

## WILEY-VCH

# Addition of Mixed Alkenyl-Dialkyl Zincates to Vicinal Diketoesters

Lars Selter,<sup>[a]</sup> Klaus Harms,<sup>[a]</sup> and Ulrich Koert\*<sup>[a]</sup>

**Abstract:** Methods for the regioselective alkylation, arylation and alkenylation of  $\alpha,\beta$ -diketoesters using organozinc reagents are reported. Alkylation and arylation in  $\alpha$ -position is possible using diorgano zinc compounds. Alkenylation can be achieved using mixed alkenyl-dineopentyl zincates.

Organozinc reagents combine temperate reactivity with low basicity.<sup>[5]</sup> They should be good candidates for transferring alkyl, alkenyl and aryl groups to vic-tricarbonyl compounds. Here we report on the addition of organozinc reagents in particular zincates to vic-diketoesters.

#### Introduction

Vicinal tricarbonyl compounds (VTC) offer three sites for nucleophilic attack and are interesting building blocks for organic synthesis due to their high density of functional groups.<sup>[1,2,3]</sup> Given a coplanar structure of the three carbonyl groups the central keto group is most reactive. The high electrophilicity of the central carbonyl group results in the formation of stable hydrates. Deviation from the coplanar structure of the three carbonyl groups can result in attack of the nucleophile at one of the flanking ones as it was observed with the crotylboration of  $\alpha$ . $\beta$ -diketoamides.<sup>[4]</sup> The addition of organometallic reagents to vic-tricarbonyl compounds is complicated by enolate formation. For vic-diketoesters the situation is the following (Scheme 1): upon chemical (P<sub>2</sub>O<sub>5</sub> or molecular sieves) or physical (thermic) dehydration of the hydrate 1 the tricarbonyl compound 2 is formed which can react with an organometallic reagent by attack at the  $\alpha$ -position ( $\rightarrow$  3), attack at the  $\beta$ -position ( $\rightarrow$  4), or in formation of enolate 5.



Scheme 1. Reactivity of vic-diketoester with organometallic reagents.

 M. Sc. L. Selter, Dr. K. Harms, Prof. Dr. U. Koert Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4, 35043 Marburg (Germany) Fax: (+49) 6421-2825677
 E-mail: koert@chemie.uni-marburg.de
 Homepage: http://www.uni-marburg.de/fb15/ag-koert

Supporting information for this article is given via a link at the end of the document.

## **Results and Discussion**

A number of procedures have been developed for the preparation of vic-diketoester **2**, typically starting from easily accessible  $\beta$ -ketoester **6** (Scheme 2). Normally the hydrate is isolated, stored and converted to the vic-diketoester prior to use. In contrast to most other procedures the Sachs method avoids oxidative conditions.<sup>[6]</sup> Thereby nitrosobenzene derivatives are condensed with the  $\beta$ -ketoester followed by hydrolysis of the imino intermediate **7**. Alternatively stepwise oxidation first with *m*CPBA and then copper acetate gives access to the vic-diketoester **2**.<sup>[7]</sup> Probably the most common method, which is also used in this work, is the generation of a diazo compound **8** via Regitz diazo transfer and subsequent oxidation with DMDO or *t*-BuOCl.<sup>[8]</sup>



Scheme 2. Methods for the preparation of vic-diketoester 2.

The synthesis of vic-diketoesters started from carboxylic acids 9 (Scheme 3), which were activated by CDI based on Masmune's procedure.<sup>[9]</sup> Reaction with potassium monomethyl malonate and subsequent decarboxylation gave access to  $\beta$ -keto methyl prepared ester 10. Cyclohexyl ester 11 was bv transesterification with cyclohexanol in toluene. Regitz diazo transfer to the corresponding  $\alpha$ -diazo- $\beta$ -ketoester and subsequent oxidation with t-BuOCI yielded the desired hydrates 12 and 13 in good overall yield (Table 1).





| Table 1. Syntheses of hydrates 12 and 13 according to Scheme 3. |        |             |             |             |             |
|-----------------------------------------------------------------|--------|-------------|-------------|-------------|-------------|
| Rest R =                                                        | Suffix | Yield<br>10 | Yield<br>11 | Yield<br>12 | Yield<br>13 |
| Ph                                                              | а      | 93%         | 99%         | 79%         | 66%         |
| PhCH(CH <sub>2</sub> CH <sub>3</sub> )                          | b      | 89%         | [b]         | 64%         | [b]         |
| Ph(CH <sub>2</sub> ) <sub>3</sub>                               | с      | 93%         | 97%         | 50%         | 63%         |
| CH(CH <sub>3</sub> ) <sub>2</sub>                               | d      | [a]         | [b]         | 64%         | [b]         |
| <i>p</i> -methoxybenzene                                        | е      | 89%         | [b]         | 59%         | [b]         |
| 3,5-dinitrobenzene                                              | f      | 78%         | [b]         | 65%         | [b]         |

[a] commercially available, [b] not prepared.

The  $\alpha,\beta$ -diketoesters **14** and **15** were freshly prepared prior to use by bulb-to-bulb distillation (90 to 180 °C) of hydrates **12** or **13** respectively (Scheme 4). Yields for the dehydration step were > 90% for all cases.





For the volatile  $\alpha$ , $\beta$ -diketoester **14d** dehydration was achieved by refluxing a solution of **12d** in chloroform in the presence of molecular sieves (4 Å) for 48 h (Scheme 5).







Scheme 5. Dehydration of 12d by molecular sieves.

With  $\alpha$ , $\beta$ -diketoesters in hand, addition reactions with different organometallic compounds such as methyl lithium and methyl magnesium bromide were investigated (Scheme 6). For the reaction of methyl lithium with  $\alpha$ , $\beta$ -diketoester **14c** no methyl transfer was observed obviously due to enolate formation and subsequent side reactions. TLC control showed mainly decomposition. For the reaction with the corresponding Grignard reagent the  $\alpha$ -methylated product **16c** was obtained in 27% yield only. Switching to ZnMe<sub>2</sub> gave a higher yield (58%) indicating that enolate formation could be reduced with the less basic dialkylzinc reagent.



Scheme 6. Reaction of  $\alpha,\beta\text{-diketoester}$  14c with different organometallic reagents.

For the reaction of diorgano zinc reagents with  $\alpha$ , $\beta$ -diketoesters **14** and **15** it was found that two equiv. of the diorgano zinc reagent and one equiv. of LiCl in THF/dichloromethane as solvents proved to be the optimal condition (Scheme 7, Table 2). ZnPh<sub>2</sub> was prepared from phenyl lithium and ZnCl<sub>2</sub>.<sup>[10]</sup>



Scheme 7. Alkylation and arylation of vic-diketoesters 14 and 15 by dialkyl and diaryl zinc reagents.

|       | ,,,                                    |        |                    |                    |                    |  |
|-------|----------------------------------------|--------|--------------------|--------------------|--------------------|--|
| Entry | R =                                    | Suffix | Yield<br>16        | Yield<br><b>17</b> | Yield<br><b>18</b> |  |
| 1     | Ph                                     | а      | 77%                | 85%                | 98%                |  |
| 2     | PhCH(CH <sub>2</sub> CH <sub>3</sub> ) | b      | 67%<br>d.r. 1:1    | 64%<br>d.r. 1.2:1  | 82%<br>d.r. 10:1   |  |
| 3     | Ph(CH <sub>2</sub> ) <sub>3</sub>      | c      | 65%                | 55%                | 63%                |  |
| 4     | CH(CH <sub>3</sub> ) <sub>2</sub>      | d      | 66% <sup>[a]</sup> | 52% <sup>[a]</sup> | 14% <sup>[a]</sup> |  |
| 5     | <i>p</i> -methoxybenzene               | е      | 74%                | 64%                | 80%                |  |
| 6     | 3,5-dinitrobenzene                     | f      | 20%                | 5%                 | -                  |  |

Table 2. Alkylation and arylation of vic-diketoester 14 according to Scheme 7.

 Table 2b. Alkylation and arylation of vic-diketoester 15 according to Scheme 7.

| Entry | R =                               | Suffix | Yield<br><b>19</b> | Yield<br><b>20</b> | Yield<br>21 |
|-------|-----------------------------------|--------|--------------------|--------------------|-------------|
| 7     | Ph                                | а      | 79%                | 65%                | 73%         |
| 8     | Ph(CH <sub>2</sub> ) <sub>3</sub> | с      | 67%                | 59%                | 53%         |

[a] prepared from hydrate 12d, yields given over 2 steps.

Depending on the substituent in  $\gamma$ -position of the  $\alpha,\beta$ diketoesters 14 and 15 moderate to very good yields were obtained for the alkylation and arylation products 16-21 using dialkyl/diaryl zinc reagents. In cases without acidic protons in yposition excellent yields were obtained. (Table 2a, entry 1) With a branched chain in y-position good yields were obtained and in case of 18b even high diastereomeric ratios (entry 2). Electron rich aromatic substituents gave good yields (entry 5), while electron deficient aromatics (entry 6) had a negative impact on the reaction and only low yields were obtained. In this case the electrophilicity of the β-keto position is increased and therefore double alkylation (in  $\alpha$ - and in  $\beta$ -position) was observed. For small branched chains (entry 4) and long linear chains (entry 3) vields between 52-66% were obtained. Comparison between methyl esters (Table 2a, entries 1 and 3) and the corresponding cyclohexyl esters (Table 2b, entries 7 and 8) showed no significant change in yield.

Mixed alkenyl zinc reagents provide an opportunity to transfer an alkenyl group to a carbonyl group.<sup>[5]</sup> Depending on the alkenyl substitution there are three paths to mixed alkenyl zinc reagents

This article is protected by copyright. All rights reserved.

## WILEY-VCH

(Scheme 8). 2-Monosubstituted (E)-1-alkenyl zinc reagents 24 can be obtained via path A starting from alkynes 22 by hydrozirconation<sup>[11]</sup> or hydroboration<sup>[12]</sup> to give the corresponding alkenyl zircon or boron reagents 23 which are treated with diethyl or dimethyl zinc to get the mixed alkenyl-alkyl zinc reagent. 2,2-Disubstituted 1-alkenyl zinc reagents are accessible from 2,2-disubstitued alkenyl iodides 25 by iodine-lithium exchange to the corresponding alkenyl lithium intermediate 26 and subsequent transmetallation to zinc. This transmetallation can be accomplished either by treatment with ZnX<sub>2</sub> leading to an alkenyl-zinc halogenide reagent 27 (path B)<sup>[13]</sup> or by reaction of the alkenyl lithium intermediate 26 with a dialkyl zinc reagent resulting in a mixed dialkyl-alkenyl zincate 28 (path C)<sup>[14]</sup>. With the goal to study the transfer of alkenyl groups via mixed zincates the reaction of 2,2-disubstituted 1-alkenyl zinc reagents 30 with vic-diketoester 31 to yield the allylic alcohols 32 was carried out. The precursor for the mixed zincate 30, the iodide 29, was prepared from the corresponding ketone via Takai olefination.[15]



Scheme 8. General methods for the preparation of alkenyl-zinc reagents and alkenyl addition of mixed alkyl-alkenyl zincates 30 to  $\alpha$ , $\beta$ -diketoester 31.

Attempts to add an alkenyl zinc bromide reagent of type 27 prepared from iodide 29 to vic-diketoesters 31 (path B) were unsuccessful. Therefore we turned our attention to path C using mixed dialkyl-alkenyl zinc reagents of type 28/30. Following pathway C it was found that in situ formation of a mixed dimethyl-alkenyl zincate **30** and reaction with the  $\alpha$ , $\beta$ -diketoester **31** resulted in the formation of the desired  $\alpha$ -alkenylated product 32 together with the undesired  $\alpha$ -alkylated product 33 (Scheme 8). The mixed dimethyl alkenyl zincate was prepared by iodidelithium exchange of vinyl iodide 29 with sec-BuLi at -78 °C and subsequent reaction with ZnMe<sub>2</sub> (Scheme 8). For complete zincate formation an increase of the reaction temperature to 0 °C after addition of ZnMe2 was necessary. The mixed zincate was allowed to react with vic-diketoester 31 at low temperature (-78 °C). The overall yield for the addition of the mixed zincate was low and the amount of alkenyl transfer to 32 versus alkyl transfer to 33 was in a comparable range (Table 3). Attempts to repress alkyl transfer by lowering the reaction temperature were not successful.

Table 3. Addition of dimethyl-alkenyl zincate 30 to  $\alpha$ , $\beta$ -diketoester 31 results in transfer of the alkenyl group to 32 and the alkyl group to 33.

| Entry | $\alpha,\beta$ -Diketoester | Alkenyltransfer<br>32 <sup>[a]</sup> | Alkyltransfer<br>33 <sup>[b]</sup> |
|-------|-----------------------------|--------------------------------------|------------------------------------|
| 1     | 15a                         | 8%                                   | 27%                                |
| 2     | 14c                         | 36%                                  | 13%                                |
| 3     | 15c                         | 20%                                  | 17%                                |

[a] yield refers to applied vinyl iodide. [b] yield refers to applied VTC.

The undesired alkyl transfer should be less favourable when sterically demanding alkyl groups were introduced. A study on the addition of mixed dineopentyl zincates to enones reported that the neopentyl group is transferred very slowly.<sup>[16a]</sup> The trimethylsilylmethyl group<sup>[16b]</sup> and N,N-dimethylbenzylamine<sup>[16c]</sup> have also been used as dummy ligands with organozinc reagents. Therefore we decided to investigate the addition of alkenyl-dineopentyl zincates to  $\alpha$ , $\beta$ -diketoester **31**. Dineopentyl zinc **34** was prepared from neopentyl bromide **35** by transmetallation of neopentylmagnesium bromide in a variation of Schrock's procedure.<sup>[17]</sup>





In addition to iodide 29, two other alkenyl iodides were prepared and used: *E*-alkenyl iodide 36 by hydroalumination of 1hexyne<sup>[18]</sup>, followed by iodolysis in 58% yield and *Z*-alkenyl iodide **37** by Stork-Zhao-olefination<sup>[19]</sup> from the corresponding aldehyde in 56% yield (Scheme 10).

A series of alkenylations (29 + 14  $\rightarrow$  38, 36 + 14  $\rightarrow$  39, 37 + 14  $\rightarrow$  40, 29 + 15  $\rightarrow$  41, 36 + 15  $\rightarrow$  42, 37 + 15  $\rightarrow$  43) was examined using mixed alkyl-alkenyl zincates derived from dineopentyl zinc following Scheme 10 and the obtained results are summarized in Table 4.



Scheme 10. Alkenylation with vinyliodides 29, 36, 37 using dineopentyl zinc.

