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Selective alkylation of a 6,7-dihydroxyquinazoline
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Abstract—A convenient 3-step multi-parallel process for the preparation of 4-(3-chloro-2-fluoroanilino)-6,7-bisalkoxyquinazolines
is highlighted.
� 2005 Elsevier Ltd. All rights reserved.
In recent years, inhibition of receptor tyrosine kinases
(RTKs) has been the focus of much research in the
pharmaceutical industry.1 4-Anilinoquinazolines have
emerged as an important class of potent and selective
inhibitors of RTKs and numerous compounds are
currently in clinical development for the treatment of
cancer (Fig. 1). The small molecule tyrosine kinase
inhibitors gefitinib2 and erlotinib1 have been approved
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Figure 1. Examples of anilinoquinazolines in clinical development.
for the treatment of non-small cell lung cancer refrac-
tory to chemotherapy.3

In our recent efforts to explore variation at positions
C-6 and C-7 of the ring nucleus to further investigate
the structure–activity relationships, we became inter-
ested in preparing a library of quinazolines containing
extended ether side chains at both positions. Herein,
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Scheme 1. Synthesis of 4-(3-chloro-2-fluoroanilino)-6,7-dihydroxyquin-
azoline. Conditions: (i) methionine, MeSO3H, 100 �C, 3 h, 45%; (ii)
Ac2O, pyridine, 100 �C, 100%; (iii) SOCl2, reflux, 16 h, 70%; (iv) 3-
chloro-2-fluoroaniline, i-PrOH, reflux, 98%; (v) pyridinium hydrochlo-
ride, 150 �C, 3 h, 67%.
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we communicate the facile and parallel chemistry em-
ployed to achieve this important class of kinase inhibi-
tors from the corresponding bis-phenol precursor 4
(Scheme 1).

The synthesis of 4 was realised from 6,7-dimethoxyquin-
azolone 1.4 Deprotection of the methyl ether at C-6
was achieved using methionine in the presence of
methanesulfonic acid.5 The resulting C-6-phenol 2 was
subsequently acetylated and chlorinated to afford the
corresponding 4-chloroquinazoline 3. Substitution of 3
with 3-chloro-2-fluoroaniline was achieved in excellent
yield in i-PrOH at reflux. Cleavage of the second methyl
ether at C-7, with simultaneous unmasking of the C-6-
phenol to afford the requisite bis-phenol 4 was achieved
in good yield using pyridium hydrochloride under melt
conditions (Scheme 1).
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Scheme 2. Possible mechanistic explanation of the excellent regioselective ac
We hypothesised that differentiating between the two
phenols should be achievable due to the large difference
in acidity between the C-7-phenol (pKa = 7.6), whose
delocalisation base can be stabilised by conjugation into
the quinazoline ring, and the C-6-phenol (pKa = 10.02)
which cannot be stabilised by the quinazoline.6 How-
ever, initial attempts to apply standardMitsunobu chem-
istry7 failed. No sign of any selective alkylation was
observed despite attempts looking at both the mode of
addition and solvent choice. We eventually chose to
selectively esterify 4 with a view to preparing an interme-
diate, which could be utilised in a 3-step approach to
prepare a differentially alkylated 6,7-bis-alkoxyquinazo-
line library. Selective acylation at C-6 was achieved
using acetic anhydride in the presence of one equivalent
of sodium hydroxide (Scheme 2).

We postulate that the excellent degree of regioselectivity
can be explained by the Curtin-Hammet principle.8

While based upon the differences in pKa, the phenoxide
at C-7 must be dominant, the rate of acylation of C-6-
O� is much greater than that of C-7-O� thus driving
the equilibrium towards the C-6-OAc (Scheme 2).
Although the yield of 6-AcO-7-OH-quinazoline was
acceptable, the resulting precursor proved to be some-
what unstable to the Mitsunobu alkylation conditions
employed (di-tert-butylazadicarboxylate, triphenylphos-
phine, alcohol, DCM, 0 �C to rt). A signification quan-
tity of bis-phenol 4 was observed, presumably through
attack of the acylhydrazide anion generated by reaction
of triphenylphosphine with the azadicarboxylate. How-
ever, the C-6-OAc derivative 5 did allow us to isolate
our first examples of bis-alkylated products in accept-
able overall yields.9 In order to eliminate the observed
in situ deprotection at C-6, we turned to the increase ste-
ric bulk offered by a pivalate protecting group, which
also served to increase solubility in the reaction solvent
(Scheme 2).10
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Scheme 3. Double-Mitsunobu transformation of 6 to 6,7-heteroalkylatedanilinoquinazolines 9.

