Regio- and Stereocontrol in the Reactions of α -Halo- β , γ -enoates and α -O-Phosphono- β , γ -enenitriles with Organocuprates

R. Karl Dieter* and Alfredo Picado

Hunter Laboratory, Department of Chemistry, Clemson University, Clemson, South Carolina 29634-0973, United States

Supporting Information

ABSTRACT: The reactions of (*Z*)- and (*E*)-ethyl 2-chloro-3-octenoate (4a and 17) and (*E*)- and (*Z*)-diethyl (1-cyano-2-heptenyl)phosphate (21a and 21b) with organocuprates were investigated as potential substrates for preparing γ -substituted α,β -enoates and enenitriles. In these copper-mediated allylic substitution reactions, the *Z*-isomer 4a displayed complete regio- and stereoselectivity (i.e., *E:Z*), while the regio- and stereoselectivity for *E*-isomer 17 varied as a function of solvent, cuprate reagent, transferable ligand, and cuprate counterion (e.g., Li⁺ vs MgX⁺). Excellent selectivities could be achieved with 17 and "BuCuCNLi in Et₂O. Conditions for improved selectivities in the reactions of allylic cyanophosphates over those previously reported were found. A series of relative rate and competition experiments was performed, and the degree of regio- and stereoselectivity for each system was rationalized in the light of the current mechanistic understanding of cuprate-mediated allylic substitution reactions.

■ INTRODUCTION

Small, highly functionalized synthons provide opportunities for divergent synthesis via chemo-, regio-, and stereocontrolled reaction pathways and through tandem or sequential reactions.^{1,2} The presence of multiple functional groups along a connected sequence of carbon atoms also provides opportunities for remote functionalization. Allylic systems with additional functionality on the allylic position containing the leaving group are attractive candidates for employing this strategy. Although copper-mediated allylic substitution reactions have been extensively studied and developed, control of regio- and stereoselectivity is too often substrate- and reagentdependent and difficult to control.³ Much progress has been made in the development of asymmetric allylic substitution (AAS) reactions involving chiral substrates or chiral reagents.^{3,4} Enantioenriched α -alkylations have been achieved with α_{β} enoates with a leaving group in the γ -position,^{4e-h} while racemic vinyloxiranes^{2d} and δ -acetoxy- γ -halo- α , β -enoates^{2f} afford excellent diastereoselectivity in a one-pot bis-allylic substitution methodology. Mixtures of products with $(S_N 2')$ and without $(S_N 2)$ rearrangement of the double bond, present as E:Z double bond isomers or as diastereomeric mixtures when additional stereogenic centers are present, are often obtained, and these mixtures are normally difficult to separate.^{2d,5-7} These difficulties have been recently reported in coppermediated alkylation of α -chloro- β , γ -unsaturated esters^{5,6} and allylic cyanohydrin phosphates⁷ with organocopper reagents.

Organocuprate-mediated allylic substitution on dialkyl α cyano- β -alkenylphosphate derivatives was first performed on enantioenriched (E)-allylic cyanohydrin O-phosphates to afford α_{β} -conjugated nitriles,⁷ which were then hydrolyzed with strong acids to yield the unsaturated esters after esterification. The protocol always afforded alkene E:Z mixtures with poor stereoselectivity. Subsequently, Posner and co-workers prepared enantioenriched (E)- α -chloro- β , γ -enoates from (E)- γ seleno- $\alpha_{\beta}\beta$ -enoates by modification of the protocol of Paulmier and co-workers⁸ and explored organocopper-mediated allylic substitution reactions on these substrates. Although the method was used for the preparation of γ -methyl- α , β -enoates, γ -amino- $\alpha_{,\beta}$ -enoates,⁵ and rhodanines,⁹ the method was largely limited to methylation using Me₂CuMgBr. Cuprates with Ph, allyl, and vinyl ligands gave no reaction, while Et-, ⁱPr-, and ^tBu-derived cuprates gave nonseparable mixtures of $S_N 2$ and $S_N 2'$ products.⁶ We now report our efforts to control the regioand stereoselectivity in the reactions of organocuprates with α nucleofuge-substituted- β_{γ} -enoates and nitriles through examination of solvent, temperature, leaving group, cuprate composition, and alkene configuration (i.e., E vs Z) of the substrate.

Received: September 12, 2014 Published: October 10, 2014

RESULTS

Although α -chloro- β , γ -unsaturated esters have been employed¹⁰ for the allylation of aldehydes and imines via bisallylpalladium intermediates and photochemical studies have been reported for α -fluoro derivatives,¹¹ there are few methods available for their preparation. They can be prepared from trimethylsiloxy- α -diazocarbonyl esters but this method gives mixtures of α - and γ -halo unsaturated esters.¹² The *trans*- α chloro and - α -bromo- β , γ -unsaturated esters used in this study were most easily prepared from γ -phenylseleno- α , β -unsaturated esters,⁸ while the Z-isomers were prepared in two steps from terminal alkynes (Scheme 1). Although alkynyl alcohol **2** has

^aReagents and conditions: (a) (i) 1 (*n* equiv), ⁿBuLi (*n* equiv), THF, -78 °C, 1 h; (ii) ZnBr₂ (*n* = 1, 2, 3:1.0, 0.5, 0.33 equiv, respectively); (iii) MeLi (3 – *n* equiv), -60 to 25 °C, 1.5 h. (b) Freshly distilled HOCCO₂Et, PhMe, -60 to -20 °C (85%). (c) Lindlar catalyst, quinoline (1.1 equiv), MeOH, H₂, 25 °C, 4 h (88%). (d) PPh₃ (1.3 equiv), CCl₄, 75 °C, 1.5 h (85%). (e) PBr₃ (2.0 equiv), DMF, -15 °C, 1 h (75%).

been prepared in low yields by addition of alkynyl Grignard reagents to esters of oxalic acid (28%),¹³ we developed a more effective procedure using organozincate reagents. The dialkynyl(methyl)zincate reagent proved to be most effective, as it transferred both alkynyl ligands. Lindlar reduction¹⁴ of alkyne 2 followed by conversion of alcohol 3 into chloride¹⁵ 4a completed the synthesis without double bond migration or *E*/*Z*-isomerization of the *Z*-alkene. Allylic alcohol 3 has also been prepared enantioselectively from ethyl glyoxylate and (*Z*)-1-trimethylsilyl-1-hexene.¹⁶ Preparation of compound 4b from 3 with PBr₃ afforded the *E*-isomer as a minor impurity.

In pursuit of a synthetic objective, we attempted to couple the N-Boc-2-pyrrolidinyl ligand with various (Z)- α -nucleofugesubstituted- β , γ -enoates without success. Examination of these substrates (i.e., 5a-d and 4a,b) was then undertaken in order to understand their reactivity profile with lithium alkyl(cyano)-(i.e., RCuCNLi) and dialkylcuprates (i.e., R₂CuLi). The allylic phosphates 5a,b,¹⁷ mesylate 5c,¹⁸ pentafluorobenzoate^{17b,19} 5d, and halides 4a,b all gave a single product in modest to good yields with methyl and *n*-butylcuprates (Table 1). Higher yields were obtained with the *n*-butylcuprates, and surprisingly, similar yields were obtained with both RCuCNLi and R2CuLi reagents (entries 1 vs 2, 3 vs 4, 5 vs 6, 7 vs 8) with phosphates 5a,b. In situ generation of the phosphate ester gave slightly higher yields than utilization of the preformed substrate (entries 10 vs 5, 11 vs 7). Yields were generally comparable along the series $-OPO(OR)_2 \approx -OMs \approx -CO_2C_6F_5$ and slightly higher for the halides with the "Bu- and methylcuprates (entries 1, 5, 10,

Table 1. Reaction of Allylic Substrates 5a-d and 4a,b Containing Different Nucleofuges with Lithium Alkyl- and Phenylcuprate Reagents

5a b c 4a b	X = 0 $X = 0$	OEtL P(O)(OPh) ₂ $P(O)(OEt)_2$ S(O) ₂ Me COC ₆ F ₅ I	RCuLLi _ = R, CN a R b R	→ = ⁿ E = M	C₄H₅ (Bu d le d	R 6a-d c R = d R =	Ph MeN(Bod	t c)CH ₂
4a b	X = C X = B	l r						

entry ^a	substrate	reagent (equiv) ^b	product	yield (%) ^c
1	5a	"BuCuCNLi (1.2)	6a	76
2	5a	ⁿ Bu ₂ CuLi (1.0)	6a	73
3	5a	MeCuCNLi (1.2)	6b	55
4	5a	Me ₂ CuLi (1.0)	6b	53
5	5b	"BuCuCNLi (1.2)	6a	75
6	5b	^{<i>n</i>} Bu ₂ CuLi (1.0)	6a	71
7	5b	MeCuCNLi (1.2)	6b	56
8	5b	Me ₂ CuLi (1.0)	6b	55
9^d	5b	PhCuCNLi (1.2)	6c	18
10^e	5b	"BuCuCNLi (1.2)	6a	88
11^e	5b	MeCuCNLi (1.2)	6b	63
$12^{d,e}$	5b	PhCuCNLi (1.2)	6c	20
13^{e-g}	5b	CH ₃ N(Boc)CH ₂ CuCNLi (1.2)	6d	22
$14^{e,g,h}$	5b	(CH ₃ N(Boc)CH ₂) ₂ CuLi (1.0)	6d	11
15	5c	ⁿ BuCuCNLi (1.2)	6a	78
16	5c	MeCuCNLi (1.2)	6b	68
17^d	5c	PhCuCNLi (1.2)	6c	33
18	5d	ⁿ BuCuCNLi (1.2)	6a	82
19	5d	MeCuCNLi (1.2)	6b	65
20^d	5d	PhCuCNLi (1.2)	6c	38
$21^{f,g,i}$	5d	$CH_3N(Boc)CH_2CuCNLi(1.2)$	6d	58
$22^{g,h}$	5d	(CH ₃ N(Boc)CH ₂) ₂ CuLi (1.0)	6d	26
23	4a	ⁿ BuCuCNLi (1.2)	6a	95
24	4a	MeCuCNLi (1.2)	6b	88
25	4a	PhCuCNLi (0.9)	6c	63
$26^{h,i}$	4a	CH ₃ N(Boc)CH ₂ CuCNLi (1.2)	6d	75
27	4b	ⁿ BuCuCNLi (1.2)	6a	98
$28^{f,g}$	4b	CH ₃ N(Boc)CH ₂ CuCNLi (1.2)	6d	53
29 ^{g,h}	4b	(CH ₃ N(Boc)CH ₂) ₂ CuLi (1.0)	6d	40

^aTHF as solvent with a composition for the reaction of 10/1 solvent/ organometallic solvent unless otherwise noted. Cuprates were prepared from THF-soluble CuCN·2LiCl. ^bReactions were performed at -78 °C for 2 h and then warmed up to room temperature (rt) with overall stirring of 8–12 h. ^cUpon the basis of isolated material purified by column chromatography. ^dBiphenyl was the major product of this reaction. ^ePhosphate prepared in situ. ^fSolvent THF:Et₂O (1:2). ^gStarting material was recovered. ^hSolvent THF:Et₂O (1:1). ⁱReaction conditions: -40 °C for 1 h and then slowly warmed to rt (-40 to 25 °C, 2 h, then 12 h at 25 °C).