Table 4a. Synthesis of 38, 39 and 40 with  $\alpha,\beta$  -diketoester 14 according to Scheme 10.

| Entry | $\alpha,\beta$ -Diketoester | Yield <sup>[a]</sup> of<br><b>38</b> | Yield of<br><b>39</b> | Yield of <b>40</b> |
|-------|-----------------------------|--------------------------------------|-----------------------|--------------------|
| 1     | 14a                         | 82%                                  | 50%                   | 15%                |
| 2     | 14b                         | 45%                                  | 46%                   | 40%                |
| 3     | 14c                         | 60%                                  | 26%                   | 20%                |
| 4     | 14e                         | 61%                                  | 66%                   | 13%                |
| 5     | 14f                         | -                                    | -                     | -                  |

Table 4b. Synthesis of 41, 42 and 43 with  $\alpha,\beta$  -diketoester 15 according to Scheme 10.

| Entry | $\alpha,\beta$ -Diketoester | Yield <sup>[a]</sup> of<br><b>41</b> | Yield of <b>42</b> | Yield of<br>43 |
|-------|-----------------------------|--------------------------------------|--------------------|----------------|
| 6     | 15a                         | 75%                                  | 46%                | 15%            |
| 7     | 15c                         | 44%                                  | 46%                | -              |

[a] Yields refer to mixtures of diastereomers.

10.1002/ejoc.201601598

For the alkenylation of  $\alpha$ , $\beta$ -diketoesters using alkenyl dineopentyl zincates substituents in  $\gamma$ -position have an impact on the reaction and the best results were obtained for derivatives without enolizable protons in this position (Table 4a entry 1 and Table 4b entry 6). With the 2,2-disubstituted iodide **29** good results were obtained. In these cases two diastereomers were obtained, which could sometimes be separated (depending on the substituents). Notably the diastereomeric ratio differs from 1:1. Products **38** and **41** were obtained in very good yields for diketoester **14a** (82%) and **15a** (75%) respectively, showing again no significant difference between methyl ester (Table 4a entry 1) and the corresponding cyclohexyl ester (Table 4b entry 6).

The reaction is stereospecific with regard to the double bond configuration. With *E*-iodide **36** moderate yields of **39** or **42** (45-50%) were obtained, while *Z*-iodide **37** gave only low yields of **40** or **43** respectively. In case of a branched chain in  $\gamma$ -position (Table 4a entry 2) yields of 40-46% were obtained. The highest yield obtained with the *Z*-iodide **37** was observed for **40b** (40%). Alkenylation product **38b** was prepared in 45% overall yield. In this case, two diastereomers were obtained and separated by chromatography on silica. The main diastereomer could be crystallized and its stereostructure is shown together with the crystal structure<sup>[20]</sup> in Figure 1.



Figure 1. Crystal structure of the main diastereomer of 38b.

With an electron deficient aromatic substituent in  $\gamma$ -position no product could be obtained due to side reactions (Table 4a, entry 5). In case of an electron rich derivative (Table 4a, entry 4) a yield of 66% was obtained for product **39**. Reaction of **29** with diketoester **14e** gave access to **38** in 61% yield (d.r. 1.2:1), however some neopentyl transfer (17%) was observed as side reaction.

## Conclusion

In summary a regioselective alkylation/arylation of a variety of  $\alpha$ , $\beta$ -diketo esters with dialkyl- and diarylzinc reagents was achieved in moderate to good yields for most examples.

Limitations are observed for electron withdrawing groups in  $\gamma$ position, because the  $\beta$ -position is activated resulting in double alkylation. Mixed alkenyl dineopentyl zincates were applied for alkenyl transfer to the  $\alpha$ -carbonyl group of vic-diketo esters. Zincates prepared from a 2,2-disubsituted alkenyl iodide gave good results. In case of an *E*-alkenyl iodide moderate to good yields of the respective alkenylation products were obtained while a *Z*-vinyl iodide gave lower yields.

## **Experimental Section**

#### **General Methods:**

All non-aqueous reactions were carried out using Schlenk technique with freshly dried and distilled solvents. Other solvents were distilled by rotary evaporation prior to use. <sup>1</sup>H-NMR spectra were recorded at 300 or 500 MHz, <sup>13</sup>C-NMR at 75 or 126 MHz, the solvent residue signals were used as internal standard and all spectra are reported in ppm. Mass spectra were recorded on a LTQ-FT or AccuTOF-GCv mass spectrometer. Melting points were recorded on a Mettler Toledo MP70 using one side open capillary tubes.

Complete experimental data for the synthesis of  $\alpha$ , $\beta$ -diketoesters (**General procedures 1-6**) is given in the Supporting information (SI). Complete experimental data for the addition reactions of organo zinc reagents (**General procedures 7, 8**) is given below. The SI consists of experimental procedures, experimental data and NMR-spectra of all new compounds.

#### General procedure 1 (GP1): preparation of methyl β-ketoesters

Under argon atmosphere to a solution of potassium monomethyl malonate (1.50 equiv.) in CH<sub>3</sub>CN (8.5 mL/ mmol of MgCl<sub>2</sub>) were added MgCl<sub>2</sub> (1.00 equiv.) and NEt<sub>3</sub> (3.20 equiv.). In a separate flask the respective acid (1.00 equiv.) was dissolved in CH<sub>3</sub>CN (3.3 mL/ mmol of acid) and CDI (1.10 equiv.) was added. Both mixtures were stirred at r.t. for 2.5 h before the CDI-acid solution was added slowly to the malonate. The resulting reaction mixture was stirred at r.t. for 16 h before it was heated to 90 °C for 3 h. After cooling to r.t. it was filtered through a glass frit, rinsed with CH<sub>3</sub>CN (3.5 mL/ mmol of acid) and solvent was removed under reduced pressure. The residue was taken up in CH2Cl2 (5 mL/ mmol of acid) and H<sub>2</sub>O (2 mL/ mmol of acid) before citric acid was added (until two layers had been formed) and the layers were separated. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 x 5 mL/ mmol of acid), the combined organic layers were washed with H<sub>2</sub>O (3 mL/ mmol of acid) dried with MgSO4 and solvent was removed under reduced pressure. After silica gel column chromatography SCC (mixture of solvents given in the SI) the pure  $\beta$ -ketoester was obtained.

#### General procedure 2 (GP2): transesterification to cyclohexyl esters

Under argon atmosphere to a solution of the respective  $\beta$ -keto-methyl ester (1.00 equiv.) in dry toluene (1.6 mL/ mmol) was added cyclohexanol (1.20 equiv.). The reaction mixture was stirred at 130 °C while the solvent was slowly distilled off. The remaining solvent was removed under reduced pressure, the residue was purified by SCC (mixture of solvents given in the SI) to obtain the corresponding cyclohexyl ester.

# General procedure 3 (GP3): preparation of $\alpha\mbox{-diazo-}\beta\mbox{-ketoester}$ with tosylazide

To a solution of the respective  $\beta$ -ketoester (1.00 equiv.) in CH<sub>3</sub>CN (2 mL/mmol), were added NEt<sub>3</sub> (1.00 equiv.) as well as tosylazide (1.00 equiv.) and it was stirred at r.t. for 16 h. The reaction mixture was concentrated and after SCC (mixture of solvents given in the SI) the pure  $\alpha$ -diazo- $\beta$ -ketoester was obtained.

# General procedure 4 (GP4): preparation of $\alpha$ -diazo- $\beta$ -ketoester with pABSA

To a solution of the respective  $\beta$ -ketoester (1.00 equiv.) in CH<sub>3</sub>CN (4.8 mL/mmol), were added NEt<sub>3</sub> (1.50 equiv.) as well as pABSA (1.50 equiv.) and the reaction mixture was stirred at r.t. for 16 h. It was filtered through sea sand and rinsed with CH<sub>3</sub>CN (2 mL/mmol of  $\beta$ -ketoester). The solvent was removed under reduced pressure and after SCC (mixture of solvents given in the SI) the pure  $\alpha$ -diazo- $\beta$ -ketoester was obtained.

#### General procedure 5 (GP5): Preparation of $\alpha$ -dihydroxy- $\beta$ -ketoester

The respective  $\alpha$ -diazo- $\beta$ -ketoester (1.00 equiv.) was dissolved in EtOAc (7.0 mL/ mmol of  $\alpha$ -diazo- $\beta$ -ketoester), H<sub>2</sub>O (2.20 equiv.) was added and the reaction mixture was cooled to 0 °C. *t*-BuOCI (1.50 equiv.) was added slowly and it was stirred at 0 °C for 30 min. Solvent was removed under reduced pressure and after SCC (mixture of solvents given in the SI) as well as crystallisation from *n*-pentane/ Et<sub>2</sub>O for 16 h at -20 °C the  $\alpha$ -dihydroxy- $\beta$ -ketoester was obtained as colourless to slightly yellow solid or wax-like compound.

#### General procedure 6 (GP6): preparation of $\alpha$ , $\beta$ -diketoester

The respective  $\alpha$ -dihydroxy- $\beta$ -ketoester (1.00 equiv.) was distilled in a bulb-to-bulb-still at 0.5 mbar and the appropriate temperature (given in the SI) for 1.5-4.0 h, yielding the corresponding  $\alpha$ , $\beta$ -diketoester as yellow oil.

#### General procedure 7 (GP7): reaction of $\alpha$ , $\beta$ -diketoesters with ZnR<sub>2</sub>

Under argon atmosphere to a freshly prepared solution of the respective  $\alpha$ , $\beta$ -diketoester (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.00 equiv.) was added a solution of LiCl (0.5 M in THF, 1.00 equiv.), it was cooled to -78 °C and a solution of the respective diorganozinc reagent (2.00 equiv.; ZnMe<sub>2</sub> 1.2 M in toluene, ZnEt<sub>2</sub> 1.0 M in heptane or ZnPh<sub>2</sub> 1.0 M in THF) was added. The reaction mixture was stirred for 2 h while slowly warming to r.t., poured into a separatory funnel containing H<sub>2</sub>O (10 mL), aq. HCl (2 M, 1.0 mL) and Et<sub>2</sub>O (10 mL). The layers were separated; the aqueous layer was extracted with Et<sub>2</sub>O (2 x 10 mL), the combined organic layers were washed with brine (10 mL), dried with MgSO<sub>4</sub> and solvent was removed under reduced pressure. After SCC (mixture of solvents given below) the corresponding addition product was obtained.

#### Methyl 2-hydroxy-2-methyl-3-oxo-3-phenylpropanoate (16a)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 0.80 mL, 0.40 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 0.80 mL, 0.40 mmol, 1.0 equiv.) and reaction with ZnMe<sub>2</sub> (1.2 M in toluene, 0.67 mL, 0.80 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **16a** (160 mg, 0.77 mmol, 77%) as colourless oil.



 16a
 TLC:
  $R_{re}$  0.20
 (*n*-pentane/EtOAc
 10:1).
 <sup>1</sup>H-NMR

 (300 MHz, CDCl<sub>3</sub>)  $\delta$  = 1.74 (s, 3H, Me), 3.75 (s, 3H, OCH<sub>3</sub>), 4.51 (s, 1H, OH), 7.41-7.49 (m, 2H, 3-H-Ph), 7.54-7.62 (m, 1H, 4-H-Ph), 7.93-8.00 (m, 2H, 2-H-Ph) ppm.
 <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  = 23.7 (Me), 53.4 (OMe), 79.6 (2-C), 128.8 (2-C-Ph), 129.6 (3-C-Ph), 133.1 (1-C-Ph), 133.9 (4-C-Ph), 172.8 (1-C), 196.1 (3-C) ppm.
 HRMS:
 ESI\* calcd. for C<sub>11</sub>H<sub>12</sub>O4Na [M+Na]\*: 231.0628; found: 231.0628.
 IR (ATR): v = 3464 (br, w), 3066

(w), 3003 (w), 2954 (w), 1737 (m), 1687 (s), 1597 (w), 1580 (w), 1449 (m), 1370 (w), 1270 (w), 1232 (s), 1150 (m), 1120 (w), 1026 (w), 1001 (w), 968 (m), 939 (w), 921 (w), 855 (w), 791 (w), 751 (w), 704 (s), 669 (w), 541 (w) cm<sup>-1</sup>.

#### Methyl 2-hydroxy-2-methyl-3-oxo-4-phenylhexanoate (16b)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14b** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.76 mL, 0.88 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.76 mL, 0.88 mmol, 1.0 equiv.) and reaction with ZnMe<sub>2</sub> (1.2 M in toluene, 1.47 mL, 1.76 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 25:1  $\rightarrow$  10:1) **16b** (150 mg, 0.59 mmol, 67%,d.r. 1:1) as colourless oil.



#### 1. diastereomer

**TLC:** R<sub>F</sub> 0.23 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ = 0.78 (t, J = 7.4 Hz, 3H, 6-H), 1.44 (s, 3H, Me), 1.68-1.77 (m, 1H, 5-H<sub>a</sub>), 1.96-2.04 (m, 1H, 5-H<sub>b</sub>), 3.47 (s, 3H, OCH<sub>3</sub>), 4.06 (s, 1H, OH), 4.15 (t, J = 7.5 Hz, 1H, 4-H), 7.19-7.30 (m, 5H, Ph) ppm. <sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>) δ = 12.0 (6-C), 22.4 (Me), 27.4 (5-C), 53.2 (OCH<sub>3</sub>), 54.3 (4-C), 81.1 (2-C), 127.6 (Ph), 128.7 (Ph), 128.9 (Ph), 138.0 (Ph), 172.3 (1-C), 206.7 (3-C) ppm.

2. diastereomer

**TLC:** R<sub>F</sub> 0.19 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ = 0.79 (t, J = 7.4 Hz, 3H, 6-H), 1.57 (s, 3H, Me), 1.69-1.78 (m, 1H, 5-H<sub>a</sub>), 1.96-2.04 (m, 1H, 5-H<sub>b</sub>), 3.31 (s, 3H, OCH<sub>3</sub>), 4.03 (s, 1H, OH), 4.13 (t, J = 7.5 Hz, 1H, 4-H), 7.18-7.21 (m, 3H, Ph), 7.24-7.28 (m, 2H, Ph) ppm. <sup>13</sup>**C**-**NMR** (125 MHz, CDCl<sub>3</sub>) δ = 12.3 (6-C), 22.3 (Me), 28.0 (5-C), 52.9 (OCH<sub>3</sub>), 54.3 (4-C), 81.4 (2-C), 127.5 (Ph), 128.4 (Ph), 128.7 (Ph), 138.1 (Ph), 171.4 (1-C), 207.3 (3-C) ppm.

#### Methyl 2-hydroxy-2-methyl-3-oxo-6-phenylhexanoate (16c)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.50 mL, 0.75 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.50 mL, 0.75 mmol, 1.0 equiv.) and reaction with ZnMe<sub>2</sub> (1.2 M in toluene, 1.25 mL, 1.50 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **16c** (121 mg, 0.48 mmol, 65%) as colourless oil.





