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ABSTRACT: A facile [,Os-mediated 1,5-cyclization of aryldiynes with H,O has been successfully

developed leading to a broad range of substituted 3-acyl 1-indenones in moderate to excellent yields.

The protocol has advantages of metal-free process, mild reaction conditions, simple operation, and

broad functional group tolerance. In the reaction, H,O is used as both a co-solvent and an oxygen

source.
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INTRODUCTION

I-Indenones are known as an important class of carbocyclic compounds and their frameworks are

found to widely exist in natural products and synthetically bioactive molecules.! The 1-indenone

derivatives can exhibit versatile utilities in organic synthesis, drug discovery, materials science,

and among others.>? Consequently, it is of great interest to develop efficient and reliable methods

for their synthesis. The intramolecular cyclization of aromatic carbonyl compounds under acidic

conditions represents the most common way to access 1l-indenones.® In recent years, most of

methods for the construction of 1-indenones mainly focus on metal-involved cyclization reactions.

For example, transition metal-catalyzed cross-coupling reactions* and direct C-H annulations> have

been extensively studied in the last decade. More recently, the metal-free approaches via radical® or

ionic pathway’ for the synthesis of 1-indenone derivatives have received an increasing attention

due to concerns about issues of environmental pollution and pharmaceutical purification. Despite

some advances made over the past few years, it is still highly desirable to develop novel methods

for the construction of diverse substituted 1-indenones from easily available precursors, in simple

operation, and under metal-free reaction conditions.

Aryldiynes represent a class of valuable building blocks in synthetic chemistry which can

undergo either a typical Bergman 1,6-cyclization® or the regio-variant 1,5-cyclization.®!? The latter

transformation of aryldiynes enabled the formation of fulvenes induced by electrophiles,’

radicals,'® transition metals,!! etc., and these types of reactions have been well studied.’'? In
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contrast, the construction of 3-acyl 1-indenones from 1,5-cyclization reaction of aryldiynes has

been less explored.!'™!3 Schumann and co-workers reported an annulation reaction of

1,2-bis(phenylethynyl)benzene with sulfur under air affording 3-benzoyl-2-phenyl-1H-inden-1-one

(2b) in 56% yield (Scheme la), but the reaction required high temperature (120 °C) and only gave

one example.'38 In 1996, Sankararaman et al described the synthesis of 3-acyl 1-indenones through

the cyclization of aryldiynes via chemical, photochemical or electrochemical oxidation, but with

narrow scope of substrates (Scheme 1b).!3® Later, Wu et al synthesized 1-indenones as side

products (yields of 11-23%) during the study of Pd-catalyzed cyclization of aryldiynes (Scheme

lc).!"® As such, the development of general and efficient methods for the construction of diverse

functionalized 1-indenones from aryldiynes is highly expected. Our current research interests focus

on the development of nucleophilic hydroxyl group-triggered cascade reactions to access complex

molecules using water as the hydroxyl source.'*!> Previously, we disclosed that the

Cu(0)/Selecfluor system may in situ generate an active XCuOH species (X = F or BF,) in the

presence of water which is readily to undergo the addition of hydroxyl group to carbon-carbon

multiple bonds and induce successive tandem reactions.'* Very recently, we found that an

[,05/H,0 system could undergo the generation of the hydroxyl radical species under metal-free

conditions and induce tandem cyclization of 1,6-enynes to access strained

1 H-cyclopropa[b]naphthalene-2,7-diones.!> In this study, we describe an I,0s-mediated

1,5-cyclization of aryldiynes with H,O, which provides an efficient and convenient approach for
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the synthesis of 3-acyl 1-indenones in moderate to excellent yields under metal-free conditions

(Scheme 1d).

Scheme 1. Synthesis of 3-Acyl 1-Indenones from Aryldiynes
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o .
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Z
condition i or ii or iii
b) >
l: R=H;
X . 2e: R = 4-MeOPh

i: TPP*BF4°, MeCN, O,, hv.
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N 50 °C, 24 h g
50-92%
RESULTS AND DISCUSSION

Initially, 1,2-bis(p-tolylethynyl)benzene 1a was chosen as the model substrate to optimize the

reaction conditions (Table 1). We first carried out the reaction of 1a with [,Os and H,O in acetonitrile

at 50 °C for 24 hours and the desired product 2a was obtained in 37% yield (entry 1, Table 1). It was

4
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found that the volume ratio of acetonitrile versus H,O has a significant effect on the yield of 2a and a
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solvent mixture with a ratio of MeCN/H,0 = 4:1 (V/V) gave the best yield of 2a (entries 2-5, Table 1).
11 Either elevating the temperature (entry 7, Table 1) or prolonging the reaction time (entry 8, Table 1)
14 could not further improve the yield. Solvent screening experiments indicated that a combined
17 MeCN/H,0 = 4:1 (V/V) solvent system was the most suitable medium for the reaction (entries 9-13 vs
20 4, Table 1). In addition, several other oxidants (PhI(OAc), and K,S,0g) were investigated and all
23 showed inferior efficiency than that of [,0Os (entries 14, 15 vs 4, Table 1). A controlled experiment
26 revealed that no desired product was obtained in the absence of 1,05 (entry 16, Table 1). Finally, either
29 decreasing or increasing the amount of 1,05 resulted in a reduced yield of 2a (entries 17-18 vs 4, Table
32 1).