15, 18, 23, and 27 and 3, 7, 11, 16, 19, 24). Phenyl(cyano)cuprates gave low yields with the phosphates (entries 9 and 12), mesylate (entry 17), and pentafluorobenzoate (entry 20) due to biphenyl formation^{2b,20,21} and modest yields with the chloride **4a** (entry 25), suggesting a higher reactivity for the latter substrate. In most cases, low yields were obtained with the α -(*N*-carbamoyl)alkyl(cyano)cuprates (entries 13, 21, and 28), with chloride **4a** giving the highest yield (entry 26) and the

	Cl CO_2Et CO_2Et R H = R, CN C_4H_9 R H = Li, MgCl Aa $a R = ^nBu$ c R = Me Bu $c R = ^Bu$ $c R = ^Bu$	$CO_{2}Et + R - C_{4}H_{9}$ $CO_{2}Et + 7a-i$ $CO_{2}Et + 7a-i$ $CO_{2}Et + 7a-i$ $R = o-MeOC_{6}H_{4}$ $h R = 1-naphthyl$ $i R = CH_{2}=CHCH_{2}$	R ↓ CO₂Et C₄H ₉ 8a-i	
entry ^a	reagent $(equiv)^b$	yield (%) ^c	product	6 :7:8 ^d
1	^{<i>n</i>} Bu ₂ CuLi (1.0)	75	6a	100:0:0
2	"BuCuCNLi (1.0–1.2)	85-95	6a	100:0:0
3 ^e	"BuCuCNLi (1.2)	76	6a	100:0:0
4^{f}	"BuCuCNLi (1.2)	31	6a	100:0:0 ^g
5 ^{<i>h</i>}	ⁿ BuCuCNLi (1.2)	17	8a	8a major ⁱ
6 ⁱ	"BuCuCNLi (1.2)	23	7a	7a major ⁱ
7	ⁿ BuCuCNMgCl (1.2)	77	6a	94:0:6
8	n Bu ₂ CuMgCl (1.0)	78	6a	92:0:8
9	MeCuCNLi (1.2)	88	6b	100:0:0
10	Me_2CuLi (1.0)	59	6b	100:0:0
11	^s BuCuCNLi (1.2)	57	6f	100:0:0
12	^t BuCuCNLi (1.2)	81	6e	100:0:0
13	$^{t}\mathrm{Bu}_{2}\mathrm{CuLi}$ (1.0)	50	6e	100:0:0
$14^{k,l}$	CH ₃ N(Boc)CH ₂ CuCNLi (1.0–1.2)	70-75	6d	100:0:0
15 ^m	Ph_2CuLi (1.0)	30	6c	100:0:0
16	PhCuCNLi (0.9–1.2)	60-63	6c	100:0:0
17	$CH_3OC_6H_4CuCNLi$ (1.2)	73	6g	100:0:0
18	$C_{10}H_8CuCNLi$ (1.2)	75	6h	100:0:0
19	$CH_2 = CH - CH_2 CuCNMgCl$ (1.2)	66	6i	99:0:1
20	$(CH_2 = CH - CH_2)_2 CuMgCl (1.2)$	52	6 i	100:0:0

Table 2. Reaction of (Z)-Ethyl 2-Chloro-3-octenoate with Organocuprate Reagents

^{*a*}THF as solvent with a composition for the reaction of 10/1 solvent/organometallic solvent unless otherwise noted. Cuprates were prepared from THF-soluble CuCN-2LiCl. ^{*b*}Reactions were performed at -78 °C for 2 h and then warmed up to rt with overall stirring of 8–12 h. ^{*c*}Upon the basis of isolated material purified by column chromatography. ^{*d*}Determined by ¹H NMR integration of absorption peaks for the vinyl protons. ^{*c*}Solvent Et₂O. ^{*f*}Solvent CH₂Cl₂. ^{*g*}Starting material recovered. ^{*h*}Solvent DMF. ^{*i*}Unidentified byproducts found. ^{*j*}Solvent CH₃CN. ^{*k*}Solvent THF:Et₂O (1:2). ^{*l*}Reaction was run at -78 (26%), -40 (75%), and 0 °C (58%) for 1 h and then slowly warmed to rt. ^{*m*}Biphenyl was the major product of this reaction.

Table 3. Catalytic Procedure for γ -Alkylation of (Z)-Ethyl 2-Chloro-3-octenoate

	$\begin{array}{c} CI\\ CO_2Et\\ C_4H_9 \end{array} \qquad \begin{array}{c} RM \ (1.0 \ e\\ M \ = \ Li, I\\ CuCN \end{array}$ $\begin{array}{c} 4a \qquad CuCN \cdot 2L \end{array}$	$\begin{array}{c} quiv) \\ MgX \\ c_4H_9 \\ cor \\ iCl \\ cos \\ $	Et + $\begin{array}{c} C_4H_9 \\ \hline CO_2Et \\ \hline Ta-b \\ R = \ ^Bu \\ b \\ R = Me \end{array}$	₂ Et	
entry	reagent (equiv) ^a	solvent ^b	yield (%) ^c	product	6 :7:8 ^d
1^e	"BuMgCl, CuCN (0.15)	THF	70	6a	94:0:6 ^f
2^e	"BuLi, CuCN·2LiCl (0.33)	THF	72	6a	100:0:0 ^f
3 ^e	"BuMgCl, CuCN (0.33)	THF	88	6a	91:0:9 ^f
4 ^e	ⁿ BuLi, CuCN (0.33)	Et ₂ O	67	6a	100:0:0 ^f
5 ^e	"BuMgCl, CuCN (0.33)	Et ₂ O	81	6a	98:0:2 ^f
6 ^g	ⁿ BuLi, CuCN (0.33)	Et ₂ O	81	6a	$100:0:0^{h}$
7 ^g	"BuMgCl, CuCN (0.33)	Et ₂ O	97	6a	98:0:2
8 ^g	ⁿ BuLi, CuCN (0.33)	THF	56	6a	$100:0:0^{h}$
9 ^g	"BuMgCl, CuCN (0.33)	THF	76	6a	74:0:16
10^g	MeMgBr, CuCN (0.33)	Et ₂ O	44	6b	88:0:12

^{*a*}Cuprate reagent was prepared over 30 min from -60 to -30 °C from solid CuCN unless otherwise noted. ^{*b*}Solvent with a composition for the reaction of solvent/organometallic solvent of 10/1. ^{*c*}Upon the basis of isolated material purified by column chromatography. ^{*d*}Isomer ratios were determined from integration of the ¹H NMR absorption peaks for the vinyl protons. ^{*c*}Reaction quenched after 4 h at -78 °C. ^{*f*}Starting material recovered. ^{*g*}Reaction done for 1 h at -78 °C and then slowly warmed up to room temperature for an overall reaction time of 4 h. ^{*h*}Unidentified byproducts found.

bis α -(*N*-carbamoyl)alkylcuprates (entries 14, 22, and 29) giving significantly lower yields. The coupling of *N*-Boc-2-

pyrrolidinylcuprates with substrates 5a-d and 4a,b could not be accomplished. Formation of homocoupling products

	9 6c,13	CI R^2	$R + R^{2} + R^{2}$ 10a-b 6c, 14b a R = "Bu	$ \begin{array}{c} $	R ¹
entry ^a	halide	reagent $(equiv)^b$	major isomer	yield (%) ^c	10:11:12 ^d or 14:15:16
1	9	ⁿ BuCuCNLi (1.2)	10a	35	89:11:0 ^e
2	9	"BuCuCNLi (0.75)	10a	38	91:9:0 ^e
3	9	"BuCuCNMgCl (0.75)	10a	31	88:12:0 ^e
4	13	ⁿ BuCuCNLi (1.2)	6c	93	55:0:45
5^{f}	13	"BuCuCNLi (1.2)	6c	76	75:0:25
6 ^f	13	"BuLi (1.2)/CuCN (0.33)	6c	62	85:0:15 ^e
7	13	"BuCuCNMgCl (1.2)	16a	80	30:0:70
8^{f}	13	"BuCuCNMgCl (1.2)	6c	67	51:0:49 ^g
9	13	MeCuCNLi (1.2)	14b	88	84:0:16
10 ^f	13	MeLi (1.2)/CuCN (0.33)	14b	53	78:0:22 ^e
11	13	MeCuCNMgBr (1.35)	16b	91	28:0:72

^{*a*}THF as solvent, unless otherwise noted, with a composition for the reaction of 10/1 solvent/organometallic solvent unless otherwise noted. Cuprates were prepared from THF-soluble CuCN·2LiCl. ^{*b*}Reactions were performed at -78 °C for 2 h and then warmed up to room temperature with overall stirring of 8–12 h. ^{*c*}Yields are based upon isolated products purified by column chromatography. ^{*d*}Isomer ratios were determined from integration of the ¹H NMR absorption peaks of the vinyl protons. ^{*c*}Unidentified byproducts found. ^{*J*}Solvent Et₂O. Cuprates were prepared from solid, insoluble CuCN [from -70 °C (or -60 °C, substoichiometric CuCN) to -40 °C (or -30 °C, substoichiometric CuCN)], by stirring for 30 min before cooling to -78 °C. ^{*g*}Starting material was recovered.

suggests that a single electron transfer (SET) reaction takes place over the intended allylic substitution.²⁰

Upon completion of the leaving group and cuprate composition studies, we turned our attention to exploring the scope of ligand efficacy in these allylic substitution reactions. Although the phosphate, mesylate, and pentafluorobenzoate leaving groups^{2,19} all gave comparable yields, ethyl (*Z*)-2-chloro-3-octenoate (4a) was chosen for further study because it afforded higher product yields upon reaction with PhCuCNLi and CH₃N(Boc)CH₂CuCNLi (entries 25 and 26). Additionally, 4a was easier to prepare and was stable to *Z* to *E* isomerization in the refrigerator for 6 months.²²

Although lithium di-n-butylcuprate and lithium n-butyl-(cyano)cuprate reagents gave comparable yields of **6a** in THF and Et_2O (Table 2, entries 1–3), low yields were obtained in CH₂Cl₂ (entry 4), DMF (entry 5), or CH₃CN (entry 6). For the solvents CH₂Cl₂, DMF, and CH₃CN, the cuprate reagent was prepared by mixing RLi and CuCN·2LiCl in THF and then adding the desired solvent. Utilization of magnesium *n*-butylcuprate reagents afforded similar yields of **6a** but slightly reduced $S_N 2':S_N 2$ regioselectivity (entries 7 and 8). It is interesting to note that the S_N2 -regioisomer (i.e., 8a) retained the alkene Z-configuration. Similar results were obtained for the Me, 'Bu, and 'Bu transferable ligands, giving modest to good yields of 6b, 6f, and 6e, respectively, and excellent regioselectivity (entries 9-13). Again, the alkyl-(cyano)cuprates gave higher yields than the dialkylcuprate reagents (entries 9 vs 10, and 12 vs 13). Good results were obtained for the N-(tert-butoxycarbonyl)-N-methylaminomethylcuprate reagent to give 6d (entry 14) but the procedure could not be extended to the 2-pyrrolidinylcuprate analogue. The arylcuprates generally gave good chemical yields of 6c, 6g, and **6h** and excellent $S_N 2': S_N 2$ -regioselectivity (entries 16–18) with the exception of Ph2CuLi (entry 15), which gave low yields of 6c due to homocoupling and biaryl formation.^{20,21} The magnesium allylcuprate reagents displayed the same

pattern (entries 19 and 20), giving lower yields of **6i** for the diallylcuprate reagent.

In pursuit of a catalytic procedure, several reactions were run using 0.15-0.33 equiv of solid CuCN with either alkyl lithium or magnesium reagents. Initially the reaction mixtures were quenched at -74 °C, giving good yields of products 6a,b(Table 3, entries 1-5) but accompanied by recovery of 10-20% of starting material. The reactions could be brought to completion by slowly allowing the reaction mixture to warm to room temperature (entries 6-10), and with the magnesium cuprate a yield of 97% could be achieved (entry 7) with the *n*butyl Grignard reagent. Utilization of Grignard reagents generally gave lower $S_N 2': S_N 2$ -regioselectivity (entries 1, 3, 5, 7, 9, and 10), while regiospecificity was obtained with the lithium reagents (entries 2, 4, 6, and 8). In accord with prior studies,^{2e} use of lithium reagents required a minimum of 0.33 equiv of a Cu(I) salts, while lower amounts of Cu(I) salts could be employed with the Grignard reagents (entry 1). The stability of these substrates to the presence of organolithium reagents is noteworthy.