 $\begin{array}{l} (500 \mbox{ MHz}, \mbox{CDCI}_3) \ensuremath{\,\bar{\delta}}\xspace = 1.57 \mbox{ (s}, 3H, \mbox{ Me}), 1.90-1.98 \mbox{ (m}, 2H, 5-H), 2.46-2.80 \mbox{ (m}, 4H, 4-H, 6-H), 3.76 \mbox{ (s}, 3H, \mbox{OCH}_3), 4.20 \mbox{ (s}, 1H, \mbox{OH}), 7.14-7.22 \mbox{ (m}, 3H \mbox{Ph}), 7.26-7.31 \mbox{ (m}, 2H, \mbox{Ph}) \mbox{ ppm}. \mbox{ $^{13}$C-NMR} \mbox{ (125 \mbox{MHz}, \mbox{CDCI}_3) \ensuremath{\delta}\xspace = 22.1 \mbox{ (Me}), 25.1 \mbox{ (5-C}), 34.9 \mbox{ (6-C}), 35.7 \mbox{ (4-C}), 53.4 \mbox{ (OCH}_3), 81.0 \mbox{ (2-C}), 126.2 \mbox{ (4-C-Ph}), 128.5, 128.5 \mbox{ (2-C-Ph}, 3-C-Ph), 141.3 \mbox{ (1-C-Ph}), 172.0 \mbox{ (1-C}), 207.0 \mbox{ (3-C}) \mbox{ ppm}. \mbox{ HRMS: ESI^+ calcd. for $C_{14}H_{18}O_4Na \mbox{ [M+Na]^+: } 273.1097; \mbox{ found: } 273.1099. \mbox{ IR} \mbox{ (ATR): $v$ = 3478 \mbox{ (br, $w$)}, 3026 \mbox{ (w)}, 2952 \mbox{ (w)}, 1717 \mbox{ (s)} \mbox{ 1496 \mbox{ (w)}, 1451 \mbox{ (m)}, 1402 \mbox{ (w)}, 1367 \mbox{ (w)}, 1258 \mbox{ (s)}, 1154 \mbox{ (m)}, 1114 \mbox{ (w)}, 1013 \mbox{ (w)}, 978 \mbox{ (m)}, 875 \mbox{ (w)}, 801 \mbox{ (w)}, 746 \mbox{ (m)}, 699 \mbox{ (s)}, 490 \mbox{ (w) cm}^{-1}. \end{array}$ 

#### Methyl 2-hydroxy-2,4-dimethyl-3-oxopentanoate (16d)

The solution of the respective tricarbonyl compound was prepared by stirring the hydrate **12d** (157 mg, 0.89 mmol, 1.0 equiv.) in CHCl<sub>3</sub> with 3 Å molecular sieves at 85 °C for 48 h. The title compound was then prepared following **GP7**with LiCl (0.5 M in THF, 1.78 mL, 0.89 mmol, 1.0 equiv.) and reaction with ZnMe<sub>2</sub> (1.2 M intoluene, 1.48 mL, 1.78 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **16d** (102 mg, 0.59 mmol, 66% over 2 steps) as colourless oil.



**16d TLC:** R= 0.32 (*n*-pentane/EtOAc 10:1). **<sup>1</sup>H-NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  =1.07 (d, *J* = 5.2 Hz, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.09 (d, *J* = 5.2 Hz, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.59 (s, 3H, Me), 3.12 (hept, *J* = 6.8 Hz, 1H CH(CH<sub>3</sub>)<sub>2</sub>), 3.78 (s, 3H, OCH<sub>3</sub>), 4.20 (s, 1H, OH) ppm. <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  = 19.6, 19.7 (CH(CH<sub>3</sub>)<sub>2</sub>), 22.1 (Me), 35.0 (CH(CH<sub>3</sub>)<sub>2</sub>), 53.3 (OCH<sub>3</sub>), 81.0 (2-C), 172.1 (1-C), 211.4 (3-C) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>8</sub>H<sub>14</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 197.0784, found: 197.0786. IR (ATR): v =3478 (br, w), 2977 (w), 2878 (w), 1718 (s), 1450 (m), 1381 (w), 1257 (s), 1159 (w), 1108 (m), 1019 (s), 983 (w), 933 (w), 875 (w), 795 (w), 670 (w) cm<sup>-1</sup>.

# Methyl 2-hydroxy-3-(4-methoxyphenyl)-2-methyl-3-oxopropanoate (16e)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14e** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.50 mL, 1.25 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 2.50 mL, 1.25 mmol, 1.0 equiv.) and reaction with ZnMe<sub>2</sub> (1.2 M in toluene, 2.08 mL, 2.50 mmol, 2.0 equiv.) gave SCC (*n*-pentane/EtOAc 15:1) **16e** (220 mg, 0.92 mmol, 74%) as colourless oil.



<sup>16e</sup> **TLC:** R<sub>*μ*</sub> 0.30 (*n*-pentane/EtOAc 5:1). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>) δ = 1.74 (s, 3H, CH<sub>3</sub>), 3.74 (s, 3H, OCH<sub>3</sub>), 3.87 (s, 3H, OCH<sub>3</sub>), 4.65 (s, 1H, OH), 6.91-6.94 (m, 2H, 3-H-Ph), 7.98-8.01 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>) δ = 29.4 (CH<sub>3</sub>), 53.3 (OCH<sub>3</sub>), 55.7 (OCH<sub>3</sub>), 79.3 (2-C) 114.1 (3-C-Ph), 125.6 (1-C-Ph), 132.2 (2-C-Ph), 164.3 (4-C-Ar), 172.9 (1-C), 194.5 (3-C). **HRMS:** ESI<sup>+</sup> calcd. for C<sub>13</sub>H<sub>17</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>: 261.0733; found: 261.0734. **IR** (ATR): v = 3438 (w), 2931 (w), 2848 (w), 2063 (w), 1924 (w), 1737 (m), 1672 (m), 1598 (s), 1573 (w), 1510 (m), 1446 (m), 1421 (w), 1372 (w), 1311 (w), 1242 (s), 1174 (w), 1148 (s), 1121 (w), 1026 (m), 968 (m), 922 (w), 844 (m), 802 (w), 787 (w), 773 (w), 736 (w), 695 (w), 640 (w), 616 (m), 540 (w), 478 (w), 435 (w) cm<sup>-1</sup>.

# Methyl 2-hydroxy-3-(3,5-dinitrophenyl)-2-methyl-3-oxopropanoate (16f)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14f** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.00 mL, 0.50 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.) and reaction with ZnMe<sub>2</sub> (1.2 M in toluene, 0.83 mL, 1.00 mmol, 2.0 equiv.) gave SCC (*n*-pentane/EtOAc 3:1) **16f** (30 mg, 0.10 mmol, 77%) as colourless oil.



<sup>NO2</sup> **TLC:** R<sub>*i*</sub>= 0.41 (*n*-pentane/EtOAc 3:1). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>) δ = 1.79 (s, 3H, Me), 3.86 (s, 3H, OCH<sub>3</sub>), 4.02 (s, 1H, OH), 9.18 (d, *J* = 2.1 Hz, 2H, 2-H-Ph), 9.20 (t, *J* = 2.1 Hz, 1H, 4-H-Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>) δ = 23.8 (Me), 54.3 (OCH<sub>3</sub>), 80.8 (2-C), 122.4 (4-C-Ph), 129.6 (2-C-Ph), 137.0 (1-C-Ph), 148.8 (3-C-Ph), 172.7 (1-C), 191.6 (3-C) ppm. **HRMS:** El<sup>+</sup> calcd. for C<sub>10</sub>H<sub>10</sub>N<sub>2</sub>O<sub>8</sub> [M+H]<sup>+</sup>: 299.05096; found: 299.05154. **IR** (ATR): v = 3481 (br, w), 3101 (w), 2959 (w), 1742 (w), 1709 (m), 1625 (w), 1593 (w), 1544 (s), 1452 (w), 1346 (s), 1273 (w), 1237 (m), 1157 (w), 1114 (w), 1025 (w), 974 (w), 920 (w), 727 (m), 695 (w) cm<sup>-1</sup>.

#### Methyl 2-hydroxy-2-ethyl-3-oxo-3-phenylpropanoate (17a)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 0.90 mL, 0.45 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 0.90 mL, 0.45 mmol, 1.0 equiv.) and reaction with ZnEt<sub>2</sub> (1.0 M in heptane, 0.90 mL, 0.90 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **17a** (80 mg, 0.38 mmol, 85%) as colourless oil.



<sup>17a</sup> **TLC:** R<sub>F</sub> 0.34 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.82 (t, *J* = 7.5 Hz, 3H, CH<sub>2</sub>C*H*<sub>3</sub>), 2.11-2.34 (m, 2H, CH<sub>2</sub>CH<sub>3</sub>), 3.74 (s, 3H, OCH<sub>3</sub>), 4.49 (s, 1H, OH), 7.38-7.49 (m, 2H, 3-H-Ph), 7.53-7.62 (m, 1H, 4-H-Ph), 7.93-8.00 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.0 (CH<sub>2</sub>CH<sub>3</sub>), 29.2 (CH<sub>2</sub>CH<sub>3</sub>), 53.2 (OCH<sub>3</sub>), 82.7 (2-C), 128.7 (3-C-Ph), 129.3 (2-C-Ph), 133.6 (1-C-Ph), 133.7 (4-C-Ph), 172.5 (1-C), 196.2 (3-C) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>12</sub>H<sub>14</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 245.0784; found: 245.0786. **IR** (ATR): v = 3464 (br, w), 3066 (w), 2956 (w), 2882 (w), 1737 (m), 1683 (s), 1597 (w), 1580 (w), 1447 (m), 1384 (w), 1292 (w), 1225 (s), 1184 (w), 1149 (m), 1119 (w), 1090 (w), 1037 (w), 1020 (m), 969 (w), 920 (w), 865 (w), 809 (w), 777 (w), 743 (w), 694 (s), 666 (w), 559 (w), 425 (w) cm<sup>-1</sup>.

#### Methyl 2-hydroxy-2-ethyl-3-oxo-4-phenylhexanoate (17b)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14b** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.50 mL, 0.75 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.50 mL, 0.75 mmol, 1.0 equiv.) and reaction with ZnEt<sub>2</sub> (1.0 M in heptane, 1.50 mL, 1.50 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 25:1  $\rightarrow$  10:1) **17b** (126 mg, 0.48 mmol, 64%,d.r. 1.2:1 detected by <sup>1</sup>H-NMR of crude product) as colourless oil.



17b

Analytical data of main diastereomer:

**TLC:** R = 0.48 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.69 (t, *J* = 7.4 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 0.77 (t, *J* = 7.4 Hz, 3H, 6-H), 1.60-2.14 (m, 4H, 5-H, CH<sub>2</sub>CH<sub>3</sub>), 3.46 (s, 3H, OCH<sub>3</sub>), 3.97 (s, 1H, OH), 4.23 (dd, *J* = 6.6, 14.0 Hz, 1H, 4-H), 7.15-7.32 (m, 5H, Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.4 (CH<sub>2</sub>CH<sub>3</sub>), 12.0 (6-C), 27.2 (CH<sub>2</sub>CH<sub>3</sub>), 28.7 (5-C), 53.2 (OCH<sub>3</sub>), 54.4 (4-C), 127.5, 128.8, 128.9, 137.9 (Ph), 171.9 (1-C), 206.9 (3-C) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>15</sub>H<sub>20</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>= 287.1254; found: 287.1254. **IR** (ATR): v = 3492 (br, w), 3029 (w), 2966 (w), 2878 (w), 1717 (s), 1600 (w), 1492 (w), 1454 (m), 1439 (w), 1381 (w), 1346 (w) 1285 (w), 1243 (s), 1157 (m), 1076 (w), 1049 (w), 1010 (w), 975 (w), 928 (w), 894 (w), 829 (w), 802 (w), 741 (m), 700 (s), 658 (w), 549 (w), 509 (w) 430 (w) cm<sup>-1</sup>.

#### Methyl 2-hydroxy-2-ethyl-3-oxo-6-phenylhexanoate (17c)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 0.80 mL, 0.40 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 0.80 mL, 0.40 mmol, 1.0 equiv.) and reaction with ZnEt<sub>2</sub> (1.0 M in heptane, 0.80 mL 0.80 mmol, 2.0 equiv.) gave SCC (*n*-pentane/EtOAc 10:1) **17c** (51 mg, 0.19 mmol, 48%) as colourless oil.



**17c TLC:** R = 0.27 (*n*-pentane/EtOAc 3:1). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta = 0.86$  (t, J = 7.4 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.85-2.01 (m, 3H 5-H, CH<sub>2</sub>CH<sub>3</sub>), 2.04-2.19 (m, 1H, CH<sub>2</sub>CH<sub>3</sub>), 2.47-2.80 (m, 4H, 4-H, 6H), 3.77 (s, 3H, OCH<sub>3</sub>), 4.13 (s, 1H, OH), 7.12-7.33 (m, 5H, Ph) ppm. <sup>13</sup>**C**-**NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta = 7.6$  (CH<sub>2</sub>CH<sub>3</sub>), 25.1 (5-C), 28.8 (CH<sub>2</sub>CH<sub>3</sub>), 35.0 (4-C), 36.2 (6-C), 53.4 (OCH<sub>3</sub>), 84.6 (2-C), 126.2 (4-C-Ph), 128.5, 128.6 (2-C-Ph, 3-C-Ph), 141.5 (1-C-Ph), 171.7 (1-C), 207.1 (3-C) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C1<sub>5</sub>H<sub>20</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 287.1254; found: 287.1255. **IR** (ATR): v = 3484 (br, w), 3027 (w), 2952 (w), 1717 (s), 1496 (w), 1454 (w), 1439 (w), 1402 (w), 1364 (w), 1245 (s), 1160 (m), 1094 (w), 1028 (w), 1007 (w), 805 (w), 747 (w), 701 (m), 492 (w) cm<sup>-1</sup>.

#### Methyl 2-ethyl-2-hydroxy-4-methyl-3-oxopentanoate (17d)

The solution of the respective tricarbonyl compound was prepared by stirring the hydrate **12d** (157 mg, 0.89 mmol, 1.0 equiv.) in CHCl<sub>3</sub> with 3 Å molecular sieves at 85 °C for 48 h. The title compound was then prepared following **GP7**with LiCl (0.5 M in THF, 1.78 mL, 0.89 mmol, 1.0 equiv.) and reaction with ZnEt<sub>2</sub> (1.0 M in heptane, 1.78 mL, 1.78 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **17d** (87 mg, 0.46 mmol, 52% over 2 steps) as colourless oil.



**17d TLC:**  $R_{\models}$  0.32 (*n*-pentane/EtOAc 10:1). **1H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.86 (t, *J* = 7.4 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.03-1.08 (m, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.93 (dq, *J* = 7.3, 14.5 Hz, 1H, CH<sub>2</sub>CH<sub>3</sub>), 2.13 (dq, *J* = 7.5, 14.8 Hz, 1H, CH<sub>2</sub>CH<sub>3</sub>), 3.13-3.28 (m, 1H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.78 (s, 3H, OCH<sub>3</sub>), 4.12 (s, 1H, OH) ppm. <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.66 (CH<sub>2</sub>CH<sub>3</sub>), 19.2, 19.7 (CH(CH<sub>3</sub>)<sub>2</sub>), 28.6 (CH<sub>2</sub>CH<sub>3</sub>), 35.0 (CH(CH<sub>3</sub>)<sub>2</sub>), 53.3 (OCH<sub>3</sub>), 84.5 (2-C), 171.9 (1-C), 211.5 (3-C) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>19</sub>H<sub>26</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 341.1723, found: 341.1724. **IR** (ATR): v = 3380 (br, w), 2977 (m), 2939 (w), 2881 (w), 1808 (w), 1747 (w), 1726 (s), 1463 (w), 1441 (w), 1387 (w), 1306 (w), 1248 (w), 1124 (m), 1068 (w), 1044 (w), 1008 (w), 967 (w), 898 (w), 814 (w) cm<sup>-1</sup>.