36 Table 1. Optimization of Reaction Conditions®

38 p-Tolyl 0O

oxidant (4 equiv
+ H,O0 (4 eq ): O’ p-Tolyl

solvent, temp, 24 h

p-Tolyl p-Tolyl

/A

entry catalyst solvent® temp (°C) yield of 2a (%)°

49 1 L,Os MeCN:H,O (400:1, V/V) 50 37
52 2 1L,Os MeCN:H,O (40:1, V/V) 50 53
3 L,Os MeCN:H,O (5:1, V/V) 50 79

57 4 1,05 MeCN:H,0 (4:1, V/V) 50 87 (819
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L,Os
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MeCN:H,0 (3:1, V/V)
MeCN:H,0 (4:1, V/V)
MeCN:H,0 (4:1, V/V)
MeCN:H,0 (4:1, V/V)
THF:H,0 (4:1, V/V)
DCM:H,0 (4:1, V/V)
dioxane:H,0 (4:1, V/V)
toluene:H,O (4:1, V/V)
DMF:H,0 (4:1, V/V)
MeCN:H,0 (4:1, V/V)
MeCN:H,0 (4:1, V/V)
MeCN:H,0 (4:1, V/V)
MeCN:H,0 (4:1, V/V)

MeCN:H,0 (4:1, V/V)

50

35

70

50

50

50

50

50

50

50

50

50

50

50
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75

10

80
22¢, 85f

76

71

73

58

14

79

81

aReaction conditions: 1a (0.1 mmol), oxidant (4 equiv), solvent (1.5 mL), given temperature for

24 h unless otherwise noted. PSolvent mixtures were prepared in terms of volume ratios (V/V).

°LC yields were given. Ysolated yield shown in parentheses. °The reaction time is 12 h. The

reaction time is 28 h. &No oxidant; only the starting materials were recovered. ",Os (2 equiv).

1,05 (6 equiv).
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With the optimized reaction conditions in hand, we next examined the scope of aryldiynes 1 (Table

2). At first, a range of symmetric aryldiynes bearing para-substituted aryl rings at the alkyne moieties

of 1 were evaluated under the standard reaction conditions (2a-i, Table 2). Substrates containing either

electron-rich or electron-deficient aryl rings underwent the cyclization smoothly and gave the desired

products in moderate to excellent yields. It was found that symmetric aryldiynes possessing ortho- or

meta-substituted aryl rings at the alkyne moieties of 1 generally gave decreased yields of 2 compared to

those of para-substituted ones presumably due to the steric hindrance effect (2j-o0 vs 2a-i, Table 2).

Aryldiynes bearing heteroaromatic rings or aliphatic groups at the alkyne moieties of 1 were also

workable for the reaction and afforded the corresponding products in moderate yields (2q, 2r, Table 2).

In addition, asymmetric aryldiynes were also examined under the standard reaction conditions. For

example, when 1s was used, regioisomer 2s was predominantly produced along with a small amount of

2s’ (total 83% yield of 2s and 2s’ with a ratio of 2s : 28’ = 6 : 1 base on the '"H NMR analysis; the

structure of the major isomer is determined by the GC-MS analysis, see Supporting Information); when

substrate 1t was used, two regioisomers 2t and 2t’ were obtained in a total yield of 78% with a ratio of

2t : 2t = 1.2 : 1 base on the GC-MS analysis (see Supporting Information). According to our proposed

mechanism (Scheme 3, vide infra), we presumed that 1s may undergo 5-endo-dig cyclization more

favorably to mainly produce 2s while 1t may proceed via 5-exo-dig cylization more favorably to

mainly deliver 2t (Scheme 3, vide infra). Furthermore, the substituents on phenyl ring A were

investigated. Aryldiynes bearing either electron-donating or electron-withdrawing groups could

7
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undergo the annulation smoothly and afford the target indenones in moderate yields (52-70%, 2u-x,

Table 2). Finally, a gram-scale (5 mmol of 1a used) synthesis of 2a was also tried, and the target

indenone 2a was obtained in 75% yield (eq. 1).

Table 2. Substrate scope for aryldiynes 1°

R? ] 0
’ _ R

R @ = 1,05 (4 equiv) @’ R2
MeCN : H,0 =4 : 1 (VIV) R'

R'I 2

X » 50°C, 24 h /=0
1 2 R

2a: R = 4-Me, 81% 2i: R = 4-CO,Me, 65%
2b: R = H, 75% 2j: R = 3-Cl, 70%
2c: R = 4-"Propyl, 70% 2k: R = 3-Br, 59%
2d: R = 4-Ph, 69% 2l: R = 3-CN, 50%
2e: R = 4-OMe, 90% 2m: R = 2-Me, 71%

2n: R = 2-Cl, 58%
20: R =2-Br, 51%
2p: R = 3,4-di-Me, 84%

2f: R =4-OCgH1, 87%
2g: R = 4-F, 80%
2h: R = 4-Cl, 92%

(N

2s, 2t R 2s', 2t'
2q: 72% 2r: 55% R = OMe: 2s = 71%?P; 28" = 12%?
R = F: 2t = 43%C: 2t' = 35%°

p-Tolyl

2u:R=H, 52%
2v: R = Me, 60% 2w: 70% 2x: 65%

aReaction conditions: 1 (0.3 mmol), [,Os (4 equiv), MeCN/H,0O (4/1 (V/V), 4.5 mL), 50 °C for 24 h.

bThe structure of the major regioisomer 2s was determined by the GC-MS analysis and the yield of 2s

8
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26

was calculated based on the 'H NMR analysis. ‘The structure and yield of regioisomers were

determined by the GC-MS analysis.

p-Tolyl o
= :
1,05 (4 equiv) N O’ PO g 1)
S CH4CN : HyO = 41 1(V/V)
(o]

. prToly 50°C, 24 h, p-Tolyl

a 2a

(153 g, 5 mmol) (1.27 g, 75%)

To gain insight into the reaction mechanism, we performed radical scavenging experiments by an

extra addition of TEMPO!>!¢ to the model reaction. As expected, the annulation reaction was almost

suppressed and the similar result was obtained by using BHT (Butylated hydroxytoluene) as a radical

scavenger (Scheme 2a). In these cases, the starting material 1a was almost recovered. However, when