Two additional substrates were examined to explore the scope of the reaction. These included the y-unsubstituted analogue 9^{23} and the phenyl-substituted derivative $13^{15,24}$ (Table 4). Allylic chloride 9 gave low yields of alkylation products accompanied by an orange brown precipitate in the reaction mixture, indicative of polymer formation,²⁵ and significant amounts of the Z-alkene stereoisomer 11a when reacted with "BuCuCNM (M = Li, MgCl, entries 1-3). The phenyl-substituted derivative 13 gave the S_N 2-substitution products 16a,b either in significant amounts (entries 4-6 and (8-10) or as the major stereoisomer (e.g., entries 7 and 11). For the lithium cuprates, higher S_N2'-regioselectivity was achieved in Et_2O than in THF (entries 5 and 6 vs 4) and with substoichiometric amounts of CuCN (entry 6), where R₂CuLi is presumed to be the active agent. The magnesium nbutyl(cyano)cuprate gave the S_N2-product 16a as the major

Table 5. Reaction of	f (E)-Ethy	l 2-Chloro-	3-octenoate	with	Organocu	prate	Reagents
----------------------	------	--------	-------------	-------------	------	----------	-------	----------

	$\begin{array}{c} CI \\ CO_2 Et \end{array} \xrightarrow{RCuLM} RCuLM \\ CO_2 Et \end{array}$		R C₄H ₉ CO₂Et	
	C_4H_9 17 $M = Li, MgX$ (X = Cl Br)	6a-c 7a-c	18a-c	
	(X = OI, BI)	a R = ⁿ Bu b R = Me c F	R = Ph	
entry ^a	reagent $(equiv)^b$	yield (%) ^c	product	6 :7:18 ^d
1	ⁿ BuCuCNLi (1.2)	70	6a	89:6:5
2 ^e	ⁿ BuCuCNLi (1.2)	83	6a	98:0:2
3^f	ⁿ BuCuCNLi (1.2)	9	6a	100:0:0 ^g
4	ⁿ Bu ₂ CuLi (1.0)	56	6a	84:8:8 ^h
5	"BuCuCNMgCl (1.2)	97	6a	82:14:4
6 ^e	"BuCuCNMgCl (1.2)	71	6a	86:10:4
7^{f}	"BuCuCNMgCl (1.2)	49	6a	32:23:45
8	$^{n}Bu_{2}CuMgCl$ (1.0)	71	6a	79:17:4
9^i	"BuCuCNMgCl (1.2)	96	6a	83:12:5
10	"BuMgCl (1.2), CuCN (0.15)	95	6a	81:15:4
11^{j}	"BuMgCl (2.10), CuCN (1.05)	95	6a	76:24:0
12^k	"BuMgCl (1.2), CuCN (0.15)	60	6a	86:14:0
$13^{e,k}$	"BuLi (1.2), CuCN (0.33)	77	6a	97:1:2
$14^{e,k}$	"BuMgCl (1.2), CuCN (0.33)	88	6a	91:7:2
15	MeCuCNLi (1.2)	55	6b	97:1:2
16	Me ₂ CuLi (1.0)	37	6b	100:0:0 ^h
17	MeCuCNMgBr (1.2)	89	6b	84:3:13
18	$Me_2CuMgBr$ (1.0)	67	6b	94:2:4
19 ^f	MeCuCNMgBr (1.2)	85	6b	88:3:9
20	MeMgBr (1.2), CuCN (0.15)	95	6b	98:1:1
21^{j}	MeMgBr (2.10), CuCN (1.05)	87	6b	100:0:0
22	PhCuCNLi (1.1)	43	6c	100:0:0 ^h

^{*a*}THF as solvent with a composition for the reaction of 10/1 solvent/organometallic solvent unless otherwise noted. Cuprates were prepared from THF soluble CuCN·2LiCl. ^{*b*}Reactions were performed at -78 °C for 2 h and then warmed up to room temperature with overall stirring for 8–12 h. ^cYields are based upon isolated products purified by column chromatography. ^{*d*}Ratios were determined by ¹³C NMR peak heights. ^{*e*}Solvent Et₂O. Cuprates were prepared from solid insoluble CuCN [from -70 °C (or -60 °C, substoichiometric CuCN) to -40 °C (or -30 °C, substoichiometric CuCN), stir for 30 min before cooling to -78 °C]. ^{*j*}Solvent CH₂Cl₂. Cuprates prepared from CuCN·2LiCl in THF and then diluted 10 times with CH₂Cl₂. ^{*g*}Starting material recovered. ^{*h*}Unidentified byproducts found. ^{*i*}Reaction conditions: -40 °C for 1 h and then slowly warm to 25 °C. ^{*j*}Posner's procedure: LiCl was not used. Cuprate formation and reaction conditions: 30 min at -78 °C, reaction mixture quenched at -78 °C 30 min after the addition of the electrophile. ^{*k*}Reaction quenched after 4 h at -78 °C.

regioisomer in THF (entry 7) and a nearly 1:1 mixture of stereoisomers in Et₂O (entry 8). The putative reagent Me₂CuLi gave a slightly lower S_N2' -regioselectivity (entry 10) than MeCuCNLi (entry 9), although different solvents were employed. A less reactive magnesium methyl(cyano)cuprate reagent gave the S_N2 -substitution product **16b** as the major isomer in THF (entry 11).

Posner and co-workers had reported the clean S_N2'methylation of (E)- α -chloro- β , γ -unsaturated esters but noted complex product mixtures for other alkylcuprate reagents.⁵ We decided to reinvestigate this reaction in order to explore the role of substrate E:Z geometry (Table 5). As observed by Posner and co-workers, E-stereoisomer 17 afforded more complex reaction mixtures upon reaction, with cuprate reagents generally yielding mixtures of S_N2'-derived E:Z stereoisomers (i.e., 6 and 7) and the $S_{\rm N}2\text{-}{\rm regioisomer}$ 18. The highest regioand stereoselectivity for 6a was achieved with lithium nbutyl(cyano)cuprate (entries 1-3). Although the greatest selectivity was achieved in CH2Cl2 (entry 3), this solvent afforded very low product yields. The magnesium nbutylcuprates gave poor stereo- and regioselectivity (entries 5, 6, and 8-12) with the lowest yields and selectivities observed in CH_2Cl_2 (entry 7). For both the lithium and magnesium

cuprates, utilization of substoichiometric amounts of CuCN afforded excellent regio- and stereoselectivities (entries 13 and 14). Consistent with Posner and co-worker's report,⁵ the magnesium methylcuprates gave high chemical yields and selectivities for **6b** under both stoichiometric (entries 17–19, 21) and catalytic conditions (entry 20). The lithium cuprates gave excellent selectivities but lower chemical yields (entries 15 and 16). The phenyl(cyano)cuprate gave modest chemical yields of **6c** but excellent regio- and *E:Z*-stereoselectivity (entry 22).

In an effort to gain some mechanistic insight into the regioand stereoselectivity of these reactions, several relative rate and competition experiments were performed (eqs 1–4 in Chart 1). Relative rate experiments on 4a (eq 1, Chart 1) revealed that the lithium cuprate was only slightly faster than the magnesium cuprate (i.e., 1% vs 12% recovered 4a after 30 min at -78 °C) and that the "BuCuCNLi reagent reacted with 4a faster than the MeCuCNLi reagent. The former reagent, prepared from CuCN, was only slightly faster in THF than in Et₂O. These experiments show that the relative rate of reaction of 4a with these cuprates is comparable, regardless of the metal cation (i.e., Li⁺ or MgCl⁺) or ethereal solvent (i.e., THF or Et₂O). The rate of allylic substitution is not sensitive to the electronic

Chart 1

CI CO ₂	Et2.	cuprate THF, -78 ℃, 2-30 min NH₄Cl(aq), -78 ℃	ⁿ Bu ⁿ Bu CO ₂ Et	+ CO ₂ Et	+ 4a (1)
4a			6a	8a	
	Cu(I) salt	reagent	Ν	MR ratios	
	CuCN-2LiCl	ⁿ BuCuCNLi (1.1 equiv)	99	-	1 ^a
	CuCN	ⁿ BuCuCNLi (1.0 equiv)	86	-	14
	CuCN	ⁿ BuCuCNLi (1.0 equiv), Et ₂ C) 80	-	20
	CuCN-2LiCl	ⁿ BuCuCNMgCl (1.1 equiv)	84	4	12 ^b
	CuCN-2LiCI	MeCuCNLi (1.1 equiv)	76	-	24

^a The same ratio was observed after quenching at 15 min. and at 2 min. ^b The ratios of 84:5:11 and 87:5:8 were observed upon quenching at 15 and 2 min respectively.

$ \begin{array}{c} CI\\ \hline CO_2Et\\ ^nBu\\ 4a\\ (1.0 equiv) \end{array} $	+ CI Ph 13 (1.0 equiv)	1. cuprate Et (1.0 equiv) ► ⁿ t THF -78 °C, 30 min 2. NH ₄ Cl(aq), -78 °C	Bu CO ₂ Et + ⁿ Bu 6a	ⁿ Bu CO ₂ h Ph 6c	$ \begin{array}{c} \overset{nBu}{\underset{Ft}{\overset{CO_2Et}{\underset{Ph}{\overset{CO_2Et}{\overset{Ft}{\underset{Ft}{\overset{CO_2Et}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\underset{Ft}{\overset{Ft}{\underset{Ft}{\atopFt}}{\underset{Ft}{\underset{Ft}{\underset{Ft}{\underset{Ft}{\underset{Ft}{\underset{Ft}{\underset{Ft}{\atopEt}}{\underset{Ft}{\underset{Ft}{\underset{Ft}{\underset{Ft}}{\underset{Ft}{\underset{Ft}{\underset{Ft}{\underset{Et}}{\underset{Ft}{\underset{Ft}{\underset{Et}}}{\underset{Et}}{\underset{Et}}{\underset{Et}}}{\underset{Et}}}{\underset{Et}}}}}}}}}}$	4a:13 (2)
		ⁿ BuCuCNLi	59 (55)	21 (23)	20 (22)	46:54
	_	ⁿ BuCuCNMgCl	57 (55)	15 (18)	28 (27)	46:54

() ratios determined from ¹³C-peak heights

properties of the substituent at the 4-position of 4a or 13, since both give comparable product yields and recovered starting material in a competition experiment (eq 2, Chart 1). Surprisingly, the trans isomer 17 reacted nearly twice as fast as the cis isomer 4a, as evidenced by a competition experiment (eq 3, Chart 1). Finally, 17 is roughly 5–7 times more reactive than a mixture of allylic chlorides 19a,b (eq 4, Chart 1) revealing the accelerating effect of the ester functionality.

In the light of these results, we decided to briefly re-examine the α -cyano allylic phosphates originally studied by Najera and co-workers.⁷ The cyanophosphates **21a** and **21b**,²⁶ prepared by an established procedure,²⁷ exhibited S_N2'-regiospecificity and modest *E*:*Z* stereospecific alkylation (Table 6), with the *E*isomer **21a** giving the *Z*-alkenylnitrile **23** preferentially (entries 1–5) and the *Z*-isomer **21b** affording predominantly the *E*alkenylnitrile **22** (entries 6–10). For **21a**, the highest *E*:*Z*stereoselectivity was achieved with the magnesium cuprate prepared from CuBr·SMe₂. The *Z*-isomer **21b** gave *E*:*Z* selectivity for both the lithium and magnesium cuprates (entries 6-10) and the lowest selectivity for the lithium cuprate prepared from CuBr·SMe₂ (entry 9).