# Methyl 2-hydroxy-3-(4-methoxyphenyl)-2-ethyl-3-oxopropanoate (17e)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14e** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.00 mL, 0.50 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.) and reaction with ZnEt<sub>2</sub> (1.0 M in heptane, 1.00 mL, 1.60 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **17e** (81 mg, 0.32 mmol, 64%) as colourless oil.



THC: R/= 0.22 (*n*-pentane/EtOAc 5:1). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.82 (t, J = 7.43 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 2.15-2.32 (m, 2H, CH<sub>2</sub>CH<sub>3</sub>), 3.74 (s, 3H, COOCH<sub>3</sub>) 3.87 (s, 3H, OCH<sub>3</sub>), 4.64 (s, 1H, OH), 6.91-6.94 (m, 2H, 3-H-Ph), 7.99-8.02 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.0 (CH<sub>2</sub>CH<sub>3</sub>), 29.4 (CH<sub>2</sub>CH<sub>3</sub>), 53.1 (COOCH<sub>3</sub>), 55.5 (OCH<sub>3</sub>), 82.4 (2-C) 113.9 (3-C-Ph), 126.1 (1-C-Ph), 131.9 (2-C-Ph), 164.1 (4-C-Ph), 172.5 (1-C), 194.3 (3-C) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>13</sub>H<sub>17</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 253.1071; found: 253.1071. IR (ATR): v = 3432 (w), 2926 (m), 2847 (w), 1736 (m), 1706 (w), 1670 (m), 1598 (s), 1573 (w), 1511 (m), 1441 (m), 1384 (w), 1296 (w), 1234 (s), 1174 (w), 1149 (s), 1120 (w), 1091 (w), 1024 (m), 970 (w), 921 (w), 871 (w), 844 (m), 807 (w), 792 (w), 778 (w), 731 (w), 684 (w), 641 (w), 617 (m), 557 (w), 511 (w) cm<sup>-1</sup>.

# Methyl 2-hydroxy-3-(3,5-dinitrophenyl)-2-ethyl-3-oxopropanoate (17f)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14f** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 0.80 mL, 0.40 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 0.80 mL, 0.40 mmol, 1.0 equiv.) and reaction with ZnEt<sub>2</sub> (1.0 M in heptane, 0.67 mL, 0.80 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 3:1) **17f** (10 mg, 32.0 µmol, 5%) as colourless oil.



<sup>NO2</sup> 17f TLC: R<sub></sub>= 0.61 (*n*-pentane/EtOAc 3:1). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) δ = 0.97 (t, J = 7.4 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 2.16-2.25 (m, 2H, CH<sub>2</sub>CH<sub>3</sub>), 3.87 (s, 3H, OCH<sub>3</sub>), 4.06 (s, 1H, OH), 9.16 (d, J = 2.1 Hz, 2H, 5-H-Ph), 9.20 (t, J = 2.1 Hz, 1H, 4-H-Ph) ppm. <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>) δ = 7.4 (CH<sub>2</sub>CH<sub>3</sub>), 29.7 (CH<sub>2</sub>CH<sub>3</sub>), 54.3 (OCH<sub>3</sub>), 84.2 (2-C), 122.3 (2-C- Ph), 129.5 (4-C-Ph), 137.7 (1-C-Ph), 148.7 (3-C-Ph), 172.2 (1-C), 192.0 (3-C) ppm. **HRMS:** ESI<sup>-</sup> calcd. for  $C_{12}H_{11}N_2O_8Na[M-H]^-$ : 311.0521; found: 311.0515. **IR** (ATR): v = 3482 (br, w), 3102 (w), 2961 (w), 2883 (w), 1739 (w), 1710 (m), 1625 (w), 1593 (w), 1545 (s), 1458 (w), 1346 (s), 1256 (w), 1235 (m), 1159 (w), 1082 (w), 1052 (w), 1011 (w), 970 (w), 919 (w), 806 (w), 727 (w), 692 (w) cm<sup>-1</sup>.

#### Methyl 2-hydroxy-3-oxo-2,3-diphenylpropanoate (18a)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.10 mL, 0.55 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.10 mL, 0.55 mmol, 1.0 equiv.) and reaction with ZnPh<sub>2</sub> (1.0 M in THF, 1.10 mL, 1.10 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 15:1) **18a** (145 mg, 0.54 mmol, 98%) as colourless solid.



**18a TLC:** R<sub>*μ*</sub> 0.44 (*n*-pentane/EtOAc 10:1). **M.p.:** 90.3 °C. **<sup>1</sup>H-NMR** (300 MHz, CDCl<sub>3</sub>) δ = 3.86 (s, 3H, OCH<sub>3</sub>), 4.83 (s, 1H, OH), 7.27-7.50 (m, 6H, Ph), 7.56 (dd, *J* = 1.7, 7.8 Hz, 2H, Ph), 7.88 (d, *J* = 7.4 Hz, 2H, Ph) ppm. <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>) δ = 54.1 (OCH<sub>3</sub>), 84.7 (2-C) 126.6 (2-C-Ph), 128.3 (3-C-Ph), 128.6 (2-C-Ph'), 128.7 (4-C-Ph), 130.9 (3-C-Ph'), 133.3 (4-C-Ph'), 133.4 (1-C-Ph), 137.1 (1-C-Ph'), 172.4 (1-C), 195.2 (3-C) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>16</sub>H<sub>14</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 293.0784; found: 293.0785. **IR** (ATR): v = 3464 (br, w), 3062 (w), 3031 (w), 2954 (w), 1729 (m), 1680 (s), 1597 (w), 1580 (w), 1494 (w), 1448 (m), 1357 (w), 1320 (w), 1240 (s), 1182 (m), 1121 (m), 1072 (m), 1027 (w), 1003 (w), 972 (w), 952 (w), 883 (w), 808 (w), 747 (m), 700 (s), 608 (m), 557 (w), 505 (w) cm<sup>-1</sup>.

#### Methyl 2-hydroxy-3-oxo-2,4-diphenylhexanoate (18b)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14b** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.80 mL, 0.90 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.80 mL, 0.90 mmol, 1.0 equiv.) and reaction with ZnPh<sub>2</sub> (1.0 M in THF, 1.80 mL, 1.80 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **18b** (231 mg, 0.74 mmol, 82%,d.r. 10:1) as colourless oil.



Bb Analytical data for mixture of diastereomers:

**HRMS:** ESI<sup>+</sup> calcd. for  $C_{19}H_{20}O_4$  [M+Na]<sup>+</sup>= 335.1254; found: 335.1255. **IR** (ATR): v = 3471 (br, w), 3062 (w), 3029 (w), 2964 (w), 2932 (w), 2875 (w), 1719 (s), 1600 (w), 1492 (w), 1451 (m), 1436 (w), 1345 (w), 1257 (s), 1178 (w), 1126 (m), 1070 (w), 1031 (w), 1013 (w), 982 (w), 939 (w), 892 (w), 825 (w), 796 (w), 734 (m), 696 (s), 626 (w), 581 (w), 545 (w), 507 (w) cm<sup>-1</sup>.

Analytical data of major diastereomer:

**TLC:** R= 0.30 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ = 0.68 (t, J = 7.4 Hz, 3H, 6-H), 1.70-1.81 (m, 1H, 5-H<sub>a</sub>), 1.88-1.99 (m, 1H, 5-H<sub>b</sub>), 3.68 (s, 3H, OCH<sub>3</sub>), 4.10-4.16 (m, 1H, 4-H), 4.41 (s, 1H, OH), 7.07-7.11 (m, 2H, Ph), 7.15-7.25 (m, 3H, Ph), 7.29-7.32 (m, 3H, Ph), 7.51-7.56 (m, 2H, Ph) ppm. <sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>) δ = 11.8 (6-C), 27.4 (5-C), 53.6 (OCH<sub>3</sub>), 55.0 (4-C), 84.8 (2-C), 127.0, 127.1, 128.2, 128.5, 128.5, 128.7 (4-C-Ph, 4-C-Ph', 3-C-Ph, 3-C-Ph', 2-C-Ph, 2-C-Ph'), 135.4 (1-C-Ph'), 138.4 (1-C-Ph), 171.0 (1-C), 205.8 (3-C) ppm.

#### Analytical data of minor diastereomer:

**TLC:** R= 0.27 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>) δ = 0.67 (t, J = 7.4 Hz, 3H, 6-H), 1.66-1.82 (m, 1H, 5-H<sub>a</sub>), 1.82-2.00 (m, 1H, 5-H<sub>b</sub>), 3.68 (s, 3H, OCH<sub>3</sub>), 4.12 (dd, J = 6.6, 8.3 Hz, 1H, 4-H), 4.37 (s, 1H, OH), 7.03-7.22 (m, 5H, Ph), 7.28-7.56 (m, 5H, Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>) δ = 11.9 (6-C), 27.5 (5-C), 53.6 (OCH<sub>3</sub>), 55.1 (4-C), 84.9 (2-C), 127.0, 128.3, 128.5, 128.6, 128.7 (4-C-Ph, 4-C-Ph', 3-C-Ph, 3-C-Ph', 2-C-Ph'), 135.4 (1-C-Ph'), 138.5 (1-C-Ph), 171.0 (1-C), 205.8 (3-C) ppm.

#### Methyl 2-hydroxy-3-oxo-2,6-diphenylhexanoate (18c)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.31 mL, 0.66 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.31 mL, 0.66 mmol, 1.0 equiv.) and reaction with ZnPh<sub>2</sub> (1.0 M in THF, 1.32 mL, 1.32 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **18c** (128 mg, 0.41 mmol, 63%) as colourless oil.



FULL PAPER

TLC:  $R_{\models} 0.27$  (*n*-pentane/EtOAc 10:1). <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ = 1.72-1.93 (m, 2H, 5-H), 2.44-2.74 (m, 4H, 4-H, 6-H), 3.85 (s, 3H, OCH<sub>3</sub>), 4.72 (s, 1H, OH), 7.04-7.10 (m, 2H, Ph), 7.33-7.43 (m, 3H, Ph), 7.56-7.69 (m, 3H, Ph), 7.51-7.57 (m, 2H, Ph) ppm. <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ = 25.6 (5-C), 35.0 (4-C), 36.7 (6-C), 53.7 (OCH<sub>3</sub>), 84.7 (2-C), 126.0 (4-C-Ph), 126.5 (2-C-Ph), 128.5, 128.5 (2-C-Ph, 3-C-Ph), 128.6 (3-C-Ph), 128.9 (4-C-Ph), 136.1 (1-C-Ph), 141.6 (1-C-Ph), 171.1 (1-C), 205.9 (3-C) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>19</sub>H<sub>20</sub>O4Na [M+Na]<sup>+</sup>: 335.1254; found: 335.1256. IR (ATR): v = 3475 (br, w), 3062 (w), 3027 (w), 2953 (w), 2861 (w), 1722 (s), 1602 (w), 1495 (w), 1451 (w), 1437 (w), 1402 (w), 1362 (w), 1260 (s), 1191 (w), 1125 (w), 1070 (w), 1030 (w), 1006 (w), 976 (w), 748 (m), 700 (s), 492 (w) cm<sup>-1</sup>.

#### Methyl 2-hydroxy-4-methyl-3-oxo-2-phenylpentanoate (18d)

The solution of the respective tricarbonyl compound was prepared by stirring the hydrate **12d** (68 mg, 0.43 mmol, 1.0 equiv.) in CHCl<sub>3</sub> with 3 Å molecular sieves at 85 °C for 48 h. The title compound was then prepared following **GP7**with LiCl (0.5 M in THF, 0.86 mL, 0.43 mmol, 1.0 equiv.) and reaction with ZnPh<sub>2</sub> (1.0 M in benzene, 0.86 mL, 0.86 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **18d** (14 mg, 59.3 µmol, 14% over 2 steps) as colourless oil.

**18d TLC:** R = 0.32 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>) δ = 0.83 (d, *J* = 6.8 Hz, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.04 (d, *J* = 6.7 Hz, 3H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.15 (hept, *J* = 6.7 Hz, 1H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.86 (s, 3H, OCH<sub>3</sub>), 4.78 (s, 1H, OH), 7.31-7.46 (m, 3H, Ph), 7.49-7.61 (m, 2H, Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>) δ = 19.8, 20.6 (CH(CH<sub>3</sub>)<sub>2</sub>), 36.1 (CH(CH<sub>3</sub>)<sub>2</sub>), 53.6 (OCH<sub>3</sub>), 84.8 (2-C), 126.7, 128.5, 128.9, 135.9 (Ph), 171.2 (1-C), 210.3 (3-C) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>13</sub>H<sub>16</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 259.0941; found: 259.0943. **IR** (ATR): v = 3472 (br, w), 3063 (w), 2975 (w), 2875 (w), 1715 (s), 1600 (w), 1494 (w), 1467 (w), 1449 (m), 1437 (w), 1382 (w), 1348 (w), 1256 (s), 1190 (w), 1174 (w), 750 (m), 700 (s), 624 (w), 542 (w), 489 (w) cm<sup>-1</sup>.

# Methyl 2-hydroxy-3-(4-methoxyphenyl)-3-oxo-2-phenylpropanoate (18e)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **14e** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.70 mL, 0.85 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.70 mL, 0.85 mmol, 1.0 equiv.) and reaction with ZnPh<sub>2</sub> (1.0 M in THF, 1.70 mL, 1.70 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 15:1) **18e** (205 mg, 0.68 mmol, 80%) as yellow oil.