N-tert-buthyl-a-phenylnitrone (PBN) was used as a radical scavenger, the reaction could still proceed

well (Scheme 2a). We think that TEMPO and BHT may react with 1,05 directly under the reaction

conditions, thus a cyclization may be inhibited.!” To probe the source of the oxygen atoms in 2, several

additional experiments were carried out (Scheme 2b-d). It was found that an attempt to run the

annulation of 1a in a degassed acetonitrile-water mixture (4:1, V/V) could still give 2a in 85% LC yield

Scheme 2b). Note that only small amount of product (8% LC vyield) was detected when we performed
Y p y p

the model reaction in a dehydrated acetonitrile (Scheme 2¢). When substrate 1b was subjected to the

standard reaction conditions except using a MeCN/H,O'® = 4:1 (V/V) solvent system, the

9
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double-'#0-incorporated product 2b-[O!8], ([M+H]": m/z = 315) was detected by the MS analysis

(Scheme 2d, also see Supporting Information). All these results disclosed that H,O should be the sole

oxygen source for the formation of the two carbonyl groups in 3-acyl 1-indenones 2.

Scheme 2. Preliminary Mechanistic Studies

a) Radical scavenging experiments

~Tolyl O
4 p-1oly
std conditions _ O’ p-Tolyl
S radical scavenger
p-Tolyl p-Tolyl
1a 2a

TEMPO  Yieldof 2a @ BHT Yield of 2a ; PBN Yield of 2a

4 equiv 74%
8 equiv 69%

4 equiv 39% 1 4equiv 23%
8 equiv 2% ' 8 equiv trace !
b) Reaction of 1a under standard reaction conditions except under a
degassed MeCN-H,O mixture
1a + H,0 std conditions > 2a:85% LC yield
except in degassed
MeCN/H,0=4:1 (VIV)

c) Control experiment by removal of H,O

1a std conditions -  2a:8%LC yield

except in dehydrated MeCN

d) "80-labeling experiment

180
1b Standard conditions O’ Ph
180
H2 018
Ph
2b-["80],: detected by MS
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On the basis of our mechanistic experiments and previous literature,!>18-22 a possible mechanism for

oNOYTULT D WN =

the [,0s-mediated annulation of 1a with H,O is proposed in Scheme 3. First, HIO; was produced upon

11 the hydrolysis of 1,05 by water.!® Then the decomposition of HIO; may generate HOI and O,.!° In

14 solution, HOI may release I" and OH- species. Activation of the carbon-carbon triple bond of 1a by I*

17 may produce intermediate A."® 5-Exo-dig cyclization of A may generate intermediate B (Path I).!5:19:20

20 The redox reaction between B and HIO; yielded an vinyl-A*-iodane intermediate C that underwent

23 substitution by H,O to generate intermediate D.!32!322 Alternatively, 5-Endo-dig cyclization of A

26 followed by the oxidation of the resulting intermediate F by HIO; may deliver intermediate G.!>-?!2

29 Substitution of I'" moiety in G by H,O could also deliver intermediate D (Path I1).1321322 Finally, the

32 tautomerization of D to E followed by the oxidation of the resulting intermediate E gave the final

35 product 2a.

41 Scheme 3. Proposed Mechanism for the Oxidative Annulation of 1a

11
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In summary, we have successfully developed a facile 1,5-cyclization of aryldiynes with water by using

commercially available, inexpensive, and easily handled 1,05 as the oxidant. The present protocol

provides an efficient and convenient way to access a range of diverse functionalized 3-acyl indenones

by using water as the green oxygen source under metal-free reaction conditions. Further studies on

cyclization reactions involving the ,0s/H,0O system are underway in our laboratory.
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EXPERIMENTAL SECTION

General Information. Unless otherwise stated, commercially available reagents were purchased

from chemical suppliers and used without purifications. The ! H and '*C NMR spectra were recorded

on a spectrometer at 25 °C in CDClz or DMSO-dg at 500 MHz and 125 MHz, respectively. Proton

chemical shifts (8) are relative to tetramethylsilane (TMS, & = 0.00) as internal standard and expressed

in ppm. Chemical shifts of *C NMR were reported relative to the solvent signal (CDCl;: 6 = 77.16

ppm; DMSO-dq: 6 = 39.51 ppm). GC-MS experiments were performed with EI source; high resolution

mass spectra (HRMS) were obtained on a TOF MS instrument with EI or ESI source. Acetonitrile is

dehydrated by CaH, before preparation of the combined MeCN/H,0 solvent system. Flash column

chromatography was performed on silica gel (100-200 mesh) with the indicated solvent mixtures.

Preparation of the starting material aryldiynes 1.2 Pd(PPh;),Cl, (28.1 mg, 0.04 mmol, 2 mol %)
and Cul (3.8 mg, 0.02 mmol, 1 mol %) were placed to a septum-capped one neck flask which was then
charged with Et;N (15 mL) and the resulting mixture was degassed by freeze-pump-thaw technique. An
aryl halide (2 mmol) and an appropriate acetylene (1.2 equiv based on aryl halide) were successively
added via syringe to the stirred reaction mixture. After that the reaction mixture was stirred at room
temperature until all the aryl halide has been consumed (monitored by TLC or GC). The Et;N was
removed under reduced pressure and the residue was dissolved in toluene (10 mL) and filtered through
a small pad of silica gel, which then was rinsed with toluene (10 mL x 2). The combined organic layer
was concentrated under reduced pressure and the residue was purified by flash chromatography using
hexane or hexane/EtOAc mixture as an eluent. Enediynes la-x were synthesized according to this
general procedure from the corresponding o-diiodobenzenes with appropriate terminal alkynes. Their
'H and 3C NMR spectra were in line with the previous literature.”%10b.11¢.20

13

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry Page 14 of 32

Typical procedure for the I,0s-mediated 5-exo-dig cyclization of aryldiynes with H,O. To a 25
mL Schlenk tube were added 1,2-bis(p-tolylethynyl)benzene 1a (91.8 mg, 0.3 mmol), 05 (400.8 mg,
4 equiv, 1.2 mmol) and mixed solvent (MeCN:H,0 = 4:1 (V/V), 4.5 mL). The mixture was stirred at 50
°C for 24 h. H,O (4 mL) and saturated Na,S,0; (4 mL) were added at room temperature. Then, the
reaction mixture was extracted with CH,Cl, and purified by flash column chromatography (petroleum

ether/EtOAc, =10 : 1 (V/V)). The product was isolated as a yellow solid (82.0 mg, 81%).