DISCUSSION

The primary control element in cuprate -mediated allylic substitution reactions is the preference for anti- $S_N 2'$ -substitution pathways,²⁸ which are enhanced by use of alkyl- or aryl(cyano)cuprate reagents,^{2d,29} magnesium cuprates,^{2d,29} and phosphate leaving groups.^{2d} The greater $S_N 2'$ -regioselectivity observed for RCuCNLi reagents has been attributed to a trans effect with the more electron rich R-group on the cuprate reagent preferring (i.e., lower transition state energy) to be trans to the substrate leaving group (cf. Scheme 4).²⁹ Predominant formation of the *E*-diastereomer reflects the influence of $A^{1,3}$ -strain³⁰ in the transition state of the substrate – cuprate interaction (Scheme 2).^{24,3a} For *Z*-substrate **4a**, the "Bu/CO₂Et $A^{1,3}$ -strain in the transition state arising from

Tabl	e 6.	γ-Alk	ylation	of A	llylic	Cyano	hyċ	lrin	Pho	ospl	nates
------	------	-------	---------	------	--------	-------	-----	------	-----	------	-------

		$R_{1} \longrightarrow OP(O)(OEt)_{2} \qquad \frac{^{n}BuCuLM}{L = R, CN, Br}$ $M = Li, MgX$ 21a R ¹ = $^{n}C_{4}H_{9}, R^{2} = H$ b R ¹ = H; R ² = $^{n}C_{4}H_{9}$	$^{n}Bu CAH_{9} CN + C_{4}H_{9}$ 22	23	
entry ^a	substrate	reagent (equiv) ^b	yield (%) ^c	major isomer	$22:23^{d}$
1^e	21a	"BuCuCNLi (1.2)	60	23	20:80
2	21a	"BuCuCNLi (1.2)	66	23	32:68
3	21a	"BuLi (1.2)/CuCN (0.33)	63	23	40:60
4	21a	^{<i>n</i>} BuLi (1.2)/CuBr·Me ₂ S (1.2)	68	23	20:80
5	21a	"BuMgCl (1.2)/CuBr·Me ₂ S (1.2)	62	23	8:92 ^f
6^e	21b	"BuCuCNLi (1.2)	69	22	70:30 ^g
7	21b	"BuLi (1.2)/CuCN (1.2)	70	22	85:15 ^f
8	21b	"BuCuCNLi (1.2)	75	22	88:12
9	21b	ⁿ BuLi (1.2)/CuBr.Me ₂ S (1.2)	72	22	67:33 ^g
10	21b	"BuCuCNMgCl (1.2)	68	22	82:18

^{*a*}THF as solvent with a composition for the reaction of 10/1 solvent/organometallic solvent unless otherwise noted. Cuprates were prepared from THF-soluble CuCN·2LiCl unless otherwise noted. Cuprates (entries 1–2, 6–7) were prepared from solid, insoluble CuCN (from –70 to –40 °C, stir for 30 min before cooling to –78 °C). ^{*b*}Reactions done at –78 °C for 2 h then warmed up to rt with overall stirring of 8–12 h. ^{*c*}Isolated yield. ^{*d*}E:Z isomer ratios were determined by integration of the ¹H NMR absorption peaks for the vinyl protons. ^{*e*}Solvent Et₂O. ^{*f*}Starting material recovered. ^{*g*}Unidentified byproducts found.

Scheme 2. Model for S _N 2	'-Regioselectivity ir	n the Reactions of (2	Z)-α-Chloro-β	β_{γ} -unsaturated Esters with	Organocuprates
	- A /	(, ,	/	

conformer 24 and leading to 7 is sufficiently greater³¹ than the ⁿBu/H A^{1,3}-strain in the transition state arising from 25 and leading to 6 such that only the E-diastereomer 6 is observed in these reactions (Tables 1-3). Although no S_N2-substitution product is observed for the lithium cuprate reagents (Tables 1-3) except in DMF (Table 2, entry 5), small amounts are observed for magnesium cuprates (Tables 2 and 3), where utilization of magnesium cuprates gives greater amounts of S_N2product in THF than in Et₂O (Table 2, entries 7 and 8; Table 3, entries 3 vs 5, and 9 vs 7 for THF vs Et₂O). These results suggest that complexation phenomena^{2d} (cf., $TS_{Z-enoate}$ in Scheme 3) are not playing a role here, since the experimental results are inconsistent with solvent, cation (i.e., Li vs Mg), and trans effects.^{2d} A slower reductive elimination step for the magnesium cuprates would allow sufficient time for equilibration between two σ -allyl copper(III) complexes³² via a π -allyl copper(III) complex (cf. Scheme 4)^{4d,32a,33,34} that is facilitated by THF.^{34a} The propensity of magnesium cuprates to favor S_N2'-selectivity generally occurs under conditions that favor formation of RCuXMgX (X = heteroatom)^{33a,34a} and the influence of the trans-effect (i.e, oxidative addition step) and does not mitigate against the additional influence of rates of

reductive elimination upon $S_N 2':S_N 2$ selectivity ratios. Fast reductive elimination from the π -allyl copper(III) or enyl[σ + π] complex should favor greater $S_N 2'$ -regioselectivity.^{29,33a,34} The single-point rate experiments (eq 1, Chart 1) are inconclusive, revealing that these reactions are very fast and the failure of the magnesium cuprates to go to completion may reflect the difficulty of accurate titration of Grignard reagent concentration. If the rate-determining step is oxidative addition, the influence of the rate of reductive elimination cannot be probed by kinetic studies. The increased formation of $S_N 2$ byproducts with methyl magnesium cuprate even in Et₂O (Table 3, entry 10) is consistent with the speculative influence of reductive elimination rates.

Similar consideration of allylic strain can account for the lower *E*:*Z*-diastereoselectivity observed in the allylic substitution reactions of the *E*-substrate 17. Here the combination of $A^{1,3}$ - and $A^{1,2}$ -strain³⁰ in the transition state is such that a mixture of *E* (i.e., **6**) and *Z*-diastereomers (i.e., 7) are formed (Scheme 3). As expected, $A^{1,3}$ -strain predominates^{30b} as a controlling factor and the *E*-enoate **6** is formed as the major isomer. In the reactions of the *E*-diastereomer 17, magnesium cuprates give larger amounts of the *Z*-diastereomeric product 7

than the lithium cuprates. Although it is tempting to invoke a complexation model (e.g., $TS_{Z-enoate}$, Scheme 3) given the ubiquity of coordination effects invoked in computational models^{29,34,35} of cuprate reactions, solution NMR studies,³⁶ and cuprate X-ray structure determinations,³⁷ this model is inconsistent with the greater E-selectivity observed in Et₂O than in THF. The solvent and counterion (i.e., Li⁺ vs MgCl⁺) effects are more consistent with a solvent-induced isomerization^{34a} of the C2-stereogenic center attached to the Cu-atom in an intermediate σ -copper(III) complex (e.g., **29** of Scheme 3, Nakamura model). Isomerization (i.e., 29 to 30) will be enhanced in THF, where cuprate reagents can form solventseparated ion pairs (SSIP), in contrast to Et₂O, where they tend to exist as contact ion pairs (CIP).^{36a,b} Although it is tempting to attribute the greater amounts of isomerization observed for the magnesium cuprates to slower reductive elimination rates, attempts to gauge the relative rates of lithium vs magnesium cuprates were inconclusive (eq 1, Chart 1).³⁸

The fact that trans isomer 17 reacts nearly twice as fast as the cis isomer 4a and 5–7 times faster than 19a/19b with both the magnesium and lithium *n*-butyl(cyano)cuprate reagents (eq 3, Chart 1) indicates that steric factors (i.e., $A^{1,3}$ - and $A^{1,2}$ -strain) are not insignificant. Significantly, although enantioenriched chiral α -(*N*-carbamoyl)alkylcuprate reagents show good configurational stability, isomerization is observed in slow reactions and is faster in THF than in Et₂O.³⁹ RCuCNM reagents undergo faster reductive elimination²⁹ than R₂CuM reagents and would be expected to display higher *E*-selectivity. This is in

fact observed for the "Bu cuprates (Table 5, entries 1 vs 4, and 5 vs 8) but not for the less reactive methylcuprates (entries 15 vs 16, and 17 vs 18), although the differences are very small and within experimental error.

The excellent regioselectivity observed for 17 is consistent with computational studies that show that the activation energy for reductive elimination increases for electron-withdrawing groups alpha to the Cu center^{34a} and should be greater for 32 than for either 31 or 33, consistent with the observed product ratios in THF and Et₂O (Table 5). Dichloromethane provides an exception where the S_N2-product is the major isomer (Table 5, entry 7). It is interesting to note that the faster reaction rate of 17 relative to those of 19a/19b in competition experiments (eq 4, Chart 1) must be manifest in the oxidative addition step.

Allylic chloride 9 gave no S_N2 -substitution products and mixtures of *E:Z* geometrical isomers (Table 4) arising from S_N2' -allylic substitution, consistent with the trans effect (i.e., R group on copper trans to the Cl leaving group in $TS_{R,Cl(trans)}$) and lack of substituents on C4. For C1-monosubstituted π allylcopper complexes, the transition state energy for reductive elimination is always greater for C1 than for C3, and both energies are raised by electron-withdrawing groups (EWG).^{34a} The lower *E:Z*-stereoselectivity for 9 vs 4a reflects the relative *A*-value of the H and "Bu substituents in 9 and 4a, respectively.

For allylic chloride 13 containing a 4-phenyl substituent, the trans effect should render $TS_{R,Cl(trans)}$ more stable than $TS_{CN,Cl(trans)}$ and this should normally lead to significantly enhanced S_N2' -regioselectivity for RCuCNM (M = Li, MgX)

Scheme 4. Model for $S_N 2'$ and $S_N 2$ Regioselectivity in the Reactions of Lithium and Magnesium Cuprates with (Z)- α -Chloro- β , γ -enoates 9 and 13

Scheme 5. Models for E:Z Diastereoselectivity in the Reactions of Magnesium Cuprates with E-Cyanohydrin Phosphate 21a and Z-Cyanohydrin Phosphate 21b

11133

reagents,²⁹ contrary to our observations (Table 4). For the "Bu cuprates, reaction of the Li-cuprate in THF gives large amounts of the S_N 2-product (45%), while the Mg-cuprate is S_N 2selective (70%) in THF ($S_N 2'$ -selective in Et₂O, 51%), consistent with conversion of a σ -envl complex 34 to a π -allyl complex 36 via solvent participation.^{34a} π -Allyl complex 36 provides a mechanistic pathway for equilibration of σ complexes 37 and 38. The magnesium counterion increases the amount of S_N2-product observed, perhaps by decreasing the rate of product formation (cf. competition experiment, eq 1, Chart 1), thereby allowing equilibration of the two σ -complexes (i.e., 37 and 38) by a coordination effect with the ester functionality in 38 or by subtle changes in the cuprate structure. A similar S_N2-regioselectivity for "BuCuCNMgCl (30:70, THF) and MeCuCNMgCl (28:72, THF) points to a chelation effect (e.g., Mg⁺ coordination of the CN and ester groups) favoring σ -complex 38, since the two cuprates are expected to have different steric and reactivity profiles (cf. eq 1, Chart 1). Although chelation effects are generally more manifest in Et₂O than in THF,^{2d} THF is expected to facilitate the equilibration between σ -complexes^{34a} 37 and 38, and 38 may either be stabilized^{34a,40} relative to 37 by electronic effects (i.e., the ester EWG raises the energy of activation for reductive elimination^{34a}) or by chelation. Computational studies^{34a} indicate that the transition state leading from envl $[\sigma + \pi]$ complex 34 should be lower in energy, affording S_N2'-product 6c, which is formed in modest but diminished selectivity compared to 4a in ether and for lithium cuprates. Increased amounts of S_N2-products are observed in THF and for magnesium cuprates, suggesting that these conditions favor reaction through σ -complex 38 or envl[$\sigma + \pi$] complex 35. In this regard, an α -EWG reduces the rate of reductive elimination (i.e., 35 should be slower than 34), but alkene π -donation to the cuprate p-orbital should favor 35 over 34.^{34a} The increased formation of S_N 2-products from 13 is inconsistent with the computational prediction^{34a,40} of substituent electronic effects (e.g., Ph vs CO₂Et), suggesting that steric factors (i.e., alkene substituents and cuprate structure) are playing a role in the transition state for reductive elimination. Allylic chlorides 4a (S_N2'-regioselective) and 13(nonregioselective) display comparable rates in competition experiments for both the lithium and magnesium cuprates (cf. eq 2, Chart 1), and the S_N 2-regioselectivity for the magnesium cuprate with 13 nearly doubles compared to that of the lithium cuprate. The importance of the trans effect in the reactions of 13 can be seen in the slightly greater S_N2'-selectivity of MeCuCNLi in THF (i.e., 84:16), vs the combination of MeLi (1.2 equiv)/CuCN (0.33 equiv) presumably forming Me₂CuLi $(S_N 2':S_N 2, 78:22, Table 4, entries 9 vs 10)$, even though the latter reaction was conducted in Et₂O. The greater S_N2':S_N2regioselectivity for reaction of 13 with MeCuCNLi (84:16) vs ⁿBuCuCNLi (55:45) in THF again suggests that steric interactions between the phenyl substituent and cuprate ligand (e.g., Me vs ⁿBu) are also playing a role.