 18e
 TLC:
  $R \models 0.23$  (*n*-pentane/EtOAc 5:1).
 1H-NMR

 (300 MHz, CDCl<sub>3</sub>) δ = 3.79 (s, 3H, COOCH<sub>3</sub>) 3.84 (s, 3H, OCH<sub>3</sub>), 4.86 (s, 1H, OH), 6.78 (d, J = 9.1 Hz, 2H, 3-H-Ph), 7.29-7.41 (m, 3H, 4-H-Ph', 3-H-Ph'), 7.54-7.56 (m, 2H, 2-H-Ph'), 7.97-8.00 (d, J = 9.1 Hz, 2H, 2-H-Ph)

 ppm.
 <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>) δ = 54.1 (COOCH<sub>3</sub>), 55.6 (OCH<sub>3</sub>), 84.79 (2-C), 113.7 (3-C-Ph), 126.1 (1-C-Ph), 126.7 (2-C-Ph'), 128.5 (3-H-Ph'), 128.6 (4-H-Ph'), 133.5 (2-C-Ph), 137.7 (1-C-Ph'), 163.8 (4-C-Ph), 172.7 (1-C), 194.0 (3-C) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>17</sub>H<sub>16</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>:

323.0890; found: 323.0892. **IR** (ATR): v = 3416 (w), 2963 (w), 2933 (w), 2843 (w), 1733 (m), 1682 (s), 1601 (s), 1572 (w), 1512 (w), 1446 (w), 1429 (m), 1315 (w), 1263 (s), 1234 (w), 1171 (s), 1104 (m), 1075 (w), 1040 (w), 1013 (m), 934 (w), 862 (w), 846 (m), 823 (w), 799 (w), 772 (m), 745 (m), 724 (m), 694 (m), 647 (w), 631 (w), 606 (m), 528 (m), 498 (w), 458 (w) cm<sup>-1</sup>.

#### Cyclohexyl 2-hydroxy-2-methyl-3-oxo-3-phenylpropanoate (19a)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **15a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.00 mL, 0.50 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.) and reaction with ZnMe<sub>2</sub> (1.2 M in toluene, 0.83 mL, 1.0 mmol, 2.00 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **19a** (109 mg, 0.39 mmol, 79%) as colourless oil.



<sup>19a</sup> **TLC:**  $R_{F}$  0.25 (*n*-pentane/EtOAc 10:1). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>) δ = 1.10-1.62 (m, 8H, 4'-H, 3'-H, 2'-H<sub>a</sub>), 1.64-1.70 (m, 2H, 2'-H<sub>b</sub>), 1.72 (s, 3H, CH<sub>3</sub>), 4.36 (s, 1H, OH), 4.79-4.92 (m, 1H, 1'-H), 7.44 (t, J = 7.6 Hz, 2H, 3-H-Ph), 7.56 (t, J = 7.4 Hz, 4-H-Ph), 7.98 (d, J = 7.8 Hz, 2H, 2-H-Ph) ppm. <sup>13</sup>C-NMR (75 MHz, CDCl<sub>3</sub>) δ = 23.3, 23.3 (3'-C), 23.6 (Me), 25.2 (4'-C), 31.0, 31.1 (2'-C), 75.1 (1'-C), 79.6 (2-C), 128.7 (3-C-Ph), 129.5 (2-C-Ph), 133.6 (1-C-Ph), 133.6 (4-C-Ph), 172.1 (1-C), 196.0 (3-C) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>16</sub>H<sub>20</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 299.1254; found: 299.1254. IR (ATR): v = 3463 (br, w), 3065 (w), 2936 (m), 2860 (w), 1733 (m), 1692 (s), 1598 (w), 1580 (w), 1450 (m), 1371 (w), 1273 (w), 1230 (s), 1150 (s), 1117 (w), 1034 (w), 1008 (m), 982 (w), 950 (w), 908 (w), 863 (w), 844 (w), 812 (w), 751 (w), 707 (m), 672 (w), 543 (w), 513 (w), 481 (w), 444 (w) cm<sup>-1</sup>.

#### Cyclohexyl 2-hydroxy-2-methyl-3-oxo-6-phenylhexanoate (19c)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **15c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 0.70 mL, 0.35 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 0.70 mL, 0.35 mmol, 1.0 equiv.) and reaction with ZnMe<sub>2</sub> (1.2 M in toluene, 0.58 mL, 0.70 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **19c** (75 mg, 0.24 mmol, 67%) as colourless oil.



 $\label{eq:started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_started_st$ 

#### Cyclohexyl 2-hydroxy-2-ethyl-3-oxo-3-phenylpropanoate (20a)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **15a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 0.80 mL, 0.40 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 0.80 mL, 0.40 mmol, 1.0 equiv.) and reaction with ZnEt<sub>2</sub> (1.0 M in heptane, 0.80 mL 0.80 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 15:1) **20a** (75 mg, 0.26 mmol, 65%) as colourless oil.



<sup>20a</sup> **TLC:**  $R_{\ell}$  0.49 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>) δ = 0.85 (t, *J* = 7.45 Hz, 3H, CH<sub>2</sub>C*H*<sub>3</sub>), 1.10-1.76 (m,

10H, 2'-H, 3'-H, 4'-H), 2.10-2.31 (m, 2H,  $CH_2CH_3$ ), 4.33 (s, 1H, OH), 4.78-4.93 (m, 1H, 1'-H), 7.37-7.49 (m, 2H, 3-H-Ph), 7.50-7.62 (m, 1H, 4-H-Ph), 7.89-8.14 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCI<sub>3</sub>)  $\delta$  = 23.3, 23.4 (3'-C), 25.2 (4'-C), 29.1 (CH<sub>2</sub>CH<sub>3</sub>), 31.0, 31.2 (2'-C), 75.0 (1'-C), 82.7 (2-C), 128.6 (3-C-Ph), 129.3 (2-C-Ph), 133.5 (4-C-Ph), 134.2 (1-C-Ph), 171.7 (1-C), 196.1 (3-C) ppm. **HRMS:** ESI+ calcd. for C<sub>17</sub>H<sub>24</sub>O<sub>4</sub>Na [M+Na]+: 313.1410; found: 313.1413. **IR** (ATR): v = 3463 (br, w), 3065 (w), 2936 (m), 2860 (w), 1733 (m), 1692 (s), 1598 (w), 1580 (w), 1450 (m), 1371 (w), 1273 (w), 1230 (s), 1150 (s), 1117 (w), 1034 (w), 1008 (m), 982 (w), 950 (w), 908 (w), 863 (w), 844 (w), 812 (w), 751 (w), 707 (m), 672 (w), 543 (w), 513 (w), 481 (w), 444 (w) cm<sup>-1</sup>.

#### Cyclohexyl 2-hydroxy-2-ethyl-3-oxo-6-phenylhexanoate (20c)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **15c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 0.56 mL, 0.28 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 0.56 mL, 0.28 mmol, 1.0 equiv.) and reaction with ZnEt<sub>2</sub> (1.0 in heptane, 0.56 mL, 0.56 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **20c** (54 mg, 0.16 mmol, 59%) as colourless oil.



20c TLC: R<sub>i</sub>= 0.38 (n-pentane/EtOAc 10:1). <sup>1</sup>H-**NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 1.20-1.30 (m, 1H, 4'-H<sub>a</sub>), 1.26 (t, J = 7.01 Hz, 3H,  $CH_2CH_3$ ), 1.30-1.48 (m, 4H, 2'-H<sub>a</sub>, 3'-H<sub>a</sub>), 1.49-1.58 (m, 1H, 4'-H<sub>b</sub>), 1.65-1.75 (m, 2H, 3'-H<sub>b</sub>), 1.77-1.86 (m, 2H, 2'-H<sub>b</sub>), 1.88-1.95 (m, 2H, 5-H), 2.59-2.67 (m, 4H, 4-H, 6-H), 3.47-3.55 (m, 1H, CH2-CH3), 3.62-3.70 (m, 1H, CH2-CH3), 4.32 (s, 1H, OH), 4.83-4.90 (m, 1H, 1'-H), 7.15-7.22 (m, 3H, Ph), 7.24-7.30 (m, 2H, Ph) ppm.  $^{13}\text{C-NMR}$  (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 15.2 (CH<sub>2</sub>CH<sub>3</sub>), 23.6, 23.7 (3'-C), 24.7 (5-C), 25.3 (4'-C), 31.4, 31.5 (2'-C), 35.1 (6-C), 37.9 (4-C), 66.8 (CH2CH3), 74.5 (1'-C), 85.5 (2-C), 126.1 (4-C-Ph), 128.5, 128.6 (2-C-Ph, 3-C-Ph), 141.6 (1-C-Ph), 167.0 (1-C), 204.2 (3-C) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>20</sub>H<sub>28</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 355.1880; found: 355.1881. IR (ATR): v = 3027 (br, w), 2936 (s), 2860 (w), 1742 (w), 1723 (s), 1651 (w), 1604 (w), 1496 (w), 1452 (m), 1400 (w), 1367 (w), 1328 (w), 1253 (w), 1190 (w), 1119 (s), 1036 (w), 1012 (w), 956 (w), 910 (w), 893 (w), 747 (w), 700 (m) cm<sup>-1</sup>.

#### Cyclohexyl 2-hydroxy-3-oxo-2,3-diphenylpropanoate (21a)

Following **GP7** starting from  $\alpha$ , $\beta$ -diketoester **15a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.50 mL, 0.75 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.50 mL, 0.75 mmol, 1.0 equiv.) and reaction with ZnPh<sub>2</sub> (1.0 M in THF, 1.50 mL, 1.50 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 15:1) **21a** (184 mg, 0.54 mmol, 73%) as colourless solid.



<sup>21a</sup> **TLC:** R<sub>F</sub>= 0.50 (*n*-pentane/EtOAc 10:1). **M.p.:** 80.6 °C. <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>) δ = 1.19-1.50 (m, 6H, 4'-H, 3'H<sub>a</sub>, 2'-H<sub>a</sub>), 1.52-1.92 (m, 4H, 2'-H<sub>b</sub>, 3'-H<sub>b</sub>), 4.81(s, 1H, OH), 4.94 (tt, *J* = 3.4, 7.1 Hz, 1H, 1'-H), 7.22-7.48 (m, 6H, Ph', 4-H-Ph), 7.53-7.60 (m, 2H, 3-H-Ph), 7.85-7.92 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>) δ = 23.0, 23.1 (3'-C), 25.3 (4'-C), 30.9, 31.0 (2'-C), 76.0 (1'-C), 84.3 (2-C), 126.6 (3-C-Ph), 128.2 (3-C-Ph'), 128.3 (2-C-Ph'), 128.5 (4-C-Ph'), 130.8 (2-C-Ph), 133.1 (4-C-Ph), 133.8 (1-C-Ph'), 137.6 (1-C-Ph), 171.2 (1-C), 195.0 (3-C) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>21</sub>H<sub>22</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 361.1410; found: 361.1413. **IR** (ATR): v = 3461 (br, w), 3062 (w), 2936 (m), 2859 (w), 1718 (w), 1681 (s), 1597 (w), 1580 (w), 1494 (w), 1448 (m), 1335 (w), 1318 (w), 1235 (s), 1180 (m), 1118 (m), 1071 (w), 1030 (w), 1006 (m), 967 (w), 929 (w), 908 (m), 862 (w), 822 (w), 800 (w), 747 (w), 697 (s), 607 (m), 539 (w), 505 (w), 462 (w), 439 (w) cm<sup>-1</sup>.

## Cyclohexyl 2-hydroxy-3-oxo-2,6-diphenylhexanoate (21c) Following GP7 starting from $\alpha$ , $\beta$ -diketoester 15c (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.00 mL, 0.50 mmol, 1.0 equiv.) with LiCl (0.5 M in THF, 1.00 mL,

0.50 mmol, 1.0 equiv.) and reaction with  $ZnPh_2$  (1.0 M in THF, 1.00 mL, 1.00 mmol, 2.0 equiv.) gave after SCC (*n*-pentane/EtOAc 10:1) **21c** (66 mg, 0.17 mmol, 53%) as colourless oil.



**21c TLC:** R<sub>[</sub>= 0.42 (*n*-pentane/EtOAc 10:1). **1H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\bar{o}$  = 1.14-1.58 (m, 7H, 4'-H, 3'-H<sub>a</sub>, 3'-H<sub>b</sub>, 2'-H<sub>a</sub>), 1.60-1.69 (m, 2H, 3-H<sub>b</sub>, 2'-H<sub>b</sub>), 1.70-1.80 (m, 3H, 2'-H<sub>b</sub>, 5-H), 2.39-2.58 (m, 4H, 4-H, 6-H), 4.57 (s, 1H, OH), 4.80-4.86 (m, 1H, 1'-H), 6.97 (d, *J* = 7.1 Hz, 2H, Ph), 7.06 (t, *J* = 7.4 Hz, 1H, Ph), 7.11-7.17 (m, 2H, Ph), 7.24-7.31 (m, 3H, Ph), 7.47 (dd, *J* = 1.5, 8.0 Hz, 2H, Ph) ppm. <sup>13</sup>**C-NMR** (125 MHz, CDCl<sub>3</sub>)  $\bar{o}$  = 23.4, 23.4 (3'-C), 25.3 (4'-C), 25.6 (5-C), 31.2, 31.2 (2'-C), 35.0 (6-C), 36.8 (4-C), 76.0 (1'-C), 84.4 (2-C), 126.0 (4-Ph-C), 126.6 (4"-C), 128.1, 128.4, 128.5, 128.7 (2-C-Ph, 3-C-Ph, 2-C-Ph', 3-C-Ph'), 136.3 (1-C-Ph), 141.6 (1-C-Ph'), 170.1 (1-C), 205.8 (3-C) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>24</sub>H<sub>28</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 403.1880; found: 403.1879. **IR** (ATR): v = 3465 (br, w), 3027 (w), 2935 (m), 2859 (w), 1714 (s), 1601 (w), 1494 (w), 1450 (m), 1402 (w), 1359 (w), 1257 (s), 1191 (w), 1119 (m), 1069 (w), 1032 (w), 1008 (m), 905 (w), 824 (w), 746 (m), 697 (s), 491 (w) cm<sup>-1</sup>.

#### General procedure 8 (GP8) alkenylation with Zn[CH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>]<sub>2</sub>

Under argon atmosphere a solution of the respective alkenyl iodide (0.5 m in THF, 1.00 equiv.) in THF was cooled to -78 °C and a solution of sec-BuLi (2.00 equiv.) in cyclohexane was added. The reaction mixture was stirred at -78 °C for 1 h, a solution of  $Zn[CH_2C(CH_3)_3]_2$  (1.0 m in benzene, 2.00 equiv.) was added, the reaction mixture was warmed to r.t and stirred for 2 h. The mixture was cooled to -100 °C and a freshly prepared solution of the respective tricarbonyl compound (0.5 M in CH\_2Cl<sub>2</sub>, 2.00 equiv.) was added. It was stirred for 1 h while slowly warming to -78 °C, the mixture was poured into a separatory funnel containing H<sub>2</sub>O (10 mL), aq. HCl (2 m, 2.0 mL) and Et<sub>2</sub>O (10 mL). The layers were separated; the aqueous layer was extracted with Et<sub>2</sub>O (2 x 10 mL), dried with MgSO<sub>4</sub> and solvent was removed under reduced pressure. After SCC (mixture of solvents given below) the corresponding addition product was obtained.