3-(4-methylbenzoyl)-2-(p-tolyl)- 1 H-inden-1-one (2a). Yellow solid (82.0 mg, 81%); m.p. 152-155
°C; 'TH NMR (500 MHz, CDCl;): 4 7.86 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 7.0 Hz, 1H), 7.38-7.34 (m,
3H), 7.29-7.26 (m, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 7.2 Hz, 1H),
2.37 (s, 3H), 2.28 (s, 3H); BC{'H} NMR (125 MHz, CDCl;): 3 196.3, 194.4, 150.1, 145.6, 144.4,
139.0, 134.3, 134.0, 132.8, 129.6, 129.5, 129.2, 129.11, 129.09, 126.9, 123.7, 121.5, 21.8, 21.3; HRMS
(ESI) for C,4H;90, [M+H]": caled 339.1380, found 339.1385.

3-benzoyl-2-phenyl-1H-inden-1-one (2b)."3® Yellow solid (70.1 mg, 75%); m.p. 113-115 °C; 'H
NMR (500 MHz, CDCls): 8 7.95-7.93 (m, 2H), 7.63 (d, J = 7.0 Hz, 1H), 7.54-7.50 (m, 1H), 7.45-7.43
(m, 2H), 7.40-7.35 (m, 3H), 7.32-7.29 (m, 1H), 7.25-7.22 (m, 3H), 7.06 (d, J = 7.3 Hz, 1H); B3C{'H}
NMR (125 MHz, CDCls): 8 196.0, 194.6, 150.4, 144.1, 135.2, 134.6, 134.39, 134.36, 129.7, 129.6,
129.4,129.3,129.0, 128.8, 128.3, 123.9, 121.8.

3-(4-propylbenzoyl)-2-(4-propylphenyl)- 1 H-inden-1-one (2¢). Yellow solid (83.2 mg, 70%); m.p.
159-161 °C; 'H NMR (500 MHz, CDCl;): 6 7.86 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.1 Hz, 1H),
7.39-7.34 (m, 3H), 7.27 (t, J = 7.4 Hz, 1H), 7.16 (d, J = 8.2 Hz, 2H), 7.06-7.02 (m, 3H), 2.60-2.57 (m,
2H), 2.51-2.48 (m, 2H), 1.64-1.52 (m, 4H), 0.91-0.85 (m, 6H); BC{'H} NMR (125 MHz, CDCl;): §
196.4, 194.3, 150.0, 149.9, 144.4, 143.7, 134.4, 134.3, 133.1, 129.6, 129.5, 129.2, 129.0, 128.9, 128.4,
127.1, 123.7, 121.6, 38.0, 37.7, 24.1, 23.9, 13.6; HRMS (ESI) for CysH,;0, [M+H]*: calcd 395.2006,
found 395.2003.

3-([1,1"-biphenyl]-4-carbonyl)-2-([1,1'-biphenyl]-4-yl)- 1 H-inden-1-one (2d). Yellow solid (96.3 mg,

14
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69%); m.p. 209-211 °C; 'H NMR (500 MHz, CDCls): & 8.08-8.05 (m, 2H), 7.67 (d, J = 6.8 Hz, 1H),
7.64-7.60 (m, 3H), 7.59-7.58 (m, 1H), 7.58-7.55 (m, 2H), 7.54-7.51 (m, 4H), 7.46-7.39 (m, 6H),
7.35-7.31 (m, 2H), 7.09 (d, J = 7.2 Hz, 1H); BC{'H} NMR (125 MHz, CDCly): § 196.1, 194.2, 150.5,
147.2, 144.3, 141.6, 140.2, 139.5, 134.5, 134.0, 133.9, 130.0, 129.8, 129.7, 129.4, 129.0, 128.8, 128.7,
128.5, 127.6, 127.55, 127.3, 127.1, 127.0, 123.9, 121.8; HRMS (ESI) for C;34H,30, [M+H]": caled
463.1693, found 463.1688.

3-(4-methoxybenzoyl)-2-(4-methoxyphenyl)-1 H-inden-1-one (2e).''* Red solid (99.9 mg, 90%); m.p.
120-122 °C (lit.'* 116-117 °C); '"H NMR (500 MHz, CDCl3): § 7.95 -7.92 (m, 2H), 7.57 (d, J= 7.1 Hz,
1H), 7.46-7.43 (m, 2H), 7.34 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 7.2 Hz, 1H),
6.86-6.83 (m, 4H), 6.79-6.77 (m, 2.4 Hz, 2H), 3.81 (s, 3H), 3.74 (s, 3H); *C{'H} NMR (125 MHz,
CDCl5): & 196.6, 193.2, 164.6, 160.1, 149.1, 144.5, 134.3, 133.3, 131.8, 130.8, 129.6, 128.9, 128.3,
123.6, 122.4,121.3, 114.1, 113.9, 55.5, 55.1.