The cyanohydrin phosphates **21a,b** displayed modest regiospecificity with *E*-**21a** affording *Z*-enenitrile **23** and *Z*-**21b** affording *E*-enenitrile **22** predominantly. The *E*-isomer **21a** has accessible a gauche conformer (with respect to the vinyl and CN substituents) with low $A^{1,3}$ -strain (i.e., vinyl H, CN) that allows for magnesium complexation to the nitrile N-atom⁴¹ and copper complexation to the alkene (i.e., complex **39**, Scheme 5). In the solid state, alkyl(cyano)cuprates exist as oligomers where the monomeric units reveal the propensity of metal cation coordination through the cyano ligands (e.g.,

40).^{37a,b} The high Z-selectivity achieved with CuBr·SMe₂ on *E*-21a suggests that the Br-ligand on copper can play the same role as the cyanide ligand in bridging the magnesium cation between the allylic substrate and the cuprate reagent (i.e., **39a,b**). Previous studies [RMgX (3.0 equiv), CuX (1.5 equiv)] only examined the E-isomer (i.e., an analogue of 21a) and concluded that steric factors involving the transferable ligand were unimportant in determining the Z-selectivity.⁷ Slightly higher Z-stereoselectivity is achieved in Et₂O than in THF for 21a (Table 6, entries 1 vs 2), with use of CuBr·SMe₂ for preparation of the lithium cuprates (entries 4 vs 2) and with magnesium rather than lithium cuprates (entries 5 vs 4), consistent with complexation phenomena.^{2d} A^{1,3}-strain generally leads to formation of the *E*-diasteromeric alkene product, and formation of the Z-isomer is often accounted for on the basis of intramolecular cuprate complexation to a heteroatom moiety within the substrate.

Coherently, the preference of Z-isomer **21b** for formation of *E*-enenitrile **22** is controlled by $A^{1,3}$ -strain (i.e., "Bu, CN) in the transition state, and the stereoselectivity is relatively consistent across cuprate reagents. The use of Et₂O, "BuLi/CuBr·SMe₂, and magnesium cuprates gave lower *E*:*Z*-selectivity for **21b** than "BuCuCNLi (Table 6, entries 6, 9, and 10, respectively, vs 7 and 8) as expected for conditions that should favor cuprate nitrile (i.e., substrate) complexation and reaction from conformer **41**. Again, the examination of both *E*-**21a** and *Z*-**21b** revealed the varied importance of $A^{1,3}$ -strain in the transition state of the oxidative addition step.

CONCLUSIONS

In summary, cuprate alkylation of β_{γ} -unsaturated esters and nitriles containing an α -nucleofuge substituent provides opportunities for remote C-C bond formation in the product enoates and enenitriles with control of regio- and stereochemistry dependent upon the alkene geometry in the substrate. The Z-alkenyl esters display complete regio- and stereoselectivity, while the E-alkenyl esters display diminished selectivities that can be enhanced by use of lithium instead of magnesium cuprates and in some cases by use of substoichiometric amounts of Cu(I) salts. In an asymmetric protocol, the E- and Z-alkenyl esters will afford enantiomeric products, allowing enantiodifferentiation to be achieved by either altering the configuration at the stereogenic center containing the leaving group or by changing the alkene configuration. The 100% regioselectivity in the $S_N 2'$ vs $S_N 2$ pathway can be achieved with the combination of alkyl or aryl lithium cuprates and α -nucleofuge-substituted-Z- β , γ -unsaturated esters. The Eand Z-allylic cyanohydrin phosphates display modest regiospecificity arising from the ability of the nitrile functionality to effectively complex with the cuprate reagent in the E-isomer 21a. The present work significantly extends the range of cuprate reagents and opportunities for regio- and stereocontrol in cuprate-mediated allylic substitutions in this class of substrates. Enantioenriched α -hydroxy-Z- β , γ -unsaturated esters can be prepared by the reduction of acetylenic $\alpha_{,\beta}$ -ketoesters with alpine borane, providing access to an enantioselective protocol.14

EXPERIMENTAL SECTION

General. NMR spectra were recorded as CDCl₃ solutions on a 500 MHz instrument. The ¹H NMR chemical shits are reported as δ values in parts per million (ppm) relative to tetramethylsilane (TMS, δ = 0.00). The residual chloroform signal (CHCl₃ δ = 7.28) was used as

reference. ¹³C NMR chemical shifts are reported as δ values in parts per million (ppm) relative to TMS and the CDCl₃ signal (triplet, centerline δ = 77.0) as reference. Infrared (IR) spectra were recorded as neat samples (liquid films on NaCl plates). Gas chromatography mass spectrometry (GC–MS) measurements were performed on equipment coupled to a mass spectrometer with a quadrupole detector at 70 eV. Analytical thin layer chromatography (TLC) was performed on silica gel plates (200 μ m with F254 indicator). Flash column chromatography was performed with 200–400 μ m silica or with silica–AgNO₃ (10% by weight). Yields are reported as pure material after isolation by column chromatography. Compounds for highresolution mass spectrometry (HRMS) were analyzed by positive mode electron ionization (EI) using a Q-TOF detector.

Materials. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled from sodium/benzophenone. All other solvents were dried over 4 Å molecular sieves. Commercially available alkyllithium solutions were titrated with sec-butyl alcohol and 1,10-phenanthroline.42 Commercially available Grignard solutions were titrated with menthol and 1,10-phenanthroline.43 Cuprates were made from CuCN dried under vacuum over P2O5 into an Abderhalden's drying tube and flame-dried LiCl. Cuprates in Table 2 (entries 4-6) were prepared first in THF and then diluted 10 times with the corresponding solvent (CH₂Cl₂, DMF, or CH₂CN). The glassware was flame-dried and cooled under nitrogen. Low-temperature baths (-78 °C) were made from dry ice and 2-propanol. All the reactions were carried out under positive pressure of nitrogen passed over a trap of desiccant agent (Drierite). Silica-AgNO₃ (10% by weight) was prepared with 30 g of 200–400 μ m silica and 3.3 g of AgNO₃ dissolved in 8 mL of H₂O. The silver nitrate solution was added to the silica, and the mixture was ground with a mortar and pestle, dried for 2–3 h in an oven at 170 °C, and then stored and protected from light.

For compounds **2**, **3**, **6b**, and **14b**, ¹³C NMR, ¹H NMR, GC–MS, and IR data reductions are included. These compounds have been fully characterized and reported.^{13,16,44,45} For new compounds **4a**, **6a**, **6c**, **6d**, **6e**, **6g**, **6h**, **6i**, **13**, **16a**, **22**, and **23**, ¹³C NMR, ¹H NMR, GC–MS, IR, and HRMS data reductions are provided.

General Procedure A. Synthesis of γ -Substituted- $\alpha_{\eta}\beta$ unsaturated Esters Using Alkyl(cyano)- or Dialkylcuprates (Tables 1 and 2). A round-bottom flask with a magnetic stir bar and with LiCl (2.0 mmol, 85 mg) was flame-dried and cooled under vacuum, CuCN (1.0 equiv, 1.0 mmol, 90 mg) was added inside of an AtmosBag (trade mark of Sigma-Aldrich) filled with N2, and the flask was sealed with a rubber septum. The flask was connected to a N2 line and then loaded with THF (6.0 mL), and the mixture stirred at room temperature for 20-30 min. This solution of CuCN·2LiCl was cooled at -78 °C and the alkyllithium or Grignard solution was added dropwise (for the preparation of cyanocuprates, RCuCNM, 1.0 equiv of alkyllithium or Grignard was added, and for the dialkylcuprates, R_2CuM , 2.0 equiv of alkyllithium or Grignard was used; M = Li, MgX). This mixture was allowed to stir for 30-45 min at -78 °C. For the formation of ArCuCNLi or Ar2CuLi, the cuprate was stirred only for 15 min at -78 °C to avoid the formation of the byproduct, Ar-Ar. After this period, the Z- α -substituted- β , γ -unsaturated ester, 4a,b or 5a-d (0.85 mmol), was added quickly dropwise to the reaction mixture at -78 °C, the temperature was kept for 2 h at -78 °C, and then the reaction was allowed to warm to room temperature slowly for a total stirring time of 8-12 h. The mixture was quenched with a saturated aqueous solution of NH4Cl, extracted with Et2O three times, concentrated in vacuo, and purified (silica gel, 5% Et₂O/95% hexanes for products 6a-c,e-i and 10% EtOAc/90% hexanes for product 6d).

General Procedure B. Catalytic Procedure. Synthesis of γ -Substituted- α , β -unsaturated Esters from α -Chloro- β , γ -unsaturated Esters (Table 3). A round-bottom flask equipped with a magnetic stir bar and septum was flame-dried under N₂. CuCN (0.15–0.33 mmol) was added inside an AtmosBag, and the flask was sealed with a rubber septum; the flask was then connected to a N₂ line and the solvent (6.0 mL) was added. This mixture was cooled down to -60 °C and the alkyllithium (1.0 equiv, 1.0 mmol) or alkylmagnesium (1.0 equiv, 1.0 mmol) was added dropwise. The mixture was allowed to warm to -30 °C (30 min), and after this period, all the solid was

dissolved and there was no indication of decomposition. The reaction mixture was cooled down to -78 °C, and the Z- α -chloro- β , γ -unsaturated ester 4a (0.85 mmol, 173 mg) was added quickly dropwise. The mixture was kept at -78 °C over 4 h and quenched at this temperature for entries 1–5 (Table 3), and for entries 6–10 (Table 3), it was kept 1 h at -78 °C and then warmed up slowly to room temperature for a total stirring time of 4 h. It was quenched with a saturated aqueous solution of NH₄Cl, extracted with Et₂O three times, concentrated in vacuo, and purified (silica gel, 5% Et₂O/95% hexanes).

General Procedure C. $S_N2' \gamma$ -Alkylation of Cyanohydrin Phosphates (Table 6) 21a and 21b. These compounds were synthesized by adapting procedures from Hoover and Stahl²⁶ and Najera and co-workers.²⁷ Alkylcyanocuprates were prepared as described in general procedure A. Cyanohydrin phosphate 21a or 21b (0.50 mmol) was quickly added dropwise to a -78 °C solution of ⁿBuCuLM (0.60 mmol, L = CN, Br; M = Li, MgCl) in the corresponding solvent (5.0 mL). The reaction mixture was stirred for 2 h at -78 °C and then allowed to warm slowly to room temperature overnight. It was quenched with brine, extracted with Et₂O three times, concentrated in vacuo, and purified (silica gel with silver nitrate, 5% Et₂O/95% hexanes).

Ethyl 2-Hydroxy-3-octynoate (2). A round-bottom flask equipped with septum and a magnetic stir bar was flame-dried under N_2 . THF (20 mL) and 1-hexyne (1) (2.3 mL, 20 mmol) were added, the mixture was cooled down to -78 °C, "BuLi (2.5 M in hexanes, 8.0 mL, 20 mmol) was slowly added, and the mixture was kept at this temperature over 1 h to complete the deprotonation of the alkyne. After this period, the solution was brought to -60 °C. In another flask, flame-dried ZnBr₂ (2.3 g, 10 mmol) was dissolved in THF (10 mL) and slowly added by cannula to the previous solution at -60 °C; once added, this new reaction mixture was allowed to warm from -60 to 0 °C over 45 min and was then kept at 0 °C over another 15 min. MeLi (1.5 M in Et₂O, 6.7 mL, 10 mmol) was then slowly added to the dialkylzinc solution. At this point the reaction mixture was stirred at 0 °C over 30 and 15 min at room temperature and then it was cooled down to -60 °C. Fleshly distilled ethyl glyoxylate (45 mmol) in toluene was added to the just prepared triorganoalkyl zincate solution. The mixture was allowed to stir over 2 h from -60 to -20 $^\circ C$ (it is important not to go over –20 $^\circ C$ to avoid the formation of byproducts), guenched at this temperature with a saturated aqueous solution of NH₄Cl, extracted with Et₂O three times, concentrated in vacuo, and purified (silica gel, eluding first with 50-75 mL of hexanes to remove the remaining toluene and then with 15% EtOAc/85% hexanes). After purification, a pale yellow oil was obtained (3.1 g, 85%): IR (neat) 3474 (br, s), 2960 (s), 2936 (s), 2874 (m), 2293 (w), 2237 (m), 1745 (s), 1633 (w), 1467 (m), 1369 (m), 1263 (m), 1205 (m), 1144 (m), 1073 (m), 731 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.91 (t, J = 7.3 Hz, 3H), 1.33 (t, J = 7.3 Hz, 3H), 1.37–1.44 (m, 2H), 1.46–1.54 (m, 2H), 2.22 (dt, J = 1.8, 7.3 Hz, 2H), 3.07 (d, J = 7.3 Hz, 1H), 4.31 (q, J = 7.3 Hz, 2H), 4.81 (dt, J = 1.8, 7.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.5, 14.0, 18.3, 21.8, 30.2, 61.6, 62.5, 75.5, 86.6, 170.8; mass spectrum m/z (relative intensity) EI 184 (0.10, M⁺), 142 (5), 111 (100), 96 (12), 77 (12), 67 (11), 55 (39), 41 (25).