#### Dineopentylzinc (34)

Under argon atmosphere to a mixture of Mg (2.12 g, 87.4 mmol, 1.10 equiv.) in Et<sub>2</sub>O (22 mL) was added dropwise neopentyl bromide (12.0 mL, 79.4 mmol, 1.00 equiv.) and the reaction mixture was stirred for 3 h. It was cooled to 0 °C,  $ZnCl_2$  (5.41 g, 39.7 mmol, 0.50 equiv.) was added and the reaction mixture was stirred for 48 h. It was filtered, the solvent was removed in vacuo and after vacuum distillation **34** (3.84 g, 18.5 mmol, 47%) was obtained as colourless liquid.

b.p.: 60 °C at 10 mbar. <sup>1</sup>H-NMR (300 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 0.46 (s, 2H, CH<sub>2</sub>), 1.08 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>) ppm. <sup>13</sup>C-NMR (75 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  = 35.7 (*C*(CH<sub>3</sub>)<sub>3</sub>), 35.8 (C(CH<sub>3</sub>)<sub>3</sub>), 37.1 (CH<sub>2</sub>) ppm.

# Methyl 2-((4-*tert*-butyl)cyclohexylidene)methyl)-2-hydroxy-3-oxo-3-phenylpropanoate (38a)

The title compound was prepared from alkenyl iodide **29** (0.3 M in THF, 1.00 mL, 0.30 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.43 mL, 0.60 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 0.60 mL, 0.60 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.20 mL, 0.60 mmol, 2.0 equiv.) according to **GP8** to afford **38a** (68 mg, 0.25 mmol, 82%, d.r. 5:1) as colourless oil after SCC (*n*-pentane/ EtOAc 10:1).

## WILEY-VCH

 $\begin{array}{l} J=3.0,\, 5.3,\, 13.7 \ \text{Hz},\, 1\text{H},\, 6^{\text{-}}\text{H}_{\text{b}}),\, 2.41 \ (\text{ddd},\, J=3.0,\, 5.2,\, 14.3 \ \text{Hz},\, 1\text{H},\, 2^{\text{-}}\text{H}_{\text{b}}),\, 3.66 \ (\text{s},\, 3\text{H},\, \text{OCH}_3),\, 4.07\text{-}4.11 \ (\text{m},\, 1\text{H},\, 4\text{-}\text{H}),\, 4.35 \ (\text{s},\, 1\text{H},\, \text{OH}),\, 5.73 \ (\text{br}\ \text{s},\, 1\text{H},\, \text{C=CH}),\, 7.17\text{-}7.23 \ (\text{m},\, 2\text{H},\, \text{Ph}),\, 7.26\text{-}7.29 \ (\text{m},\, 3\text{H},\, \text{Ph}) \ \text{ppm}^{13} \text{C-} \\ \textbf{NMR} \ (125 \ \text{MHz},\, \text{CDCI}_3) \ \bar{\delta}=12.0 \ (6\text{-C}),\, 26.9 \ (3^{\text{-}}\text{C}),\, 27.8 \ (\text{C}(\text{CH}_3)_{3}),\, 28.1 \ (5^{\text{-}}\text{C}),\, 28.6 \ (5\text{-C}),\, 29.7 \ (2^{\text{-}}\text{C}),\, 32.3 \ (\text{C}(\text{CH}_3)_3),\, 37.5 \ (6^{\text{-}}\text{C}),\, 47.9 \ (1^{\text{-}}\text{C}), \\ 53.4 \ (\text{OCH}_3),\, 54.9 \ (4\text{-C}),\, 83.6 \ (2\text{-C}),\, 115.6 \ (\text{C=CH}),\, 127.6 \ (4\text{-C-Ph}), \\ 128.5 \ (2\text{-C-Ph}),\, 128.8 \ (3\text{-C-Ph}),\, 138.7 \ (1\text{-C-Ph}),\, 149.4 \ (1^{\text{-}}\text{C}),\, 171.2 \ (1\text{-C}), \\ 206.0 \ (3\text{-C}) \ \text{pm}. \end{array}$ 

#### Methyl 2-((4-*tert*-butyl)cyclohexylidene)methyl)-2-hydroxy-3-oxo-6phenylhexanoate (38c)

The title compound was prepared from alkenyl iodide**29** (0.3 M in THF, 1.00 mL, 0.30 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.43 mL, 0.60 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 0.60 mL, 0.60 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub> 1.20 mL, 0.60 mmol, 2.0 equiv.) according to **GP8** to afford **38c** (50 mg, 181 µmol, 60%, d.r. 1.2:1) as colourless oil after SCC (*n*-pentane/ EtOAc 15:1).



<sup>38c</sup> Mixture of diastereomers:HRMS: ESI<sup>+</sup> calcd. for C<sub>24</sub>H<sub>34</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 409.2349, found: 409.2352. IR (ATR): v = 3472 (w) 3026 (w), 2945 (m), 2865 (w), 2841 (w), 1717 (s), 1660 (w), 1496 (w), 1451 (w), 1437 (w), 1394 (w), 1364 (m), 1253 (w), 1237 (s), 1172 (w), 1142 (w), 1098 (w), 1030 (w), 1011 (w), 990 (w), 925 (w), 830 (w), 744 (m), 700 (s), 652 (w), 491 (w) cm<sup>-1</sup>.
 1. diastereomer

# **TLC:** R<sub>F</sub> 0.26 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ = 0.83 (s, 9H, C(C*H*<sub>3</sub>)<sub>3</sub>), 0.97-1.08 (m, 1H, 3'-H<sub>a</sub>), 1.08-1.17 (m, 2H, 5'-H<sub>a</sub>, 4'-H), 1.53 (td, *J* = 4.3, 13.1 Hz, 1H, 6'-H<sub>a</sub>), 1.77-1.83 (m, 1H, 3'-H<sub>b</sub>), 1.83-1.88 (m, 1H, 5'-H<sub>b</sub>), 1.91 (dt, *J* = 7.3, 14.7 Hz, 2H, 5-H), 1.98-2.06 (m, 1H, 2'-H<sub>a</sub>), 2.26-2.32 (m, 1H, 2'-H<sub>b</sub>), 2.56-2.61 (m, 3H, 6'-H<sub>b</sub>, 6-H), 2.64 (t, *J* = 7.2 Hz, 2H, 4-H), 3.76 (s, 3H, OCH<sub>3</sub>), 4.43 (s, 1H, OH), 5.74 (s, 1H, C=C*H*), 7.13-7.21 (m, 3H, Ph), 7.26-7.30 (m, 2H, Ph) ppm. <sup>13</sup>**C**-**NMR** (125 MHz, CDCl<sub>3</sub>) δ = 25.6 (5-C), 27.7 (C(*C*H<sub>3</sub>)<sub>3</sub>), 28.2 (2'-C), 29.2 (3'-C), 29.9 (6'-C), 32.6 (*C*(CH<sub>3</sub>)<sub>3</sub>), 35.0 (6-C), 36.5 (4-C), 37.6 (5'-C), 48.0 (4'-C), 53.5 (OCH<sub>3</sub>), 82.9 (2-C), 116.6 (C=CH), 126.2 (4-C-Ph), 128.5 (3-C-Ph), 128.5 (2-C-Ph), 141.5 (1-C-Ph), 150.0 (1'-C), 171.4 (1-C) 206.4 (3-C) ppm.

#### 2. diastereomer

**TLC:** R<sub>*F*</sub> 0.21 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ = 0.91 (s, 9H, C(C*H*<sub>3</sub>)<sub>3</sub>), 0.94-1.00 (m, 1H, 3'-H<sub>a</sub>), 1.09-1.19 (m, 1H, 5'-H<sub>a</sub>), 1.19-1.28 (m, 1H, 4'-H),1.80-1.91 (m, 2H, 3'-H<sub>b</sub>, 6'-H<sub>a</sub>), 1.94-2.07 (m, 3H, 5'-H<sub>b</sub>), 2.12-2.19 (m, 1H, 2'-H<sub>a</sub>), 2.37-2.43 (m, 1H, 2'-H<sub>b</sub>), 2.65-2.86 (m, 5H, 6'-H<sub>b</sub>, 6-H, 4-H), 3.86 (s, 3H, OCH<sub>3</sub>), 4.51 (s, 1H, OH), 5.81 (s, 1H, C=C*H*), 7.24-7.31 (m, 3H, Ph), 7.35-7.39 (m, 2H, Ph) ppm. <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ = 25.8 (5-C), 27.6 (C(CH<sub>3</sub>)<sub>3</sub>), 27.9 (2'-C), 29.1 (3'-C), 29.7 (6'-C), 32.5 (C(CH<sub>3</sub>)<sub>3</sub>), 35.1 (6-C), 36.5 (4-C), 37.6 (5'-C), 47.8 (4'-C) 53.5 (OCH<sub>3</sub>), 83.0 (2-C), 116.7 (C=CH), 126.2 (4-C-Ph), 128.5 (3-C-Ph), 128.5 (2-C-Ph), 141.4 (1-C-Ph), 149.7 (1'-C), 171.4 (1-C), 206.3 (3-C) ppm.

#### Methyl 2-((4-(tert-butyl)cylohexylidene)methyl)-2-hydroxy-3-(4methoxyphenyl)-3-oxopropanoate (38e)

The title compound was prepared from alkenyl iodide**29** (0.3 M in THF, 1.00 mL, 0.30 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.43 mL, 0.60 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 0.60 mL, 0.60 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14e** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.20 mL, 0.60 mmol, 2.0 equiv.) according to **GP8** to afford **38e** (69 mg, 184 µmol, 61%, d.r. 1.2:1) as colourless oil after SCC (*n*-pentane/ EtOAc 20:1  $\rightarrow$  *n*-pentane/ EtOAc 15:1).



# Methyl 2-((4-(*tert*-butyl)cyclohexylidene)methyl)-2-hydroxy-3-oxo-4-phenylhexanoate (38b)

The title compound was prepared from alkenyl iodide**29** (0.3 M in THF, 1.00 mL, 0.30 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.43 mL, 0.60 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 0.60 mL, 0.60 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.20 mL, 0.60 mmol, 2.0 equiv.) according to **GP8** to afford **38b** (fist diastereomer 25 mg, 65 µmol, 22%) as colourless foam and **38b** (second diastereomer 27 mg, 70 µmol, 23%) as colourless solid after SCC (*n*-pentane/ EtOAc 25:1).



<sup>38b</sup> *Mixture of diastereomers:* **HRMS:** ESI<sup>+</sup> calcd. for C<sub>24</sub>H<sub>34</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 409.2349, found: 409.2352. **IR** (ATR): v = 3477 (br, w), 3062 (w), 3030 (w), 2948 (s), 2869 (w), 2840 (w), 1744 (w), 1716 (s), 1659 (w), 1600 (w), 1453 (m), 1438 (w), 1365 (w), 1252 (w), 1237 (s), 1174 (w), 1145 (w), 1121 (w), 1073 (w), 1032 (w), 992 (w), 925 (w), 899 (w), 855 (w), 831 (w), 752 (w), 700 (m), 574 (w), 502 (w) cm<sup>-1</sup>. 1. *diastereomer:* 

**TLC:** R<sub>F</sub> 0.44 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (500 MHz, CDCI<sub>3</sub>) δ = 0.50 (m, 1H, 2'-H<sub>a</sub>), 0.71-0.75 (m, 12H, 6-H, C(CH<sub>3</sub>)<sub>3</sub>), 0.80-0.87 (m, 2H, 4'-H, 3'-H<sub>a</sub>), 0.94-1.04 (ddd, J = 3.8, 12.8, 25.3 Hz, 1H, 5'-H<sub>a</sub>), 1.53-1.64 (m, 2H, 3'-H<sub>b</sub>, 5'-H<sub>b</sub>), 1.70-1.80 (m, 2H, 6'-H<sub>a</sub>, 5-H<sub>a</sub>), 1.90-1.98 (m, 1H, 5-H<sub>b</sub>), 2.10-2.20 (m, 2H, 2'-H<sub>b</sub>, 6'-H<sub>b</sub>), 3.70 (s, 3H, OCH<sub>3</sub>), 4.03 (t, J = 7.5 Hz, 1H, 4-H), 4.39 (s, 1H, OH), 5.78 (br s, 1H, C=CH), 7.11-7.45 (m, 5H, Ph) ppm.<sup>13</sup>C-NMR (125 MHz, CDCI<sub>3</sub>) δ = 12.0 (6-C), 27.7 (C(CH<sub>3</sub>)<sub>3</sub>), 27.9 (3'-C), 28.3 (5-C), 28.9 (5'-C), 29.3 (2'-C), 32.5 (C(CH<sub>3</sub>)<sub>3</sub>), 37.2 (6'-C), 47.8 (4'-C), 53.4 (OCH<sub>3</sub>), 55.4 (4-C), 83.4 (2-C), 115.3 (C=CH), 127.2 (4-C-Ph), 128.4 (2-C-Ph), 128.6 (3-C-Ph), 138.9 (1-C-Ph), 151.4 (1'-C), 171.1 (1-C), 206.6 (3-C) ppm.

#### 2. diastereomer:

**TLC:**  $R_{\models} 0.42$  (*n*-pentane/EtOAc 10:1). **M.p.:** 99.5 °C. <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta = 0.13$  (ddd, J = 3.8, 12.8, 25.7 Hz, 1H, 3'-H<sub>a</sub>), 0.65 (ddd, J = 3.9, 12.5, 25.5 Hz, 1H, 5'-H<sub>a</sub>), 0.71 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 0.75 (m, 3H, 6-H), 0.89-0.94 (m, 1H, 4'-H), 1.43-1.49 (m, 1H, 3'-H<sub>b</sub>), 1.60-1.66 (m, 2H, 5'-H<sub>b</sub>, 2'-H<sub>a</sub>), 1.71-1.78 (m, 1H, 5-H<sub>a</sub>), 1.87-1.95 (m, 2H, 5-H<sub>b</sub>, 6'-H<sub>a</sub>), 2.17 (ddd,





TLC: R= 0.21 (n-pentane/EtOAc 10:1). Signals of the minor diastereomer are indicated by \*. <sup>1</sup>H-NMR: (500 MHz, CDCl<sub>3</sub>)  $\delta$ = 0.14-0.30 (m, 1H, 3-H<sub>a</sub>), 0.64 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 0.78<sup>\*</sup> (s, C(CH<sub>3</sub>)<sub>3</sub>), 0.80-0.86 (m, 1H, 4'-H), 0.87-1.14 (m, 2H, 4'-H\*, 3'-H<sub>b</sub>, 5'-H<sub>a</sub>), 1.31-1.43 (m, 1H, 6'-H<sub>a</sub>), 1.46-1.51 (m, 3-H<sub>a</sub>\*), 1.62-1.84 (m, 2H, 3'-H<sub>b</sub>, 6-H<sub>a</sub>\*), 1.88-2.08 (m, 1H, 2'-H<sub>a</sub>, 2'-H<sub>a</sub>\*), 2.26-2.52 (m, 2H, 2'-H<sub>b</sub>, 2'-H<sub>b</sub>\*, 6'-H<sub>b</sub>\*), 3.69\*, 3.70 (2 s, 3H, COOCH<sub>3</sub>), 3.84, 3.85\* (2 s, 3H, OCH<sub>3</sub>), 5.07\*, 5.16 (2 s, 1H, OH), 6.13\*, 6.20 (2 s, 1H, C=CH), 6.89\*, 6.90 (2 d, 2H, 3-H-Ph), 8.05<sup>\*</sup>, 8.09 (2 d, 2H, 2-H-Ph) ppm. <sup>13</sup>C-NMR: (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 26.9, 27.9\* (3'-C), 27.5, 27.7\* (C(CH<sub>3</sub>)<sub>3</sub>), 28.9, 29.0\* (5'-C), 29.7\*, 29.9 (6'-C), 32.3, 32.5\* (C(CH<sub>3</sub>)<sub>3</sub>), 37.5\*, 37.7 (2'-C), 47.4, 47.8\* (4'-C), 53.4\*, 53.4 (COOCH3), 55.6\*, 55.6 (OCH3), 80.5, 80.5\* (2-C), 113.6, 113.7\* (3-C-Ph), 118.4\*, 118.7 (C=CH), 124.7, 124.8\* (1-C-Ph), 133.1\*, 133.5 (2-C-Ph), 149.2\*, 149.2 (C=CH), 164.2\*, 164.3 (4-C-Ph), 171.7, 171.9\* (1-C), 194.6\*, 195.1 (3-C) ppm. HRMS: ESI+ calcd. for C22H30O5Na [M+Na]+: 397.1985; found: 397.1976. IR(ATR): v = 3434 (br, w), 2946 (m), 2865 (w), 2842 (w), 1740 (m), 1669 (m), 1598 (s), 1574 (w), 1511 (m), 1439 (w), 1392 (w), 1365 (w), 1311 (w), 1257 (s), 1227 (w), 1165 (s), 1129 (m), 1087 (w), 1064 (w), 1027 (m), 988 (w), 941 (w), 911 (m), 846 (m), 801 (w), 731 (s), 633 (w), 610 (m), 553 (w), 511 (w), 452 (w) cm<sup>-1</sup>.