3-(4-(pentyloxy)benzoyl)-2-(4-(pentyloxy)phenyl)- 1 H-inden-1-one (2f). Red solid (126.1 mg, 87%);
m.p. 191-193 °C; '"H NMR (500 MHz, CDCl3): & 7.94-7.91(m, J = 5.8 Hz, 2H), 7.58 (d, J = 7.0 Hz,
1H), 7.45-7.43 (m, 2H), 7.36-7.33 (m, 1H), 7.25 (t, J= 7.3 Hz, 1H), 6.98 (d, /= 7.2 Hz, 1H), 6.85-6.83
(m, 2H), 6.79-6.78 (m, 2H), 3.98 (t, J = 6.6 Hz, 2H), 3.90 (t, J = 6.6 Hz, 2H), 1.81-1.72 (m, 4H),
1.44-1.33 (m, 8H), 0.95-0.91 (m, 6H); 3C{'H} NMR (125 MHz, CDCl;): 6 196.8, 193.3, 164.3, 159.7,
149.1, 144.7, 134.3, 133.4, 131.9, 130.8, 129.7, 128.8, 128.1, 123.6, 122.2, 121.4, 114.60, 114.5, 68.4,
68.0, 28.9, 28.7, 28.2, 28.1, 22.42, 22.38, 13.98, 13.96; HRMS (ESI) for Cs;,H3504 [M+H]": calcd
483.2530, found 483.2535.

3-(4-fluorobenzoyl)-2-(4-fluorophenyl)-1 H-inden-1-one (2g). Yellow solid (83.1 mg, 80%); m.p.
106-109 °C; '"H NMR (500 MHz, CDCl;): 8 7.97-7.93 (m, 2H), 7.63 (d, J= 7.1 Hz, 1H), 7.44-7.39 (m,
3H), 7.33 (t,J= 7.2 Hz, 1H), 7.07-7.03 (m, 3H), 6.98-6.93 (m, 2H); 3C{'H} NMR (125 MHz, CDCl;):
0 195.9,192.9, 166.6 (d, J=257.8 Hz) , 163.2 (d, J=250.7 Hz), 149.8, 143.9, 134.6, 133.7, 132.2 (d, J

=9.7Hz), 131.6 (d, J=2.9 Hz), 131.4 (d, J = 8.3 Hz), 129.6, 129.4, 125.8 (d, /= 3.3 Hz), 124.1, 121.9,
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116.3 (d, J = 22.2 Hz), 115.7 (d, J = 21.8 Hz); HRMS (ESI) for C;,H;5F,0, [M+H]": calcd 347.0878,
found 347.0884.

3-(4-chlorobenzoyl)-2-(4-chlorophenyl)- 1 H-inden-1-one (2h). Yellow solid (104.9 mg, 92%); m.p.
140-143 °C; '"H NMR (500 MHz, CDCl;): 8 7.88-7.85 (m, 2H), 7.63 (d, J= 7.0 Hz, 1H), 7.41-7.31 (m,
6H), 7.25-7.22 (m, 2H), 7.03 (d, J = 7.2 Hz, 1H); BC{'H} NMR (125 MHz, CDCIl;): 6 195.5, 193.1,
150.1, 143.6, 141.3, 135.4, 134.6, 133.4, 133.3, 130.7, 130.6, 129.7, 129.4, 129.4, 128.8, 128.0, 124.2,
121.9; HRMS (ESI) for C,,H;5C1,0, [M+H]*: calcd 379.0287, found 379.0281.

methyl 4-(3-(4-(methoxycarbonyl)benzoyl)-1-oxo-1H-inden-2-yl)benzoate (2i). Yellow solid (83.2
mg, 65%); m.p. 120-122 °C; 'H NMR (500 MHz, CDCls): & 8.01-7.99 (m, 2H), 7.97-7.94 (m, 2H),
7.90-7.88 (m, 2H), 7.67 (d, J = 6.8 Hz, 1H), 7.48-7.46 (m, 2H), 7.45-7.42 (m, 1H), 7.38-7.35 (m, 1H),
7.11 (d, J = 7.2 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H); 3C{'H} NMR (125 MHz, CDCl;): § 195.2, 193.7,
166.4, 165.8, 151.0, 143.4, 138.1, 135.1, 134.7, 134.1, 133.9, 130.4, 130.1, 130.0, 129.6, 129.5, 129.3,
129.2,124.3,122.2, 52.6, 52.2; HRMS (ESI) for C,¢H 9O [M+H]": calcd 427.1176, found 427.1172.

3-(3-chlorobenzoyl)-2-(3-chlorophenyl)-1H-inden-1-one (2j). Yellow solid (79.5 mg, 70%); m.p.
135-137 °C; 'H NMR (500 MHz, CDCl;): & 7.88 (t, J = 1.8 Hz, 1H), 7.75-7.73 (m, 1H), 7.66-7.64 (m,
1H), 7.51-7.49 (m, 1H), 7.44-7.37 (m, 2H), 7.37-7.29 (m, 2H), 7.25-7.21 (m, 2H), 7.19-7.16 (m, 1H),
7.10 (d, J= 7.3 Hz, 1H); BC{!H} NMR (125 MHz, CDCl;): 8 195.1, 192.9, 150.3, 143.4, 136.6, 135.3,
134.6, 134.4, 134.4, 133.9, 131.2, 130.2, 129.9, 129.7, 129.3, 129.26, 129.0, 127.5, 127.5, 124.3, 122.1;
HRMS (ESI) for C,,H3Cl1,0, [M+H]*: calcd 379.0287, found 379.0297.

3-(3-bromobenzoyl)-2-(3-bromophenyl)- 1 H-inden-1-one (2k). Red-brown solid (82.1 mg, 59%); m.p.
127-129 °C; 'H NMR (500 MHz, CDCl;): 4 8.02 (t, /= 1.7 Hz, 1H), 7.78-7.76 (m, 1H), 7.64-7.62 (m,
2H), 7.56 (t, J = 1.7 Hz, 1H), 7.43-7.40 (m, 1H), 7.37-7.32 (m, 2H), 7.28-7.26 (m, 1H), 7.23 (t, J=7.9
Hz, 1H), 7.10 (t, J = 7.9 Hz, 2H); BC{'H} NMR (125 MHz, CDCl;): 4 195.1, 192.7, 150.1, 143.3,
137.2, 136.8, 134.6, 133.9, 132.2, 132.1, 131.9, 131.4, 130.4, 129.8, 129.3, 127.9, 127.8, 124.2, 123.2,

122.4, 122.1; HRMS (ESI) for C»,H;3Br,O, [M+H]": calcd 466.9277, found 466.9283.

