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The electrochemically switchable Cu2+ complex of a 1,3
alternate bis(dipyridyl)calix[4]arene derivative forms self-as-
sembled monolayers on Au(111) surfaces. The receptor is
patterned on the surface by using microcontact printing
procedures and the resulting surface is imaged via SPR.

The experience so far accumulated in the field of molecular devices
has demonstrated that the ability to switch a molecular property is
of relevance to the design and development of new nanodevices.1,2

Metal complexes have been shown to act as switches, which can be
operated through external inputs.3 The anchoring of new metal
complexes showing switchable properties on to solid supports is
thus a fundamental step toward incorporating a molecular switch
into a solid-state device.

Here we report on the characterization of a Au(111) surface
modified with an electrochemically switchable Cu2+ complex of
25,27-bis(1-propyloxy)-26,28-bis(2,2A-dipyridyl-6-methoxy)calix-
[4]arene in the 1,3 alternate conformation (CBP).4,5 The
[Cu(CBP)]2+ complex has been already shown to undergo a quasi-
reversible one-electron redox process in CH3CN solution.5 This
process is characterized by a difference between the cathodic and
anodic peak potential (DEp = 110 mV; sweep rate: 100 mV s21;
reference electrode: silver/silver nitrate; background electrolyte:
0.1 mol dm23 tetrabutylammonium perchlorate)5 that, although
larger than the theoretical value, is well below the value (180 mV)
that is considered a limit value for a reversible process;6 both the
anodic over cathodic peak current ratio (ipa/ipc = 0.9), close to
unity, and the linearity of ip vs. the square root of the sweep rate (R
= 0.998)5 further indicate that [Cu(CBP)]2+ may be quasi-
reversibly reduced.

Two dialkyl sulfide moieties were introduced into CBP to yield
a receptor (25,27-bis[12-(thiododecyl)undecyloxy]-26,28-bis(2,2A-
dipyridyl-6-methoxy)calix[4]arene 1,3 alternate, CBPS) (see ESI†)
that would easily self-assemble on to Au(111) surfaces.7 Fourier
transform–surface plasmon resonance (FT-SPR) was employed to
check whether the immobilized receptor was still able to complex
Cu2+.8 Fig. 1 shows two representative sensorgrams obtained when
pumping a Cu(ClO4)2 1 3 1024 mol dm23 ethanol solution over the
bare gold surface and the CBPS self-assembled monolayer,
respectively. In the experiments pure ethanol was pumped before
and after the Cu(ClO4)2 solution. Whilst the baseline goes back
virtually to its initial position when the experiment is carried out
with a bare gold surface (Fig. 1a), it shifts by some 60 cm21,
corresponding to a change in the refractive index of Dn = 3.6 3
1024,9 when pumping pure ethanol over the CBPS monolayer after
the Cu(ClO4)2 solution (Fig. 1b). This results from the interaction
of Cu2+ ions with the anchored CBPS receptor. It is noteworthy that
non-specific interactions between the Cu(ClO4)2 and the bare gold
surface do not cause significant changes in the FT-SPR response
(Fig. 1a).

The modified surface was studied by using polarization modula-
tion infrared reflection–absorption spectroscopy (PM-IRRAS).11

Fig. 2b and 2c show the CH stretching region (3000–2800 cm21) of
the PM-IRRAS spectra of the CBPS modified Au(111) surface and
of the same surface after a 60 minute immersion into Cu(ClO4)2

0.001 mol dm23 ethanol solution, respectively. The IR transmission
spectrum of the CBPS solution is also shown for comparison (Fig.
2a). All the spectra show peaks attributed to the asymmetric and
symmetric stretching vibration modes of the –CH2– and –CH3

groups of the CBPS receptor. The 2918 cm21 and 2849 cm21 bands
detected in the PM-IRRAS spectrum of the anchored CBPS (Fig.
2b), which are assigned to the –CH2– asymmetric (nas) and
symmetric (ns) stretching mode, respectively, are indicative of a
well-ordered, all-trans conformation of the alkyl chains present in
the SAM formed by the CBPS receptor.12 The changes induced by
Cu2+ interaction with the CBPS monolayer are reflected by the
shifts detected by PM-IRRAS. The bands at nas = 2927 cm21 and
at ns = 2856 cm21, assigned to the –CH2– stretching modes of the
Cu2+ complex of the CBPS monolayer (Fig. 2c) are indicative of a
liquid-like, less-ordered conformation of the alkyl moieties.12 Such
conclusions are also supported by the position of the IR
transmission peaks of the CBPS in CHCl3 solution. The bands
assigned to the –CH2– stretching modes in solution (nas = 2926
cm21, ns = 2855 cm21) are virtually superimposable with those
observed in the PM-IRRAS spectrum of the Cu2+ complex of the
CBPS monolayer and well agree with the expected position for the
–CH2– stretching bands of liquid-like (less-ordered) alkyl
chains.12

The above reported results confirm that CBPS forms well
ordered SAMs on Au(111) surfaces. SAMs anchored on to solid
surfaces are still able to complex Cu2+ ions even though the
complexation increases the disorder of the SAMs.

In view of the fact that electrochemically switchable metal ion
complexes anchored on to solid surfaces can find practical

† Electronic supplementary information (ESI) available: procedures for the
synthesis of CBPS, 1H NMR data. See http://www.rsc.org/suppdata/cc/b4/
b408326c/

Fig. 1 FT-SPR sensorgrams obtained by pumping a Cu(ClO4)2 1 3 1024

mol dm23 ethanol solution over a bare gold surface (A) and the CBPS
monolayer (B).
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applications only if a spatial control of their distribution on to the
surface is achieved, we patterned gold surfaces by depositing our
systems. Microcontact printing (mCP) of SAMs has been proposed
as a method for patterning organic molecules on to solid supports at
scales > 1 mm.13 This procedure was used to pattern the CBPS
receptor on to Au(111) surfaces.14 The patterned surfaces were
imaged by using SPR imaging.15 A representative SPR image of the
CBPS patterned Au(111) surface is shown in Fig. 3. SPR results
show that CBPS may be patterned on to the surface in an ordered
manner with relative ease and speed.

In conclusion we have shown that the CBPS receptor, whose
parent (CBP) compound can be reversibly reduced in solution,
forms well-ordered SAMs on Au(111) surfaces. CBPS is still able
to complex Cu2+ ions, thus providing a system that can be
electrically operated; to this end, studies are under way to check
whether the Cu2+ complex of the CBPS still works within a real
microelectronic device. In addition, we have shown that the CBPS
system may be patterned on to a gold surface by mCP procedures
and that the patterned surface may be imaged by SPR much faster
than it is usually accomplished via other surface-sensitive imaging
techniques.
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Fig. 3 Representative SPR image of the CBPS patterned gold surface.
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