Table 1. Selected examples given in isolated yields after purification by preparative LCMS13

Entry R1 R2 Conversion (LCMS) (7-,8-,9) Yield (%)

1 O
N

O
100-,95-,85 55

2 O O 100-,96-,91 78

3a O

N

NO 100-,96-,94-,93 53

4a O

N

OHN

O

100-,96-,94-,92 45

5 S
N

O

80-,70-,65 43

6 O N 98-,90-,81 44

7 O O 98-,90-,76 51

8 O
O

98-,90-,70 59

9 O
O

98-,90-,75 50

(continued on next page)
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Table 1 (continued)

Entry R1 R2 Conversion (LCMS) (7-,8-,9) Yield (%)

10 N 98-,90-,92 67

11 N

O
98-,90-,86 62

12
O

96-,96-,86 55

13
N

N
100-,94-,84 58

14 O 93-,77-,71 65

a The final Mitsunobu steps were carried out, with excellent conversions, using 2-bromoethanol and glycidinol, respectively. The resulting bromide
and epoxide were treated with an excess of N-acetylpiperazine in DMF at 90 �C and in IPA at 90 �C, respectively, before purification.
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The introduction of the C-6-OPiv greatly reduced the
problem of in situ deprotection and the desired C-7-
alkoxyquinazolines 7 were isolated in excellent yields.
Subsequent deprotection of the C-6-OPiv was effected
by treatment of the intermediate 7 with 7N methanolic
ammonia in quantitative yield. This permitted the isola-
tion of 8 not only in excellent overall yield but, after
concentration, in a state of sufficient purity to carry
out the final Mitsunobu alkylation. In essence, the
process simply requires two filtrations and concentra-
tions, and was automated to provide a large library of
6,7-bis-alkoxy-(2-chloro-3-fluoroanilino)quinazolines 9
(Scheme 3).

Although the reaction can be carried out entirely in
solution in a 3-step-one-pot manner with simple con-
centrations between steps,11 we have found the intro-
duction of polymer-supported triphenylphosphine is
beneficial to (a) improve the yield of 9; (b) eliminate
competing N-alkylation through steric hindrance;12 (c)
completely eliminate any in situ deprotection in the first
step and consequential contamination with homo-alkyl-
ated product; and (d) to reduce mass of crude product
charges on the column and thus aid separation. The
author would like to emphasise that the choice of resin
appears critical when adopting this approach where a
large degree of diversity is introduced. High loading
polystyrene-supported triphenylphosphines (�3 mmol/
g) were generally acceptable for preparing un-hindered
primary ether libraries where all the alcohol reacted
thus was captured on the polymer during the first Mits-
unobu step and none was carried through to the final
Mitsunobu alkylation. However, for ether libraries
where at least one of the side chains was derived from
a secondary alcohol, high loading resins were not effi-
cient in ensuring complete reaction in the initial Mitsun-
obu alkylation, that is, unreacted alcohol �leached�
through to the final Mitsunobu step resulting, in certain
cases, in significant quantities of homo-alkylated
product.
We found that lower loading polymer-supported triphen-
ylphosphines (1–1.2 mmol/g) resulted in excellent con-
versions in both steps and little or no homo-alkylated
product was formed. A small selection of hetero-
bis-alkylated final compounds can be seen in Table 1.

The reaction conditions are indeed tolerant of a wide
variety of functionality, as one would expect of the ver-
satile Mitsunobu alkylation. Alcohols containing basic
functionality (e.g., entries 1 and 10), hindered secondary
alcohols (e.g., entries 12 and 14), alcohols containing
electrophilic sites (e.g., entries 4 and 5) can all be trans-
formed in acceptable to excellent overall yields with this
simple 3-step process.
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