16

ACS Paragon Plus Environment



Page 17 of 32 The Journal of Organic Chemistry

1

2

3

g 3-(3-(3-cyanobenzoyl)-1-oxo-1H-inden-2-yl)benzonitrile (2I). Black solid (54.2 mg, 50%); m.p.
6

7 181-183 °C; 'H NMR (500 MHz, CDCls): 6 8.16 (t,J = 1.4 Hz, 1H), 8.11-8.09 (m, 1H), 7.83-7.81 (m,
8

9 1H), 7.71-7.68 (m, 2H), 7.61-7.59 (m, 1H), 7.57-7.53 (m, 2H), 7.48-7.44 (m, 1H), 7.42-7.38 (m, 2H),
10

N 7.10 (d, J= 7.2 Hz, 1H); BC{'H} NMR (125 MHz, CDCl;):  194.4, 191.8, 150.4, 142.8, 137.3, 135.7,
134.9, 133.5, 133.4, 133.0, 132.8, 132.7, 132.6, 130.6, 130.4, 130.14, 129.4, 129.0, 124.7, 122.4, 117.9,

16 117.2, 113.7, 113.0; HRMS (ESI) for C,4H3N,0, [M+H]": calcd 361.0972, found 361.0967.

12 3-(2-methylbenzoyl)-2-(o-tolyl)-1H-inden-1-one (2m). Yellow solid (72.0 mg, 71%); m.p. 120-122
;‘1) °C; 'TH NMR (500 MHz, DMSO-dg): 6 7.63 (d, J= 7.1 Hz, 1H), 7.56-7.54 (m, 1H), 7.45-7.42 (m, 1H),
;g 7.35-7.29 (m, 2H), 7.26-7.23 (m, 1H), 7.12-7.03 (m, 4H), 7.01-7.00 (m, 2H), 2.52 (s, 3H), 2.23 (s, 3H);
;g BC{'H} NMR (125 MHz, DMSO-d¢): & 195.9, 195.8, 152.4, 143.9, 138.9, 138.7, 136.5, 136.1, 134.2,
26

27 132.2, 131.6, 130.2, 123.0, 129.7, 129.7, 129.6, 129.2, 128.8, 125.2, 125.1, 123.9, 122.3, 20.7, 20.5;
29 HRMS (ESI) for Cy4H90, [M+H]*: calcd 339.1380, found 339.1387.

3-(2-chlorobenzoyl)-2-(2-chlorophenyl)- 1 H-inden-1-one (2n). Yellow solid (66.0 mg, 58%); m.p.
34 153-155 °C; 'TH NMR (500 MHz, CDCl;): 6 7.66 (d, J = 7.1 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H),

36 7.53-7.48 (m, 2H), 7.39-7.36 (m, 1H), 7.19-7.16 (m, 1H), 7.15-7.12 (m, 2H), 7.11-7.06 (m, 4H):

gg BC{'H} NMR (125 MHz, CDCly): 6 195.4, 193.1, 150.3, 143.0, 137.2, 137.1, 134.5, 133.7, 132.5,
j? 132.0, 130.9, 130.2, 130.0, 129.9, 129.6, 129.5, 129.2, 129.1, 126.5, 126.1, 124.2, 123.3; HRMS (ESI)
fé for Cp,H3CL,O, [M+H]*: caled 379.0287, found 379.0282.

EIE 3-(2-bromobenzoyl)-2-(2-bromophenyl)- 1 H-inden-1-one (20). Red-brown solid (72.3 mg, 51%); m.p.

47 115-118 °C; '"H NMR (500 MHz, CDCL3): § 7.67-7.65 (m, 2H), 7.54-7.51 (m, 1H), 7.45-7.43 (m, 1H),
7.40-7.37 (m, 1H), 7.35-7.33 (m, 2H), 7.14-7.06 (m, 4H), 7.01-6.98 (m, 1H); 3C{'H} NMR (125 MHz,
= CDCly): 5 195.1, 193.8, 149.6, 143.1, 139.3, 139.0, 134.5, 133.0, 132.32, 132.31, 131.2, 130.8, 130.1,
54 123.0, 129.5, 127.0, 126.7, 124.2, 123.4, 123.4, 120.1; HRMS (ESI) for C»,H,3Br,0, [M+H]*: calcd
56 466.9277, found 466.9284.

3-(3,4-dimethylbenzoyl)-2-(3,4-dimethylphenyl)- 1 H-inden-1-one (2p). Yellow solid (92.3 mg, 84%);
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m.p. 154-156 °C; '"H NMR (500 MHz, CDCl3): 6 7.75 (s, 1H), 7.68-7.67 (m, 1H), 7.60 (d, J = 7.0 Hz,
1H), 7.36-7.33 (m, 1H), 7.29-7.25 (m, 2H), 7.19-7.17 (m, 1H), 7.13 (d, J = 7.9 Hz, 1H), 7.01-6.96 (m,
2H), 2.27 (s, 3H), 2.24 (s, 3H), 2.18 (s, 3H), 2.17 (s, 3H); *C{'H} NMR (125 MHz, CDCl3): § 196.5,
194.7, 150.3, 144.5, 144.3, 137.7, 137.3, 136.5, 134.3, 134.1, 133.3, 130.4, 130.2, 130.1, 129.7, 129.6,
129.0, 127.4, 126.8, 123.6, 121.5, 20.2, 19.7, 19.6, 19.6; HRMS (ESI) for CysH»;0, [M+H]*: caled
367.1693, found 367.1698.