#### Methyl (E)-2-benzoyl-2-hydroxyoct-3-enoate (39a)

The title compound was prepared from *E*-alkenyl iodide **36** (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.71 mL, 1.00 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.00 mL, 1.00 mmol, 2.0 equiv.) according to **GP8** to afford **39a** (69 mg, 249 µmol, 50%) as colourless oil after SCC (*n*-pentane/ EtOAc 12:1).



**39a TLC:** R<sub>F</sub> 0.35 (*n*-pentane/EtOAc 10:1). **<sup>1</sup>H-NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.84 (t, *J* = 7.12 Hz, 3H, 8-H), 1.13-1.46 (m, 4H, 6-H, 7-H), 2.01-2.27 (m, 2H, 5-H), 3.77 (s, 3H, OCH<sub>3</sub>), 4.70 (s, 1H, OH), 5.98 (dt, *J* = 6.63, 15.6 Hz, 1H, 4-H), 6.13 (d, *J* = 15.6 Hz, 1H, 3-H), 7.39-7.50 (m, 2H, 3-H-Ph), 7.52-7.71 (m, 1H, 4-H-Ph), 7.89-8.09 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>**C-NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  = 13.9 (8-C), 22.2 (7-C), 30.9 (6-C), 32.1 (5-C), 53.5 (OCH<sub>3</sub>), 82.1 (2-C), 126.3 (3-C), 128.6 (3-C-Ph), 130.2 (2-C-Ph), 132.3 (1-C-Ph), 133.8 (4-C-Ph), 135.4 (4-C), 171.8 (1-C), 194.8 (Ph*C*O) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>16</sub>H<sub>20</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 299.1254; found: 299.1253. **IR** (ATR): v =3468 (br, w), 2956 (w), 2928 (w), 2857 (w), 1739 (m), 1682 (s), 1597 (w), 1580 (w), 1448 (m), 1365 (w), 1260 (w), 1229 (s), 1183 (w), 1154 (m), 1121 (w), 1075 (w), 1016 (w), 970 (m), 923 (w), 889 (w), 802 (m), 751 (w), 690 (s), 646 (w) cm<sup>-1</sup>.

#### Methyl (E)-2-hydroxy-2-(2-phenylbutanoyl)oct-3-enoate (39b)

The title compound was prepared from *E*-alkenyl iodide**36** (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.), *sec*-butyl lithium (1.4 M in cyclohexane, 0.71 mL, 1.00 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14b** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.00 mL, 1.00 mmol, 2.0 equiv.) according to **GP8** to afford **39b** (73 mg, 229 µmol, 46%, d.r. 1.5:1) as colourless oil after SCC (*n*-pentane/ EtOAc 20:1  $\rightarrow$  10:1).



TLC: R<sub>f</sub>= 0.36 (n-pentane/EtOAc 10:1). <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ = 0.82 (t, J = 7.3 Hz, 3H, 4'-H), 0.88 (t, J = 7.1 Hz, 3H, 8-H), 1.19-1.30 (m, 4H, 6-H, 7-H), 1.72-1.82 (m, 1H, 3'-Ha), 1.94-2.07 (m, 3H, 3'-H<sub>b</sub>, 5-H), 3.64 (s, 3H, OCH<sub>3</sub>), 4.19 (s, 1H, OH), 4.25 (t, J = 7.5 Hz, 1H, 2'-H), 5.88-5.96 (m, 2H, 3-H, 4-H), 7.24-7.28 (m, 3H, Ph), 7.30-7.34 (m, 2H, Ph) ppm. Signals of major diastereomer are reported only. <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ = 12.0 (4'-C), 14.0 (8-C), 22.3 (7-C), 27.3 (3'-C), 30.9 (6-C), 31.9 (5-C), 53.4 (OCH<sub>3</sub>), 54.4 (2'-C), 83.8 (2-C), 124.7 (3-C), 127.4 (4-C-Ph), 128.7 (3-C-Ph, 2-C-Ph), 133.8 (4-C), 138.2 (1-C-Ph), 170.8 (1-C), 205.7 (1'-C) ppm. Signals of major diastereomer are reported only. HRMS: ESI+ calcd. for C19H26O4Na [M+Na]+: 341.1723, found: 341.1731. IR (ATR): v = 3482 (br, w), 3029 (w), 2958 (m), 2929 (w), 2873 (w), 1718 (s), 1600 (w), 1492 (w), 1454 (m), 1436 (w), 1378 (w) 1346 (w), 1248 (s), 1203 (w), 1167 (w), 1121 (w), 1080 (w), 1024 (w), 973 (m), 934 (w), 899 (w), 831 (w), 743 (w), 699 (s), 656 (w), 562 (w), 506 (w), 431 (w) cm<sup>-1</sup>.

#### Methyl (E)-2-hydroxy-2-(4-phenylbutanoyl)oct-3-enoate (39c)

The title compound was prepared from *E*-alkenyl iodide**36** (0.5 M in THF, 0.60 mL, 0.30 mmol, 1.0 equiv.), *sec*-butyl lithium (1.4 M in cyclohexane, 0.43 mL, 0.60 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub> 1.20 mL, 0.60 mmol, 2.0 equiv.) according to **GP8** to afford **39c** (25 mg, 78.5 µmol, 26%) as colourless oil after SCC (*n*-pentane/ EtOAc 10:1).



39c TLC: R<sub>f</sub>= 0.60 (n-pentane/EtOAc 10:1). <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ = 0.89 (t, J = 7.2 Hz, 3H, 8-H), 1.25-1.38 (m, 4H, 6-H 7-H), 1.88-1.95 (m, 2H, 3'-H), 2.08 (dt, J = 4.0, 7.9 Hz, 2H, 5-H), 2.57-2.62 (m, 2H, 4'-H), 2.63-2.75 (m, 2H, 2'-H), 3.78 (s, 3H, OCH<sub>3</sub>), 4.32 (s, 1H, OH), 5.98 (dt, J = 1.4, 15.4 Hz, 1H, 4-H), 6.13 (dt, J = 6.8, 15.4 Hz, 1H, 3-H), 7.13-7.21 (m, 3H, 4-H-Ph, 3-H-Ph), 7.25-7.31 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ = 14.0 (8-C), 22.3 (7-C), 25.4 (3'-C), 31.1 (6-C), 31.9 (5-C), 35.0 (4'-C), 36.3 (2'-C), 53.5 (OCH<sub>3</sub>), 83.8 (2-C), 124.7 (3-C), 126.2 (4-C-Ph), 128.5 (2-C-Ph, 3-C-Ph), 134.5 (4-C), 141.5 (1-C-Ph), 170.9 (1-C), 205.4 (2'-C) ppm. HRMS: ESI+ calcd. for  $C_{19}H_{26}O_4Na \; [\text{M+Na}]^+\!\!: 341.1723; \; \text{found: } 341.1724. \; \textbf{IR} \; (\text{ATR})\!\!: v = \!\!3483 \; (\text{br},$ w), 3027 (w), 2955 (w), 2928 (m), 2859 (w), 1718 (s), 1603 (w), 1496 (w), 1454 (w), 1437 (w), 1401 (w), 1365 (w), 1251 (s), 1204 (w), 1167 (w), 1097 (w), 1075 (w), 1027 (w), 974 (m), 930 (w), 820 (w), 745 (m), 699 (s) 563 (w), 491 (w), 434 (w) cm<sup>-1</sup>.

#### Methyl (E)-2-hydroxy-2-(4-methoxybenzoyl)oct-3-enoate (39e)

The title compound was prepared from *E*-alkenyl iodide **36** (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.71 mL, 1.00 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14e** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.00 mL, 1.00 mmol, 2.0 equiv.) according to **GP8** to afford **39e** (101 mg, 330 µmol, 66%) as colourless oil SCC (*n*-pentane/ EtOAc 10:1).



<sup>39e</sup> **TLC:** R<sub>*E*</sub> 0.26 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR:** (500 MHz, CDCl<sub>3</sub>)  $\bar{o}$  = 0.83 (t, *J* = 7.1 Hz, 3H, 8-H), 1.18-1.27 (m, 2H, 7-H), 1.29-1.36 (m, 2H, 6-H), 2.02-2.11 (m, 2H, 5-H), 3.74 (s, 3H, COOCH<sub>3</sub>), 3.86 (s, 3H, OCH<sub>3</sub>), 4.88 (s, 1H, OH), 5.94 (dt, *J* = 6.9, 15.5 Hz, 1H, 4-H), 6.15 (dt, *J* = 1.4, 15.5 Hz, 1H, 3-H), 6.91 (d, *J* = 9.0 Hz, 2H, 3-H-Ph), 8.02 (d, *J* = 9.0 Hz, 2H, 2-H-Ph) ppm. <sup>13</sup>**C-NMR:** (125 MHz, CDCl<sub>3</sub>)  $\bar{o}$  = 14.0 (8-C), 22.2 (7-C), 30.9 (6-C), 32.1 (5-C), 53.4 (COOCH<sub>3</sub>), 55.7 (OCH<sub>3</sub>), 81.7 (2-C), 113.9 (3-C-Ph), 125.6 (1-C-Ph), 126.6 (3-C), 132.7 (2-C-Ph), 135.1 (4-C), 164.2 (4-C-Ph), 171.9 (1-C), 192.9 (C=O) ppm. **HRMS:** ESI<sup>+</sup> calcd. for C<sub>17</sub>H<sub>22</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>: 329.1359; found: 329.1340. **IR** (ATR): v = 3465 (br, w), 2956 (w), 2929 (w), 2856 (w), 1738 (m), 1674 (m), 1598 (s), 1574 (w), 1511 (m), 1460 (w), 1437 (w), 1375 (w), 1311 (w), 1238 (s), 1155 (m), 1120 (w), 1633 (w), 610 (m), 513 (w) cm<sup>-1</sup>.

#### Methyl (Z)-2-benzoyl-2-hydroxyoct-3-enoate (40a)

The title compound was prepared from Z-alkenyl iodide**37** (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.71 mL, 1.00 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.00 mL, 1.00 mmol, 2.00 equiv.) according to **GP8** to afford **40a** (21 mg, 76.0 µmol, 15%) as colourless oil after SCC (*n*-pentane/ EtOAc 11:1).



**40a TLC:** R= 0.35 (*n*-pentane/EtOAc 10:1). **1H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  =0.78 (t, *J* = 7.1 Hz, 3H, 8-H), 1.07-1.25 (m, 4H, 6-H, 7-H), 1.82-1.97 (m, 1H, 5-H<sub>a</sub>), 2.01-2.12 (m, 1H, 5-H<sub>b</sub>), 3.73 (s, 3H, OCH<sub>3</sub>), 4.98 (s, 1H, OH), 5.69 (dt, *J* = 7.6, 11.4 Hz, 1H, 4-H), 6.34 (dt, *J* = 1.7, 11.4 Hz, 1H, 3-H), 7.41-7.47 (m, 2H, 3-H-Ph), 7.54-7.61 (m, 1H, 4-H-Ph), 8.00-8.08 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 14.0 (8-C), 22.4 (7-C), 28.4 (5-C), 31.2 (6-C), 53.5 (OCH<sub>3</sub>), 81.2 (2-C), 125.4 (3-C), 128.6 (3-C-Ph), 130.4 (2-C-Ph), 132.1 (1-C-Ph), 134.2 (4-C-Ph), 138.9 (4-C), 171.4 (1-C), 195.5 (PhCO) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>16</sub>H<sub>20</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 299.1254, found: 299.1253. IR (ATR): v = 3455 (br, w), 2956 (m), 2928 (w), 2860 (w), 1741 (m), 1681 (s), 1597 (w), 1580 (w), 1449 (m), 1436 (w), 1362 (w), 1225 (s), 1184 (w), 1145 (m), 1101 (m), 1063 (w), 1020 (w), 961 (w), 920 (w), 890 (w), 813 (w), 732 (w), 690 (s) cm<sup>-1</sup>.

#### Methyl (Z)-2-hydroxy-2-(2-phenylbutanoyl)oct-3-enoate (40b)

The title compound was prepared from Z-alkenyl iodide**37** (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.71 mL, 1.00 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 0.83 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14b** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.00 mL, 1.00 mmol, 2.0 equiv.) according to **GP8** to afford **40b** (45 mg, 0.14 mmol, 40%, d.r. 4:1) as colourless oil after SCC (*n*-pentane/ EtOAc 25:1).