(Z)-Ethyl 2-Hydroxy-3-octenoate (3). A round-bottom flask provided with a magnetic stir bar and septum was loaded with the α hydroxy- β , γ -acetylenic ester 2 (3.7 g, 20 mmol), Lindlar catalyst (Pd/ BaSO₄/Pb, 200 mg), quinoline (2.6 mL, 22 mmol), and methanol (30 mL). A needle attached to a continuous source of H₂ was inserted deep inside the reaction mixture to allow positive flow of H₂; another needle was set in the septum to allow evacuation of the excess gas. This mixture was vigorously stirred and kept under slow but continuous flow of H_2 for 4–5 h. After this period, all the material was reduced to allylic alcohol 3, and no evidence of over-reduced product was found. The reaction crude material was filtrated over a small layer of silica gel to remove the palladium catalyst and then eluted with 50% Et₂O/50% hexanes. Concentration in vacuo and purification (silica gel, 15% EtOAc/85% hexanes) gave a pale yellow oil (3.3 g, 88%): IR (neat) 3473 (br, s), 3011 (m), 2959 (s), 2931 (s), 2873 (m), 1736 (s), 1655 (w), 1466 (m), 1369 (m), 1201 (s), 1085

(s), 1040 (m), 925 (w), 810 (w), 743 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.92 (t, *J* = 7.3 Hz, 3H), 1.27–1.45 (m, 7H), 2.17–2.25 (m, 2H), 3.00 (d, *J* = 6.0 Hz, 1H), 4.20–4.29 (m, 2H), 4.92 (dd, *J* = 0.9, 6.0 Hz, 1H), 5.31–5.38 (m, 1H), 5.70 (dt, *J* = 0.9, 7.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.0, 22.3, 27.6, 31.4, 61.9, 67.6, 126.1, 136.0, 147.2; mass spectrum *m*/*z* (relative intensity) EI 186 (0.20, M⁺), 168 (4.5), 157 (1), 140 (1), 113 (45), 95 (66), 83 (6), 57 (100), 55 (11).

(Z)-Ethyl 2-Chloro-3-octenoate (4a). The Z-allylic alcohol 3 was chlorinated by adapting the procedure from Calzada and Hooz:¹⁵ To a round-bottom flask equipped with a magnetic stir bar and septum was added the Z- α -hydroxy- β , γ -unsaturated ester 3 (4.0 g, 21.5 mmol) and CCl₄ (18 mL), and this mixture was stirred for 15-20 min at room temperature. Then PPh₃ (7.3 g, 28 mmol) was added in two portions and the mixture stirred for 15 min to ensure a complete dissolution of all the solid. A condenser was attached and the reaction mixture was heated in an oil bath up to 75 °C (external temperature). Higher temperatures should be avoided to prevent mixtures of cis and trans products. The reaction was followed by TLC and normally after 1.5 h it is complete; a bulky precipitated was present at this point. Once cooled down to room temperature, the reaction crude was filtered over a small layer of SiO₂, eluted with 20% Et₂O/80% hexanes, concentrated in vacuo, and purified (silica gel 3% Et₂O/97% hexanes). After purification, a pale yellow oil was obtained (3.7 g, 85%): IR (neat) 3032 (w), 2961 (m), 2933 (m), 2874 (m), 1747 (s), 1651 (w), 1466 (m), 1312 (m), 1262 (m), 1162 (s), 1027 (m), 819 (s) cm⁻¹; ¹H NMR (500 MHz, CDCl₂) δ 0.93 (t, I = 6.9 Hz, 3H), 1.29–1.45 (m, 7H), 2.12–2.22 (m, 2H), 4.25 (q, J = 6.9 Hz, 2H), 5.09 (d, J = 9.6 Hz, 1H), 5.66–5.79 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 13.8, 13.9, 22.2, 27.3, 31.2, 52.4, 62.2, 124.1, 163.9, 168.6; mass spectrum m/z (relative intensity) EI 204 (0.10, M⁺), 169 (55), 141 (17), 125 (22), 95 (100), 81 (26), 67 (28), 55 (36), 41 (26); HRMS (EI) calcd for $[C_{10}H_{17}ClO_2]^+$ 204.0917, found 204.0915.

(*E*)-Ethyl 4-Butyl-2-octenoate (6a). Compound 6a was prepared using general procedure A. After purification (silica gel, 5% Et₂O/95% hexanes), a colorless oil was obtained (182 mg, 95%): IR (neat) 2959 (s), 2930 (s), 2860 (s), 1722 (s), 1652 (m), 1466 (m), 1369 (m), 1307 (m), 1266 (m), 1216 (m), 1176 (m), 1144 (m), 1043 (m), 988 (m), 864 (w), 730 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.89 (t, *J* = 7.3 Hz, 3H), 1.16–1.48 (m, 15H), 2.08–2.18 (m, 1H), 4.20 (q, *J* = 7.3 Hz, 2H), 5.77 (d, *J* = 15.6 Hz, 1H), 6.75 (dd, *J* = 9.2, 15.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.0, 14.3, 22.7, 29.4, 34.2, 42.7, 60.1, 120.8, 154.0, 166.8; mass spectrum *m*/*z* (relative intensity) EI 226 (3.5, M⁺), 197 (2), 184 (25), 181 (39), 155 (18), 138 (67), 123 (28), 110 (37), 96 (200), 81 (56), 47 (69), 55 (85), 41 (10); HRMS (EI) calcd for [C₁₄H₂₆O₂]⁺ 226.1933, found 226.1932.

(*E*)-Ethyl 4-Methyl-2-octenoate (6b). Compound 6b was prepared using general procedure A. After purification (silica gel, 5% Et₂O/95% hexanes), a colorless oil was obtained (137 mg, 88%): IR (neat) 2961 (m), 2931 (m), 2874 (m), 1722 (s), 1652 (m), 1461 (m), 1266 (m), 1181 (m), 1040 (m), 985 (w), 864 (w), 725 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, J = 7.3 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H), 1.21–1.41 (m, 9H), 2.24–2.34 (m, 1H), 4.19 (q, J = 7.3 Hz, 2H), 5.77 (d, J = 15.6 Hz, 1H), 6.86 (dd, J = 7.8, 15.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.2, 19.4, 22.7, 29.3, 35.7, 36.5, 60.1, 119.5, 154.7, 166.9; mass spectrum m/z (relative intensity) EI 184 (4.5, M⁺), 169 (1.5), 155 (7), 142 (80), 139 (60), 113 (45), 96 (98), 81 (43), 69 (93), 55 (100), 41 (53).

(*E*)-Ethyl 4-Phenyl-2-octenoate (6c). Compound 6c was prepared using general procedure A. After purification (silica gel, 5% Et₂O/95% hexanes), a clear oil was obtained (132 mg, 63%): IR (neat) 3063 (w), 3029 (w), 2959 (m), 2932 (s), 2860 (m), 1720 (s), 1650 (m), 1602 (w), 1494 (w), 1454 (m), 1368 (m), 1309 (m), 1267 (m), 1171 (m), 1043 (m), 985 (m), 867 (w), 761 (w), 700 (m), 560 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, *J* = 7.3 Hz, 3H), 1.20–1.37 (m, 7H), 1.73–1.86 (m, 2H), 3.36–3.43 (m, 1H), 4.19 (q, *J* = 7.3 Hz, 2H), 5.80 (dd, *J* = 0.9, 15.6 Hz, 1H), 7.08 (dd, *J* = 7.8, 15.6 Hz, 1H), 7.17–7.36 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.2, 22.5, 29.6, 34.6, 48.5, 60.2, 120.6, 126.7, 127.7, 128.6, 142.4, 152.0, 166.7; mass spectrum *m*/*z* (relative intensity) EI 246 (14, M⁺), 217

(2), 204 (18), 189 (8), 172 (9), 158 (40), 143 (41), 133 (38), 115 (100), 91 (36), 77 (8), 55 (10), 41 (11). HRMS (EI) calcd for $[C_{16}H_{22}O_2]^+$ 246.1620, found 246.1622.

(E)-Ethyl 4-(N-tert-Butoxycarbamoyl-N-methylamino)-2-octenoate (6d). Compound 6d was prepared using general procedure A. After purification (silica gel, 10% EtOAc/90% hexanes), a clear oil was obtained (200 mg, 75%): IR (neat) 2961 (m), 2932 (m), 2974 (w), 2966 (w) 1721 (s), 1698 (s), 1654 (w), 1463 (m), 1394 (m), 1367 (m), 1268 (m), 1152 (m), 1043 (m), 983 (w), 879 (w), 771 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) (minor rotamer) δ 0.82–0.90 (br, s, 3H), 1.14-1.34 (m, 9H), 1.36-1.46 (br, s, 9H), 2.42-2.57 (br, m, 1H), (2.73) 2.81 (s, 3H), (3.07–3.17) 3.19–3.31 (m, 2H), 4.16 (q, J = 7.3 Hz, 2H), 5.77 (d, J = 15.6 Hz, 1H), 6.68–6.78 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) (minor rotamer) δ 13.8, 14.2, 22.6, 28.3, 29.2, 31.4, 34.7 (35.2), (42.0) 42.2, (52.6) 53.1, 60.2, (79.3) 79.5, 122.4, 150.5 (150.7), 155.4 (155.8), 166.2; mass spectrum m/z (relative intensity) EI 313 (0.03, M⁺), 240 (5), 194 (4), 170 (28), 144 (44), 127 (21), 99 (13), 88 (14), 57 (78), 44 (100), 41 (23); HRMS (EI) calcd for [C₁₇H₃₁NO₄]⁺ 313.2253, found 313.2258.

(*E*)-Ethyl 4-(1,1-Dimethyl ethyl)-2-octenoate (6e). Compound 6e was prepared using general procedure A. After purification (silica gel, 5% Et₂O/95% hexanes), a clear oil was obtained (156 mg, 81%): IR (neat) 2961 (s), 2871 (m), 1722 (s), 1651 (m), 1468 (m), 1368 (m), 1344 (m), 1266 (m), 1212 (m), 1162 (m), 1137 (m), 1040 (m), 992 (m), 864 (w), 730 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.82–0.92 (m, 12H), 0.98–1.08 (m, 1H), 1.16–1.36 (m, 7H), 1.51–1.60 (m, 1H), 1.81 (dt, *J* = 2.3, 10.5 Hz, 1H), 4.20 (q, *J* = 7.3 Hz, 2H), 5.75 (d, *J* = 15.6 Hz, 1H), 6.78 (dd, *J* = 10.5, 15.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.0, 14.2, 22.7, 27.7, 28.2, 30.4, 33.1, 53.7, 60.1, 122.4, 151.6, 166.5; mass spectrum *m*/*z* (relative intensity) EI 170 (100, M⁺ – ¹Bu), 127 (79), 99 (57), 81 (18), 57 (40), 41 (24); HRMS (EI) calcd for [C₁₄H₂₆O₂ + H]⁺ 227.2011, found 227.2014.