3-(3,4-dimethylbenzoyl)-2-(3,4-dimethylphenyl)- 1 H-inden-1-one (2q). Yellow solid (69.6 mg, 72%);
m.p. 130-132 °C; "H NMR (500 MHz, CDCl3): & 8.09-8.08 (m, 1H), 7.94-7.93 (m, 1H), 7.63 — 7.62 (m,
1H), 7.58 (d, J = 7.0 Hz, 1H), 7.38-7.33 (m, 2H), 7.29-7.26 (m, 1H), 7.21-7.19 (m, 1H), 7.15-7.14 (m,
1H), 7.02 (d, J = 7.3 Hz, 1H); BC{'H} NMR (125 MHz, CDCl;): & 196.3, 188.1, 148.3, 144.4, 140.6,
136.0, 134.5, 130.1, 129.5, 129.2, 128.5, 127.7, 127.5, 127.3, 126.9, 125.6, 123.9, 121.7; HRMS (ESI)
for C1gH;10,S, [M+H]": caled 323.0195, found 323.0189.

2-butyl-3-pentanoyl-1H-inden-1-one (2r). Yellow solid (44.6 mg, 55%); m.p. 87-89 °C; 'H NMR
(500 MHz, CDCl;): 6 8.29-8.27 (m, 1H), 8.13-8.11 (m, 1H), 7.88-7.82 (m, 2H), 2.42-2.39 (m, 2H),
2.12-2.08 (m, 2H), 1.61-1.55 (m, 2H), 1.37-1.30 (m, 6H), 0.92-0.84 (m, 6H); BC{'H} NMR (125 MHz,
CDCly): 6 188.5, 172.6, 160.4, 135.2, 134.6, 131.1, 130.5, 128.0, 126.1, 102.3, 37.7, 33.1, 26.4, 24.0,
22.5,22.0, 13.7, 13.6; HRMS (ESI) for C,gH»;0, [M+H]": caled 271.1693, found 271.1698.

3-benzoyl-2-(4-methoxyphenyl)- 1 H-inden- 1-one (2s) and 3-(4-methoxybenzoyl)-2-phenyl
-1H-inden-1-one (2s'). Inseparable regioisomers: 2s:2s’ = 6:1; Red solid (85.0 mg, 83% total yield);
m.p. 123-126 °C; 'H NMR (500 MHz, CDCl;) (peaks for major product 2s): 4 7.95-7.93 (m, 2H), 7.61
(d, J=7.0 Hz, 2H), 7.55-7.52 (m, 1H), 7.42-7.35 (m, 5H), 7.29-7.26 (m, 1H), 7.03 (d, J = 7.4 Hz, 1H),
6.79-6.76 (m, 2H), 3.75 (s, 3H); *C{'H} NMR (125 MHz, CDCl;) (peaks for major product 2s): &
196.6, 195.0, 160.3, 148.5, 144.5, 135.3, 134.5, 134.4, 131.0, 129.6, 129.5, 129.0, 128.9, 123.9, 122.3,
121.5, 114.1, 114.0, 55.3; HRMS (ESI) for C,3H;705; [M+H]": calcd 341.1172, found 341.1177.

3-benzoyl-2-(4-fluorophenyl)-1H-inden-1-one (2t) and 3-(4-fluorobenzoyl)-2-phenyl-1H-inden
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1

2

3

g -1-one (2t'). Inseparable regioisomers: 2t:2t" = 1.2:1; Yellow solid (77.2 mg, 78% total yield); m.p.
6

7 101-103 °C; 'H NMR (500 MHz, CDCl3): 6 7.97-7.96 (m, 2H), 7.64-7.62 (m, 1H), 7.45-7.38 (m, 4H),
8

9 7.37-7.23 (m, 3H), 7.09-7.00 (m, 2H), 6.95-6.92 (m, 1H); *C{'H} NMR (125 MHz, CDCl;): we failed
10

1; to assign those peaks for each isomer due to the substantial overlaps appearing in '*C NMR spectra;
I HRMS (ESI) for Co,H,4FO, [M+H]": caled 329.0972, found 329.0976.

15

16 3-benzoyl-5,6-dimethoxy-2-phenyl-1H-inden-1-one (2u). Purple solid (58.2 mg, 52%); m.p. 145-147

18 °C; 'H NMR (500 MHz, CDCly): § 7.91-7.89 (m, 2H), 7.50-7.47 (m, 1H), 7.37-7.35 (m, 2H), 7.32 (t, J

20 = 7.8 Hz, 2H), 7.23 (s, 1H), 7.21-7.18 (m, 3H), 6.70 (s, 1H), 3.94 (s, 3H), 3.88 (s, 3H); *C{'H} NMR
;g (125 MHz, CDCLy): & 195.5, 194.7, 153.7, 149.4, 148.3, 138.8, 135.3, 134.5, 134.2, 129.9, 129.4, 129.3,
24

25 128.7, 128.7, 128.2, 121.8, 108.2, 106.1, 56.4, 56.4; HRMS (ESI) for C,4sH,9O4 [M+H]": calcd

27 371.1278, found 371.1270.

28
gg 5,6-dimethoxy-3-(4-methylbenzoyl)-2-(p-tolyl)-1 H-inden-1-one (2v). Purple solid (71.8 mg, 60%);
2 m.p. 152-154 °C; 'H NMR (500 MHz, CDCly): & 7.84 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H),
33

34 7.21 (s, 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.63 (s, 1H), 3.93 (s, 3H), 3.86 (s, 3H),
36 2.35 (s, 3H), 2.25 (s, 3H); *C{'H} NMR (125 MHz, CDCl;): & 195.9, 194.6, 153.6, 149.3, 148.1,

38 145.5, 139.1, 138.79, 133.78, 132.9, 129.61, 129.55, 129.2, 129.1, 127.2, 121.8, 108.1, 105.9, 56.5,

4 56.4,21.8,21.3; HRMS (ESI) for Cy6H,304 [M+H]": caled 399.1591, found 399.1597.

