of
symmetric dialkylalkye 4-octyne (6h) and 1,2-di-p-tolylethyne
(6i) resulted in addition products (7h and 7i) with high
stereoselectivity (E:Z up to 99:1, determined using 1H NMR
spectroscopy). The asymmetric internal alkynes were suitable
for this method to produce 7j−7l with 80%−87% yield and
high regioselectivity and stereoselectivity (E:Z > 90:10).
Finally, we also obtained the product 7m with satisfactory
yield and selectivity.
The hydrosilylation of 1a (5 mmol) with 2a (6 mmol) was

performed under standard conditions to demonstrate the
practical utility of this methodology. Results showed that 0.82
g 3a was obtained in 78% isolated yield with excellent
regioselectivity (b:l > 98:2; Scheme 4, eq 1) and the substrate

1a was completely consumed. The further conversion of the
synthesized α-vinylsilane is a topic of interest in the present
work. Under standard conditions, phenylacetylene (1a)
reacted with 3a, and the corresponding divinylsilanes (9)
were achieved with moderate yield and excellent regioselec-
tivity (Scheme 4, eq 2).
As shown in Figure 1, a leaching experiment was performed

to investigate whether the reaction was homogeneous or

heterogeneous. When the hydrosilylation reaction of phenyl-
acetylene with PhSiH3 was carried out for 50 min, the 1H
NMR yield was 37%. When the reaction was continued for 4 h,
the final 1H NMR yield was 86%. When the reaction was
carried out for 50 min, the catalyst was removed by filtration,
and the solution was further reacted under the same conditions
for 4 h. The final 1H NMR yield was 44%. In addition, by

washing and post-treatment of the used catalyst, we realized
the four times recycling of the cluster catalyst (Figure 2). Both
leaching and cycle test demonstrated that the reaction was a
heterogeneously catalyzed process.

We completed the deuterium-labeling experiment of 4-
phenyl-1-butyne (1m) and Ph2SiH2 to obtain some insights
into the α-selective hydrosilylation of alkynes catalyzed by this
cluster. Results are shown in Scheme 5. Under standard

conditions, the reactions of deuterated 1m-d1/Ph2SiH2 (eq 3 in
Scheme 5) and 1m/Ph2SiD2 (eq 4 in Scheme 5) obtained
deuterated 7m with good isolated yield and α-selectivity (b:l >
99:1). The stereoselectivity was E:Z = 75:25−82:20, which was
lower than the stereoselectivity of internal alkynes. This finding
might be caused by the partial H/D exchange in the product
7m.23 We also tested the reaction of 1a/Ph2SiD2 and
deuterated 1a-d1/Ph2SiH2 under standard conditions, and
results were similar to that in Scheme 5 (see Supporting
Information). The distribution of deuterium is ill-defined for
phenylacetylene. Probably, the more acidic terminal acetylene
causes some H/D exchange reaction under the reaction
conditions (see Supporting Information).
In order to explain the selectivity of the reaction, Density

Function theory (DFT) calculation was carried out. With DFT
method, we have optimized the geometries of the subunits of
catalysts C1, C2, and C3, as well as the geometries loosing the
chlorine ligands (Figure S4 in Supporting Information). Upon
the optimized structures were the Mulliken charge derived. As

Scheme 4. Practicality of the {Co14} Cluster

Figure 1. Reaction time examination and leaching test for the
hydrosilylation of phenylacetylene with PhSiH3.

Figure 2. Cycle experiment.

Scheme 5. Deuterium-Labeling Experiments
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for the subunits C1, C2, and C3, we found the charge of cobalt
of C1 (0.380 eV) was a bit higher than those of C2 (0.365 eV)
and C3 (0.362 eV). So does the trend for the geometries of
C1, C2, and C3 loosing the chlorine ligands. For terminal
alkynes, since the electron cloud density of β-C is higher, the
catalyst with more positive charge is easier to form branched
products. We also analyzed the natural orbitals for the subunits
C1, C2, and C3. we found the gap between the highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) for C1 (72.99 KJ·mol−1) was much
lower than those of C2 (76.40 KJ·mol−1) and C3 (76.93 KJ·
mol−1) (Figure S5 and S6). The smaller gap suggest it is more
reactive when interacting with other reactants. The LUMO−
HOMO gap of C1 was lower than those of C2 and C3
suggested that the selectivity of C1 was superior to those of C2
and C3. This is because the smaller gap means an easier way
for the electron transition. When the reactant was absorbed by
the catalyst, electron transition may occur to trigger the
reaction. Thus, the easier for the electron to transfer, the easier
for the reaction to occur, and the better selectivity is illustrated.
In addition, we computed the adsorption energies between
SiH4 and the catalysts C1, C2, and C3 (Table S13). The lower
the adsorption energy, the easier the reaction will proceed.
Moreover, the Si−H bond in the complex of SiH4-C1 is easier
to extend from 1.478 to1.584 Å. The extension of Si−H bond
was not observed in the other two complexes.
According to Figure 1, the reaction can be regarded almost

as a zero-order reaction to both substrates. Thus, this result
suggests the rate-limiting step to be the event on the catalyst.
On the basis of the results of the selectivity of internal alkynes
in our experiments (syn H/[Si] addition), deuterium-labeling
experiments, and related reports on cocatalyzed alkyne and
alkene hydrosilylation reactions,24,9 we proposed a possible
reaction process (Scheme 6). The catalytic process is carried

out by a crystalline catalyst. First, under the action of the base
NaOtBu, the CoCl2 in the high-nuclearity cluster reacted with
phenylsilane to obtain a low-valent cobalt silyl intermediate A,
which could further integrate with the carbon−carbon triple
bond of alkynes to generate the intermediate B. As β-C in the
terminal alkynes was more negative than α-C, the positively
charged cobalt in the cluster catalyst reacted with β-C first.
From the perspective of steric effect, the structure of B1 was

favorable. Therefore, the product with α-regioselectivity was
the main product. Subsequently, alkynes underwent the
selective 1,2-insertion of Co−Si bonds to form Co alkenyl
species D and then reacted with Ph2SiH2 to form α-selective
products and regenerate A. In addition, the intermediate D
underwent the Crabtree−Ojima−type25 isomerization to
generate α-selective products.
In conclusion, a high-nuclearity {Co14} cluster C1 was

developed, showing highly regio- and stereoselective properties
in the hydrosilylation of alkynes with primary and secondary
silane to produce α-vinylsilanes. The reaction had broad
substrate adaptability and good yields. C1 could achieve high
regioselectivity for alkyl alkynes, and the α-selectivity of some
alkyl alkynes had not been achieved in previous reports.
Leaching tests and reusability of C1 proved that the reaction
was a heterogeneous process.
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