(E)-Ethyl 4-(2-Methoxyphenyl)-2-octenoate (6g). Compound 6g was prepared using general procedure A. After purification (silica gel, 5% Et₂O/95% hexanes), a clear oil was obtained (171 mg, 73%): IR (neat) 3032 (w), 2958 (s), 2933 (s), 2861 (m), 2839 (m), 1717 (s), 1650 (m), 1599 (m), 1493 (m), 1464 (m), 1440 (m), 1368 (m), 1244 (s), 1176 (s), 1032 (s), 867 (w), 754 (s), 574 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, J = 7.3 Hz, 3H), 1.19–1.37 (m, 7H), 1.73-1.84 (m, 2H), 3.83 (s, 3H), 3.88-3.93 (m, 1H), 4.18 (q, J = 7.3 Hz, 2H), 5.79 (dd, I = 1.4, 15.6 Hz, 1H), 6.88 (d, I = 8.3 Hz, 1H), 6.95 (t, J = 6.9 Hz, 1H), 7.10 (dd, J = 7.8, 15.6 Hz, 1H), 7.15 (dd, J = 1.4, 7.3 Hz, 1H), 7.22 (dt, J = 1.4, 7.8 Hz, 1H); ¹³C NMR (125) MHz, CDCl₃) δ 13.9, 14.2, 22.6, 29.7, 33.4, 40.8, 55.4, 60.1, 110.7, 120.3, 120.7, 127.5, 127.9, 130.6, 152.0, 157.0, 167.0; mass spectrum m/z (relative intensity) EI 276 (46, M⁺), 231 (25), 219 (44), 188 (22), 175 (52), 145 (100), 115 (35), 91 (29), 77 (14), 55 (9), 41 (9); HRMS (EI) calcd for [C₁₇H₂₄O₃]⁺ 276.1725, found 276.1725.

(E)-Ethyl 4-(1-Naphthyl)-2-octenoate (6h). Compound 6h was prepared using general procedure A. After purification (silica gel, 5% $Et_2O/95\%$ hexanes), a clear oil was obtained (189 mg, 75%): IR (neat) 3049 (m), 2958 (s), 2932 (s), 2861 (m), 1936 (w), 1716 (s), 1650 (m), 1598 (w), 1510 (w), 1465 (m), 1368 (m), 1309 (m), 1269 (s), 1177 (s), 1072 (m), 986 (m), 860 (w), 798 (m), 779 (s), 733 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.78 (t, J = 6.9 Hz, 3H), 1.14– 1.32 (m, 7H), 1.83–1.93 (m, 1H), 4.06 (q, J = 6.9 Hz, 2H), 4.14–4.20 (m, 1H), 5.74 (dd, J = 0.9, 15.6 Hz, 1H), 7.10-7.18 (m, 1H), 7.29-7.46 (m, 4H), 7.67 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 7.3 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.2, 22.7, 29.9, 34.4, 42.8, 60.3, 121.0, 123.0, 124.4, 125.4, 125.5, 126.0, 127.2, 129.0, 131.6, 134.0, 138.4, 151.7, 166.7; mass spectrum m/z (relative intensity) EI 296 (25, M⁺), 251 (7), 239 (13), 223 (6), 208 (5), 179 (6), 165 (100), 153 (10), 128 (4), 115 (4), 55 (3), 41 (4); HRMS (EI) calcd for $[C_{20}H_{24}O_2]^+$ 296.1776, found 296.1776.

(E)-Ethyl 4-[1-(2-Propenyl)]-2-octenoate (6i). Compound 6i was prepared using general procedure A. After purification (silica gel, 5% $Et_2O/95\%$ hexanes), a colorless oil was obtained (118 mg, 66%): IR (neat) 3079 (w), 2960 (m), 2930 (m), 2860 (w), 1722 (s), 1654 (m), 1466 (w), 1369 (m), 1308 (m), 1267 (m), 1221 (m), 1176 (m), 1142 (m), 1043 (m), 987 (m), 914 (m), 862 (w), 726 (w) cm⁻¹; ¹H

NMR (500 MHz, CDCl₃) δ 0.81 (t, J = 7.3 Hz, 3H), 1.08–1.44 (m, 9H), 2.02–2.20 (m, 3H), 4.12 (q, J = 7.3 Hz, 2H), 4.90–4.99 (m, 2H), 5.59–5.68 (m, 1H), 5.70 (d, J = 15.6 Hz, 1H), 6.70 (dd, J = 8.7, 15.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.2, 22.6, 29.2, 33.4, 38.7, 42.3, 60.1, 116.5, 121.1, 135.9, 152.8, 166.7; mass spectrum m/z (relative intensity) EI 210 (0.70, M⁺), 169 (50), 165 (15), 136 (22), 123 (23), 95 (100), 81 (65), 67 (35), 55 (50), 41 (29); HRMS (EI) calcd for [C₁₃H₂₂O₂]⁺ 210.1620, found 210.1619.

(Z)-Ethyl 2-Chloro-4-phenyl-3-butenoate (13). Compound 13 was prepared by adapting the procedure from Calzada and $\hat{H}ooz^{15}$ for ethyl (3Z)-2-hydroxy-4-phenylbut-3-enoate using Z-PhCH=CHCH-(OH)COOEt as starting material. After purification (silica gel, 3% Et₂O/97% hexanes), a pale yellow oil was obtained (3.8 g, 80%): IR (neat) 3060 (w), 3029 (w), 2984 (m), 2939 (w), 2907 (w), 1961 (w), 1887 (w), 1746 (s), 1641 (w), 1494 (m), 1447 (m), 1369 (m), 1317 (s), 1262 (s), 1177 (s), 1026 (m), 818 (m), 770 (m), 700 (s), 526 (w), 486 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.33 (t, J = 7.3 Hz, 3H), 4.29 (q, J = 7.3 Hz, 2H), 5.22 (t, J = 10.5 Hz, 1H), 6.00 (t, J = 11.0 Hz, 1H), 6.81 (d, J = 11.5 Hz, 1H), 7.33–7.46 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 53.1, 62.4, 125.2, 128.1, 128.6, 128.7, 134.7, 135.1, 168.3; mass spectrum m/z (relative intensity) EI 224 (0.60, M⁺), 189 (90), 151 (45), 115 (100), 105 (5), 89 (16), 63 (10), 51 (7); HRMS (EI) calcd for $[C_{12}H_{13}ClO_2]^+$ 224.0604, found 224.0604.

(*E*)-Ethyl 4-Phenyl-2-pentenoate (14b). Compound 14b was prepared using general procedure A, with *Z*-*α*-chloro-*β*,*γ*-unsaturated ester 13 (0.75 mmol) as starting material. Initial purification over silica gel (5% Et₂O/95% hexanes) yielded a mixture of *E* and *Z* isomers (128 mg, 84%). A second purification done with SiO₂–AgNO₃ (3% Et₂O/97% hexanes) to isolate the *E*-isomer 14b gave a clear oil: IR (neat) 3065 (w), 3029 (m), 2960 (m), 2931 (s), 1721 (s), 1650 (m), 1460 (m), 1170 (s), 1040 (m), 700 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.29 (t, *J* = 6.9 Hz, 3H), 1.45 (d, *J* = 6.9 Hz, 3H), 3.61–3.67 (m, 1H), 4.20 (q, *J* = 6.9 Hz, 2H), 5.82 (dd, *J* = 1.4, 15.6 Hz, 1H), 7.13 (dd, *J* = 6.9, 15.6 Hz, 1H), 7.21–7.39 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 20.0, 41.9, 60.3, 120.1, 126.7, 127.3, 128.7, 143.0, 152.6, 166.5; mass spectrum *m/z* (relative intensity) EI 204 (21, M⁺), 158 (5), 131 (100), 115 (10), 91 (27), 77 (5), 65 (4), 53 (3).

(Z)-Ethyl 2-Butyl-4-phenyl-3-butenoate (16a). Compound 16a was prepared using general procedure A, with Z- α -chloro- $\beta_{,\gamma}$ unsaturated ester 13 (0.35 mmol) as starting material. Initial purification over silica gel (5% Et₂O/95% hexanes) yielded a mixture of E and Z isomers (69 mg, 80%). A second purification done with SiO₂-AgNO₃ (3% Et₂O/97% hexanes) to isolate the Z-isomer 16a gave a clear oil: IR (neat) 3060 (w), 3025 (m), 2959 (s), 2933 (s), 2862 (m), 1733 (s), 1494 (w), 1448 (m), 1255 (m), 1224 (m), 1172 (s), 1031 (m), 768 (m), 701 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.80 (t, J = 7.3 Hz, 3H), 1.09–1.29 (m, 7H), 1.69–1.79 (m, 1H), 3.47-3.55 (m, 1H), 4.14 (q, J = 7.3 Hz, 2H), 5.61 (dd, J = 11.0, 11.5 Hz, 1H), 6.55 (d, J = 11.5 Hz, 1H), 7.18–7.33 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 14.2, 22.4, 29.1, 33.0, 44.7, 60.5, 127.0, 128.3, 128.7, 130.0, 131.1, 136.8, 174.3; mass spectrum m/z (relative intensity) EI 246 (27, M⁺), 203 (4), 190 (6), 173 (52), 157 (4), 131 (18), 117 (100), 91 (54), 69 (6), 41 (8); HRMS (EI) calcd for $[C_{16}H_{22}O_2]^+$ 246.1620, found 246.1622.

(*E*)-4-Butyl-2-octenenitrile (22). Compound 22 was prepared using general procedure C. Initial purification over silica gel (5% Et₂O/95% hexanes) yielded a mixture of *E* and *Z* isomers (67 mg, 75%). A second purification done with SiO₂-AgNO₃ (5% Et₂O/95% hexanes) to isolate the *E*-isomer 22 gave a colorless oil: IR (neat) 3052 (w), 2959 (s), 2931 (s), 2860 (m), 2224 (m), 1632 (m), 1466 (m), 1380 (w), 973 (m), 731 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.89 (t, *J* = 7.3 Hz, 6H), 1.14–1.36 (m, 10H), 1.39–1.50 (m, 2H), 2.08–2.18 (m, 1H), 5.28 (d, *J* = 16.5 Hz, 1H), 6.50 (dd, *J* = 9.2, 16.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 22.6, 29.2, 33.7, 44.0, 99.1, 117.6, 160.7; mass spectrum *m*/*z* (relative intensity) EI 179 (0.25, M⁺), 178 (1.25), 164 (6), 150 (11), 124 (23), 110 (61), 94 (37), 80 (97), 56 (60), 55 (95), 41 (100); HRMS (EI) calcd for [C₁₂H₂₁N]⁺ 179.1674, found 179.1692.

(Z)-4-Butyl-2-octenenitrile (23). Compound 23 was prepared using general procedure C. Initial purification over silica gel (5% Et₂O/95% hexanes) yielded a mixture of *E* and *Z* isomers (55 mg, 62%). A second purification done with SiO₂-AgNO₃ (5% Et₂O/95% hexanes) to isolate the *Z*-isomer 23 gave a colorless oil: IR (neat) 3068 (w), 2959 (s), 2930 (s), 2860 (m), 2220 (m), 1621 (m), 1466 (m), 1380 (w), 755 (m) cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.90 (t, *J* = 7.3 Hz, 6H), 1.22–1.38 (m, 10H), 1.45–1.55 (m, 2H), 2.59–2.69 (m, 1H), 5.33 (d, *J* = 11.0 Hz, 1H), 6.21 (dd, *J* = 10.5, 11.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 22.6, 29.3, 34.4, 42.6, 99.0, 116.4, 159.9; mass spectrum *m*/*z* (relative intensity) EI 179 (0.25, M⁺), 178 (1.5), 164 (5), 150 (10), 136 (11), 124 (20), 110 (57), 94 (32), 80 (100), 69 (38), 55 (54), 41 (67); HRMS (EI) calcd for [C₁₂H₂₁N]⁺ 179.1674, found 179.1674.

ASSOCIATED CONTENT

S Supporting Information

¹H and ¹³C NMR spectra for **2**, **3**, **4a**, **6a–e**, **6g–i**, **13**, **14b**, **16a**, **22**, and **23** are provided. This material is available free of charge via the Internet at http://pubs.acs.org

AUTHOR INFORMATION

Corresponding Author

*E-mail: dieterr@clemson.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Support of the NSF Chemical Instrumentation Program for purchase of a JEOL 500 MHz NMR instrument is gratefully acknowledged (CHE-9700278). A.P. thanks the Ministry of Science and Technology of Costa Rica (MICIT) for partial support.

REFERENCES

(1) For a review on divergent synthetic strategy, see the following: Serba, C.; Winssinger, N. *Eur. J. Org. Chem.* **2013**, 4195–4214.