42

43 5,6-dimethyl-3-(4-methylbenzoyl)-2-(p-tolyl)-1 H-inden- 1-one (2w). Black solid (77.0 mg, 70%); m.p.
44

45 138-140 °C; 'H NMR (500 MHz, CDCl3): & 7.84 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.21 (s,
47 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 6.63 (s, 1H), 3.93 (s, 3H), 3.86 (s, 3H), 2.35 (s,
3H), 2.25 (s, 3H); BC{'H} NMR (125 MHz, CDCl3): 3 195.9, 194.6, 153.6, 149.3, 148.1, 145.5, 139.1,
52 138.8, 133.8, 132.9, 129.6, 129.6, 129.2, 129.1, 127.2, 121.8, 108.1, 105.9, 56.5, 56.4, 21.8, 21.3;
54 HRMS (ESI) for C,6H,30, [M+H]": calcd 367.1693, found 367.1697.

56 3-benzoyl-5,6-difluoro-2-phenyl-1H-inden-1-one (2x). Yellow solid (67.5 mg, 65%); m.p. 124-127

°C; 'TH NMR (500 MHz, CDCl,): 8 7.77-7.75 (m, 2H), 7.56-7.53 (m, 1H), 7.48-7.45 (m, 1H), 7.38-7.35
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(m, 2H), 7.34-7.31 (m, 2H), 7.20-7.16 (m, 3H), 7.07-7.04 (m, 1H); 3C{'H} NMR (125 MHz, CDCl):
5 192.3, 190.0, 158.8 (dd, J; = 248.8 Hz, J, = 71.3 Hz), 158.3 (dd, J; = 253.8 Hz, J, = 17.5 Hz), 135.0,
132.0, 131.8 (d, J = 1.3 Hz), 129.9, 129.7, 129.1, 128.6, 122.7 (dd, J; = 15.0 Hz, J, = 6.3 Hz), 121.6,
120.8 (d, J = 26.3 Hz), 120.6 (dd, J, = 18.8 Hz, J, = 11.3 Hz), 116.4 (dd, J, = 25.0 Hz, J, = 3.8 Hz),
100.2 (d, J = 2.5 Hz), 81.2 (d, J = 2.5 Hz); HRMS (ESI) for Co,H3F,0, [M+H]*: calcd 347.0878,

found 347.0871.

Gram-scale synthesis of 2a. To a 50 mL round-bottomed flask were added

1,2-bis(p-tolylethynyl)benzene 1a (1.5 g, 5 mmol), 1,05 (6.7 g, 4 equiv, 20 mmol), MeCN/H,O (4/1

(V/V), 25 mL). The reaction was stirred at 50 °C for 24 h. After completion of the reaction, H,O (10

mL) and saturated Na,S,0; (15 mL) was added at room temperature. Then, the reaction mixture was

extracted with DCM and purified by flash chromatography on silica gel (petroleum ether/EtOAc, V/V

=10 : 1). The product was isolated as a yellow solid (1.27 g, 75%).

Radical inhibition reactions. To a 25 mL Schlenk tube were added 1,2-bis(p-tolylethynyl)benzene

1la (91.8 mg, 0.3 mmol), [,05 (400.8 mg, 4 equiv, 1.2 mmol), TEMPO, butylated hydroxytoluene

(BHT), or N-tert-buthyl-a-phenylnitrone (PBN), MeCN/H,O (4/1 (V/V), 4.5 mL). The reaction was

stirred at 50 °C for 24 h. After completion, samples were taken for LC analysis.

Controlled experiment by removal of O,. 1,2-Bis(p-tolylethynyl)benzene 1a (91.8 mg, 0.3 mmol),

1,05 (400.8 mg, 4 equiv, 1.2 mmol), MeCN/H,0O (4/1 (V/V, 4.5 mL) were added to a 10-mL flask

equipped with a high-vacuum PTFE valve-to-glass seal. Then the resultant mixture in the sealed tube

was frozen by immersion of the flask in liquid N,. When solvent was completely frozen, the flask was
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opened to the vacuum (high vacuum) and pumped for 2-3 minutes, with the flask still immersed in

liquid N,. The flask was then closed and warmed until solvent completely melted. This process was

repeated three times and after the last cycle the flask was backfilled with an inert Ar gas. The reaction

was stirred at 50 °C for 24 h under Ar atmosphere. After completion, samples were taken for LC

analysis.

Controlled experiment by removal of H,O. To a 25 mL Schlenk tube were added

1,2-bis(p-tolylethynyl)benzene 1a (91.8 mg, 0.3 mmol), [,Os (400.8 mg, 4 equiv, 1.2 mmol) and

anhydrous acetonitrile (4 mL). The reaction was stirred at 50 °C for 24 h. After completion, samples

were taken for LC analysis.

18Q-Labeling experiment. To a 25 mL Schlenk tube were added 1,2-bis(phenylethynyl)benzene 1b

(83.5 mg, 0.3 mmol), 1,05 (400.8 mg, 4 equiv, 1.2 mmol) and MeCN/H,0O'® (4/1 (V/V), 4.5 mL). The

reaction was stirred at 50 °C for 24 h. H,O (4 mL) and saturated Na,S,0; (4 mL) was added at room

temperature. Then, the reaction mixture was extracted with DCM and purified by flash chromatography

on silica gel (petroleum ether/EtOAc = 10 : 1 (V/V)) as a yellow solid (68.0 mg, 73%). The

double-'#0-incorporated product 2b-[0'%], (m/z = 315 [M+H]") was detected by the MS analysis (see

Figure S/ in Supporting Information).

ASSOCIATED CONTENT

Supporting Information

Charts for mechanistic studies as well as copies of 'H and '3C NMR spectra of the products. This

21

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry Page 22 of 32

material is available free of charge via the Internet at http://pubs.acs.org.
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