(2) (a) Dhakal, R. C.; Dieter, R. K. Org. Lett. 2014, 16, 1362–1365.
(b) Dhakal, R. C.; Dieter, R. K. J. Org. Chem. 2013, 78, 12426–12439.
(c) Guo, F.; Dhakal, R. C.; Dieter, R. K. J. Org. Chem. 2013, 78, 8451– 8464. (d) Dieter, R. K.; Huang, Y.; Guo, F. J. Org. Chem. 2012, 77, 4949–4967. and references cited therein. (e) Dieter, R. K.; Guo, F. J. Org. Chem. 2009, 74, 3843–3848. (f) Dieter, R. Karl; Guo, F. Org. Lett. 2008, 10, 2087–2090.

(3) For general reviews, see the following: (a) Spino, C. In The Chemistry of Organocopper Compounds; Rappoport, Z.; Marek, I., Eds.; Wiley: Chichester, UK, 2009; Chapter 13, Part 2, pp 603-691. (b) Breit, B.; Schmidt, Y. Chem. Rev. 2008, 108, 2928-2951. (c) Kar, A.; Argade, N. P. Synthesis 2005, 2995-3022. (d) Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2005, 44, 4435-4439. (e) Karlstrom, A. S. E.; Backvall, J.-E. In Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002; Chapter 8, pp 259-288. (f) Breit, B.; Demel, P. In Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002; Chapter 6, pp 188-223. (4) For reviews on enantioselective allylic substitution, see the following: (a) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824-2852. (b) Alexakis, A.; Backvall, L. E.; Krause, N.; Pamies, O.; Dieguez, M. Chem. Rev. 2008, 108, 2796-2823. (c) Falciola, C. A.; Alexakis, A. Eur. J. Org. Chem. 2008, 3765-3780. (d) Langlois, J.-B.; Alexakis, A. In Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis; Kazmaier, U., Ed.; Springer: Heidelberg, Germany, 2012; Chapter 6, pp 235-268. (e) Ibuka, T.; Tanaka, M.; Nishii, S.; Yamamoto, Y. J. Am. Chem. Soc. 1989, 111, 4864-4872. (f) Ibuka, T.; Akimoto, N.; Tanaka, M.; Nishii, S.; Yamamoto, Y. J. Org. Chem. 1989, 54, 4055-4061. (g) Ibuka, T.; Nakai, K.; Habashita, H.; Bessho, K.;

Fujii, N.; Chounan, Y.; Yamamoto, Y. *Tetrahedron* **1993**, *49*, 9479–9488. (h) Hartog, T.; Maciá, B.; Minnaard, A.; Feringa, B. *Adv. Synth. Catal.* **2010**, *352*, 999–1013.

- (5) Genna, D. T.; Hencken, C. P.; Siegler, M. A.; Posner, G. H. Org. Lett. 2010, 12, 4694–4697.
- (6) Genna, D. T. Ph.D. Thesis. The Johns Hopkins University, Baltimore, MD, 2011.
- (7) Baeza, A.; Nájera, C.; Sansano, J. M. Eur. J. Org. Chem. 2007, 1101–1112.
- (8) Duclos, J. F.; Outurquin, F.; Paulmier, C. Tetrahedron Lett. 1993, 34, 7417–7420.
- (9) Jacobine, A. M.; Posner, G. H. J. Org. Chem. 2011, 76, 8121-8125.
- (10) (a) Wallner, O. A.; Szabó, K. J. J. Org. Chem. 2003, 68, 2934-
- 2943. (b) Wallner, O. A.; Szabó, K. J. Org. Lett. 2004, 6, 1829–1831.
- (11) (a) Piva, O. Synlett **1994**, 729–731. (b) Bargiggia, F.; Dos Santos, S.; Piva, O. Synthesis **2002**, 427–437.
- (12) Xiao, F.; Zhang, Z.; Zhang, J.; Wang, J. Tetrahedron Lett. 2005, 46, 8873–8875.
- (13) Lapkin, I. I.; Andreichikov, Y. S. Zh. Obshch. Khim. 1964, 34, 3183–3185.
- (14) Prévost, S.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V. Adv. Synth. Catal. **2011**, 353, 3213–3226.
- (15) Calzada, J. G.; Hooz, J. Org. Synth. 1974, 54, 63.
- (16) Mikami, K.; Hioki, Y.; Aikawa, K. J. Am. Chem. Soc. 2009, 131, 13922–13923.
- (17) (a) Dieter, R. K.; Gore, V. K.; Chen, N. Org. Lett. 2004, 6, 663– 766. (b) Kiyotsuka, Y.; Kobayashi, Y. J. Org. Chem. 2009, 74, 7489– 7495.
- (18) Mesylate **5c** was prepared by adaption of an in situ procedure employed for preparation of phosphate **5b**. See ref 17a.
- (19) (a) Calaza, M. I.; Hupe, E.; Knochel, P. Org. Lett. 2003, 5, 1059–1061. (b) Perrone, S.; Metzger, A.; Knochel, P. Synlett 2007, 1047–1050.
- (20) Dieter, R. K.; Li, S.; Chen, N. J. Org. Chem. 2004, 69, 2867–2870.
- (21) For metal halide catalyzed oxidative coupling of aryl Grignard reagents, see the following: (a) Li₂CuCl₄: Hua, S.-K.; Hu, Q.-P.; Ren, J.; Zeng, B.-B. *Synthesis* **2013**, *45*, 518–526. (b) ZnBr₂: Kanth, S. R. ; Reddy, G. V.; Yakaiah, T.; Narsaih, B.; Rao, P. S. Kanth, S. R. ; Reddy, G. V.; Yakaiah, T.; Narsaih, B.; Rao, P. S. *Synth. Commun.* **2006**, *36*, 3079–3084. (c) MnCl₂: Zhou, Z.; Xue, W. J. Organomet. Chem. **2009**, *694*, 599–603.
- (22) Phosphates **5a,b** and mesylate **5c** underwent decomposition after 1 week standing in the refrigerator. Benzoate **5d** was stable for 3 months in the refrigerator.
- (23) Stach, H.; Huggenberg, W.; Hesse, M. Helv. Chim. Acta 1987, 70, 369–374.
- (24) The alcohol was prepared from phenylacetylene according to the protocol shown in Scheme 1.
- (25) A plausible polymerization pathway could involve cupratemediated homolytic reductive cleavage of the C–Cl bond in an initiation step followed radical polymerization.
- (26) For preparation of the required (Z)-2-heptenal, see the following: Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901–16910.
- (27) Baeza, A.; Nájera, C.; Sansano, J. M. Arkivoc 2005, 353–363.
- (28) (a) Corey, E. J.; Boaz, N. W. *Tetrahedron Lett.* **1984**, *25*, 3063–3066. For reviews, see the following: (b) Yoshikai, N.; Nakamura, E. *Chem. Rev.* **2012**, *112*, 2339–2372. (c) Nakamura, E., Yoshikai, N. In *The Chemistry of Organocopper Compounds*; Rappoport, Z.; Marek, I., Eds.; Wiley: Chichester, 2009; Chapter 1, Part 1, pp 1–21.
- (29) Yoshikai, N.; Zhang, S.-L.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 12862–12863 and references cited therein..
- (30) For reviews, see the following: (a) Johnson, F. Chem. Rev. 1968, 68, 375–413. (b) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841–1860.
 (c) In general, A^{1,3}-strain is greater than A^{1,2}-strain in energy content.

- (31) For a table of *A*-values, see the following: Eliel, E. L.; Wilen, S. H. *Stereochemistry of Organic Compounds*; Wiley-Interscience: New York, 1994; Chapter 11, pp 696–697.
- (32) For experimental confirmation of Cu(III) complexes in allylic systems, see the following: (a) Bartholomew, E. R.; Bertz, S. H.; Cope, S.; Murphy, M.; Ogle, C. A. J. Am. Chem. Soc. 2008, 130, 11244–11245. (b) Bartholomew, E. R.; Bertz, S. H.; Cope, S. K.; Murphy, M. D.; Ogle, C. A.; Thomas, A. A. Chem. Commun. 2010, 46, 1253–1254. For Cu(III) complexes prepared from various Cu(I) precursors, see the following: (c) Bertz, S. H.; Cope, S.; Dorton, D.; Murphy, M.; Ogle, C. A. Angew. Chem., Int. Ed. 2007, 46, 7082–7085. For Cu(III) complexes prepared from Me₄CuLi, see the following: (d) Bertz, S. H.; Murphy, M. D.; Ogle, C. A.; Thoms, A. A. Chem. Commun. 2010, 46, 1255–1256. For Cu(III) complexes in 1,4-additions, see the following: (e) Bertz, S. H.; Cope, S.; Murphy, M.; Ogle, C. A.; Taylor, B. J. J. Am. Chem. Soc. 2007, 129, 7208–7209.
- (33) (a) Backvall, J.-E.; Sellen, M.; Grant, B. J. Am. Chem. Soc. **1990**, 112, 6615–6621. (b) Persson, E. S. M.; Backvall, J.-E. Acta Chem. Scand. **1995**, 49, 899–906. (c) Yamazaki, T.; Umetani, H.; Kitazume, T. Tetrahedron Lett. **1997**, 38, 6705–6708.
- (34) (a) Yamanaka, M.; Kato, S.; Nakamura, E. J. Am. Chem. Soc. **2004**, 126, 6287–6293. For reviews, see the following: (b) Yoshikai, N.; Nakamura, E. Chem. Rev. **2012**, 112, 2339–2372. (c) Nakamura, E., Yoshikai, N. In The Chemistry of Organocopper Compounds; Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, UK, 2009; Chapter 1, Part 1, pp 1–21.
- (35) Nakamura, E.; Mori, S. Angew. Chem., Int. Ed. 2000, 39, 3750–3771.
- (36) (a) Gschwind, R. M. Chem. Rev. 2008, 108, 3029-3053.
 (b) Gartner, T.; Gschwind, R. M. In The Chemistry of Organocopper Compounds; Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, UK, 2009; Chapter 4, Part 1, pp 163-215. (c) Putau, A.; Koszinowski, K. Organometallics 2011, 30, 4771-4778. For an extensive NMR study of Li-cation cuprate ligand coordination effects, see the following: (d) Bertz, S. H.; Hardin, R. A.; Murphy, M. D.; Ogle, C. A.; Richter, J. D.; Thomas, A. A. Angew. Chem., Int. Ed. 2012, 51, 2681-2685.
- (37) (a) Boche, G.; Bosold, F.; Marsh, M.; Harms, K. Angew. Chem., Int. Ed. **1998**, 37, 1684–1686. (b) Krause, N. Angew. Chem., Int. Ed. **1999**, 38, 79–81. (c) Eaborn, C.; El-Hamrumi, S. M.; Hill, M. S.; Hitchock, P. B.; Smith, J. D. J. Chem. Soc., Dalton Trans. **2002**, 3975– 3979. (d) Eaborn, C.; Hill, M. S.; Hitchock, P. B.; Smith, J. D. Organometallics **2000**, 19, 5780–5783.
- (38) It has been noted that RCuCNM reagents undergo faster reductive elimination than R₂CuM reagents and that the latter undergo faster oxidative addition than the former. See ref 29.
- (39) (a) Dieter, R. K.; Oba, G.; Chandupatla, K. R.; Topping, C. M.; Lu, K.; Watson, T. J. Org. Chem. **2004**, 69, 3076–3086. (b) Dieter, R. K.; Chen, N. J. Org. Chem. **2006**, 71, 5674–5678.
- (40) Computational studies suggest that **31** should lead to a lower energy transition state in the reductive elimination step than **32** (cf. Scheme 6, ref 34a), even though an α -substituted CO₂Me copper complex (i.e., alpha to the C–Cu bond) displays a higher activation energy for reductive elimination than an α -subsituted phenyl complex (cf. Figure 8, ref 34a).
- (41) Previous workers have suggested complexation between the nitrile and the Cu atom where the copper complex is "relatively free of magnesium". See ref 7.
- (42) Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 1967, 9, 165–168.
- (43) Paquette, L. A.; Lin, H. S. Synth. Commun. 1994, 24, 2503–2506.
- (44) Sutherland, A.; Jamieson, A. G. Org. Biomol. Chem. 2005, 3, 735–736.
- (45) Concellón, J. M.; Concellón, C.; Méjica, C. J. Org. Chem. 2005, 70, 6111–6113.