40b TLC: R= 0.37 (n-pentane/EtOAc 10:1). Mixture of diastereomers 4:1. Signals of minor diastereomer indicated by \*, if separated: <sup>1</sup>H-NMR: (300 MHz, CDCl<sub>3</sub>) δ = 0.77 (dd, J = 6.9, 13.4 Hz, 6H, 8-H, 4'-H), 0.96-1.35 (m, 4H, 5-H, 7-H), 1.63-1.84 (m, 2H, 6-Ha, 3'-Ha), 1.88-2.06 (m, 2H, 6-H<sub>b</sub>, 3'-H<sub>b</sub>), 3.20\* (s, OCH<sub>3</sub>), 3.60 (s, 3H, OCH<sub>3</sub>), 3.99\* (t, J = 7.5 Hz, 2'-H), 4.14 (t, J = 7.5 Hz, 1H, 2'-H), 4.29 (s, 1H, OH), 4.42\* (s, OH), 5.49 (dt, J = 7.4, 11.4 Hz, 1H, 4-H), 5.71-7.84\* (m, 4-H), 5.93 (d, J = 11.4 Hz, 1H, 3-H), 6.14\* (d, J = 11.4 Hz, 3-H), 7.16-7.30 (m, 5H, Ph) ppm. <sup>13</sup>C-NMR: (75 MHz, CDCl<sub>3</sub>)  $\delta$  = 11.9 (8-C), 13.9 (4'-C), 14.0\* (4'-C), 22.4 (7-C), 22.5\* (7-C), 28.0 (6-C), 28.2 (3'-C), 28.2\* (6-C), 28.3\* (3'-C), 31.3 (5-C), 31.6\* (5-C), 52.8\* (OCH<sub>3</sub>), 53.4 (OCH<sub>3</sub>), 54.9 (2'-C), 55.1\* (2'-C), 83.7\* (2-C), 83.8 (2-C), 123.0\* (3-C), 123.4 (3-C), 127.4 (4-C-Ph), 127.5\* (4-C-Ph), 128.6\* (2-C-Ph), 128.6\* (3-C-Ph), 128.7 (2-C-Ph), 128.7 (3-C-Ph), 138.1\* (1-C-Ph), 138.5 (1-C-Ph), 138.9 (4-C), 139.3\* (4-C), 170.3\* (1-C), 171.0 (1-C), 204.4\* (1'-C), 205.6 (1'-C) ppm. HRMS: ESI+ calcd. for C19H26O4Na [M+Na]+: 341.1723; found: 341.1726. IR (ATR): v = 3480 (w), 3030 (w), 2958 (m), 2929 (w), 2873 (w), 1717 (s), 1650 (w), 1600 (w), 1492 (w), 1454 (m), 1436 (w), 1378 (w), 1347 (w), 1246 (s), 1158 (m), 1123 (w), 1077 (w), 1056 (w), 1028 (w), 938 (w), 897 (w), 847 (w), 828 (w), 797 (w), 744 (m), 699 (s), 585 (w), 509 (w) cm<sup>-1</sup>.

#### Methyl (Z)-2-hydroxy-2-(4-phenylbutanoyl)oct-3-enoate (40c)

The title compound was prepared from Z-alkenyl iodide**37** (0.5 M in THF, 0.60 mL, 0.30 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.43 mL, 0.60 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub> 1.20 mL, 0.60 mmol, 2.0 equiv.) according to **GP8** to afford **40c** (32 mg, 101 µmol, 20%) as colourless oil after SCC (*n*-pentane/ EtOAc 10:1).



40c TLC: R<sub>F</sub> 0.40 (*n*-pentane/EtOAc 10:1). <sup>1</sup>H-NMR: (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.87 (t, *J* = 7.1 Hz, 3H, 8-H), 1.25-1.33 (m, 4H, 7-H 6-H), 1.92 (dt, *J* = 1.4, 9.0 Hz, 2H, 3'-H), 1.97-2.21 (m, 2H, 5-H), 2.58-2.63 (m, 2H, 4'-H), 2.67 (t, *J* = 7.2 Hz, 2H, 2'-H), 3.77 (s, 3H, OCH<sub>3</sub>), 4.43 (s, 1H, OH), 5.70 (dt, *J* = 7.5, 11.4 Hz, 1H, 4-H), 5.93 (dt, *J* = 1.7, 11.4 Hz 1H, 3-H), 7.14-7.21 (m, 3H, Ph), 7.26-7.30 (m, 2H, Ph) ppm. <sup>13</sup>C-NMR: (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 14.0 (8-C), 22.5 (7-C), 25.6 (3'-C), 28.2 (5-C), 31.6 (6-C), 35.0 (4'-C), 36.4 (2'-C), 53.5 (OCH<sub>3</sub>), 83.7 (2-C), 124.0 (3-C), 126.2 (4-C-Ph), 128.5 (3-C-Ph), 128.6 (2-C-Ph), 138.8 (4-C), 141.4 (1-C-Ph), 171.1 (1-C), 205.5 (1'-C) ppm. HRMS: ESI+ calcd. for C<sub>19</sub>H<sub>26</sub>O<sub>4</sub>Na [M+Na]\*: 341.1723; found: 341.1716. IR (ATR): v =3474 (br, w), 3027 (w) 2955 (m), 2928 (w), 2860 (w), 1718 (s), 1496 (w), 1454 (w), 1436 (w), 1403 (w), 1362 (w), 1246 (s), 1210 (w), 1159 (w), 1091 (w), 1014 (w), 975 (w), 911 (w), 801 (w), 744 (m), 699 (s), 491 (w) cm<sup>-1</sup>.

#### Methyl (Z)-2-hydroxy-2-(4-methoxybenzoyl)oct-3-enoate (40e)

The title compound was prepared from Z-alkenyl iodide **37** (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.), *sec*-butyl lithium (1.4 M in cyclohexane, 0.71 mL, 1.00 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **14e** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.00 mL, 1.00 mmol, 2.00 equiv.) according to **GP8** to afford **40e** (40 mg, 131 µmol, 13%) as colourless oil after SCC (*n*-pentane/ EtOAc 11:1).

This article is protected by copyright. All rights reserved.





40e TLC: R<sub>F</sub> 0.26 (*n*-pentane/EtOAc 10:1). <sup>1</sup>H-NMR: (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.77 (t, *J* = 7.1 Hz, 3H, 8-H), 1.08-1.23 (m, 4H, 7-H, 6-H), 1.80-1.89 (m, 1H, 5-H<sub>a</sub>), 2.01-2.10 (m, 1H, 5-H<sub>b</sub>), 3.70 (s, 3H, COOCH<sub>3</sub>), 3.86 (s, 3H, OCH<sub>3</sub>), 5.14 (s, 1H, OH), 5.67 (dt, *J* = 7.5, 11.3 Hz, 1H, 4-H), 6.38 (dt, *J* = 1.7, 11.3 Hz, 1H, 3-H), 6.91 (d, *J* = 9.1 Hz, 2H, 3-H-Ph), 8.04 (d, *J* = 9.1 Hz, 2H, 2-H-Ph) ppm. <sup>13</sup>C-NMR: (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 14.0 (8-C), 22.4 (7-C), 28.2 (5-C), 31.2 (6-C), 53.4 (COOCH<sub>3</sub>), 55.7 (OCH<sub>3</sub>), 80.8 (2-C), 113.9 (3-C-Ph), 124.7 (1-C-Ph), 125.9 (3-C), 133.0 (2-C-Ph), 138.6 (4-C), 164.4 (4-C-Ph), 171.6 (1-C), 193.8 (C=O) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>17</sub>H<sub>22</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>: 329.1359; found: 329.1358. IR(ATR): v = 3421 (br, w), 2956 (w), 2929 (w), 2859 (w), 1740 (m), 1671 (m), 1598 (s), 1574 (w), 1511 (m), 1460 (w), 1438 (w), 1362 (w), 1312 (w), 1255 (w), 1233 (s), 1173 (s), 1144 (w), 1102 (w), 1062 (w), 1024 (m), 962 (w), 920 (w), 891 (w), 845 (m), 789 (w), 728 (w), 656 (w), 612 (m), 514 (w) cm<sup>-1</sup>.

#### Cyclohexyl 2-((4-*tert*-butyl)cyclohexylidene)methyl)-2-hydroxy-3oxo-3-phenylpropanoate (41a)

The title compound was prepared from alkenyl iodide**29** (0.3 M in THF, 1.00 mL, 0.30 mmol, 1.0 equiv.), *sec*-butyl lithium (1.4 M in cyclohexane, 0.43 mL, 0.60 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 0.60 mL, 0.60 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **15a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.20 mL, 0.60 mmol, 2.0 equiv.) according to **GP8** to afford **41a** (78 mg, 230 µmol, 75%, d.r. 2:1) as colourless oil after SCC (*n*-pentane/ EtOAc 11:1).



41a TLC: R<sub>f</sub>= 0.76 (n-pentane/EtOAc 10:1). <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ = 0.33 (ddd, J = 3.7, 12.8, 25.7 Hz, 1H, Cy), 0.65 (s, 9H,  $C(CH_3)_3$ ), 0.77\* (s,  $C(CH_3)_3$ ), 0.78-0.91 (m, 1H, Cy-Hex), 0.98-1.12 (m, 1H, Cy), 1.17-1.38 (m, 4H, Cy), 1.38-1.85 (m, 10H, Cy), 1.89-2.08 (m, 1H, Cy), 2.28-2.60 (m, 2H, Cy), 4.77-4.84 (m, 1H, Cy), 4.81\* (s, 1H, OH), 4.91 (s, 1H, OH), 6.06\* (br s, C=CH), 6.13 (br s, 1H, C=CH), 7.39-7.44 (m, 2H, Ph), 7.51-7.56 (m, 1H, Ph), 8.02-8.09 (m, 2H, Ph) ppm. Signals of major diastereomer are reported only, accept for two signals of the minor diastereomer, which are indicated with \*. 13C-NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 23.4 (Cy), 25.3 (Cy), 27.1 (Cy), 27.5 (C(CH<sub>3</sub>)<sub>3</sub>), 27.7 (Cy), 28.9 (Cy), 29.9 (Cy), 31.0 (Cy), 31.1 (Cy), 32.3 (C(CH<sub>3</sub>)<sub>3</sub>), 37.7 (Cy), 47.6 (4"-C), 75.0 (1'-C), 80.9 (2-C), 118.3 (C=CH), 128.3 (Ph), 130.6 (Ph), 132.6 (Ph), 133.8 (Ph), 149.3 (C=CH), 170.3 (1-C), 196.9 (3-C) ppm. HRMS: ESI<sup>+</sup> calcd. for C<sub>26</sub>H<sub>36</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 435.2506, found: 435.2513. IR (ATR): v = 3456 (br, w), 3061 (w), 2938 (s), 2861 (w), 2125 (w), 1735 (m), 1681 (s), 1597 (w), 1581 (w), 1449 (m), 1365 (m), 1317 (w), 1258 (w), 1240 (w), 1221 (s), 1167 (m), 1124 (m), 1088 (w), 1067 (w), 1034 (w), 1009 (m), 985 (w), 957 (w), 934 (m), 915 (w), 830 (w), 810 (w), 744 (w), 689 (s), 631 (w), 595 (w), 564 (w), 541 (w), 439 (w) cm<sup>-1</sup>.

#### Cyclohexyl 2-((4-*tert*-butyl)cyclohexylidene)methyl)-2-hydroxy-3oxo-6-phenylhexanoate (41c)

The title compound was prepared from alkenyl iodide**29** (0.3 M in THF, 1.00 mL, 0.30 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.43 mL, 0.60 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 0.60 mL, 0.60 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **15c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 1.20 mL, 0.60 mmol, 2.0 equiv.) according to **GP8** to afford **41c** (60 mg,

0.13 mmol, 44%,d.r. 1:1) as colourless oil after SCC (*n*-pentane/ EtOAc 20:1).



41c TLC: R= 0.68 (n-pentane/EtOAc 10:1). 1H-**NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.82, 0.83 (2 s, 9H, C(CH<sub>3</sub>)<sub>3</sub>), 1.00-1.17 (m, 2H, 4"-H, 5"-H\_a), 1.23-1.60 (m, 7H, 4'-H\_a, 4'-H\_b, 2'-H\_a, 3'-H\_a, 3"-H\_a), 1.63-1.83 (m, 6H, 2'-H<sub>b</sub>, 3'-H<sub>b</sub>, 3"H<sub>b</sub>, 5"-H<sub>b</sub>), 1.84-1.96 (m, 3H, 5-H, 2"-H<sub>a</sub>), 1.98-2.10 (m, 1H, 6"-Ha), 2.27-2.34 (m, 1H, 6"-Hb), 2.56-2.73 (m, 5H, 4-H 6-H, 2"-H<sub>b</sub>), 4.36, 4.37 (2 s, 1H, OH), 4.75-4.90 (m, 1H, 1'-H), 5.72, 5.75 (2 s, 1H, C=C*H*), 7.13-7.20 (m, 3H, Ph), 7.25-7.29 (m, 2H, Ph) ppm. <sup>13</sup>C-**NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 23.6, 23.7 (3'-C), 25.3 (4'-C), 25.7, 25.8 (C(CH<sub>3</sub>)<sub>3</sub>), 27.7, 27.7 (5-C), 27.9 (3"-C), 28.2 (5"-C), 29.8, 29.9 (2"-C), 31.3, 31.3 (2'-C), 31.3, 31.4 (6"-C), 32.5, 32.6 (C(CH<sub>3</sub>)<sub>3</sub>), 35.1, 35.2 (6-C), 36.6 (4-C), 37.5, 37.6 (6"-C), 47.8, 48.0 (4"-C), 75.3, 75.3 (1'-C), 82.8, 82.9 (2-C), 116.7, 116.8 (C=CH), 126.1, 126.1 (1-C-Ph), 128.5, 128.5, 128.5 (2-C-Ph, 3-C-Ph), 141.5, 141.5 (4-C-Ph), 149.4, 149.7 (C=CH), 170.3, 170.3 (1-C), 206.4, 206.5 (3-C) ppm. HRMS: ESI+ calcd. for C29H42O4Na [M+Na]+: 477.2975, found: 477.2977. IR (ATR): v = 3475 (br, w), 3026 (w), 2937 (s), 2861 (w), 1714 (s), 1661 (w), 1496 (w), 1451 (m), 1393 (w), 1364 (m), 1253 (w), 1233 (s), 1172 (w), 1142 (w), 1121 (w), 1099 (w), 1034 (w), 1010 (m), 983 (w), 927 (w), 908 (w), 839 (w), 745 (w) 699 (s), 668 (w), 491 (w), 443 (w) cm<sup>-1</sup>.

#### Cyclohexyl (E)-2-benzoyl-2-hydroxyoct-3-enoate (42a)

The title compound was prepared from *E*-alkenyl iodide**36** (0.5 M in THF, 0.48 mL, 0.24 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.34 mL, 0.48 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **15a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub> 2.00 mL, 1.00 mmol, 2.0 equiv.) according to **GP8** to afford **42a** (38 mg, 0.11 mmol, 46%) as colourless oil after SCC (*n*-pentane/ EtOAc 20:1).



<sup>42a</sup> **TLC:** R<sub>F</sub> 0.67 (*n*-pentane/EtOAc 10:1). <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.84 (t, *J* = 7.26 Hz, 3H, 8-H), 1.16-1.79 (m, 14H, 2'-H, 3'-H, 4'-H, 6-H, 7-H), 2.09 (dt, *J* = 6.23, 7.33 Hz, 2H, 5-H), 4.60 (s, 1H, OH), 4.85 (m, 1H, 1'-H), 5.96 (dt, *J* = 6.87, 15.6 Hz, 1H, 4-H), 6.13 (dt, *J* = 1.41, 15.6 Hz, 1H, 3-H), 7.40-7.46 (m, 2H, 3-H-Ph), 7.52-7.59 (m, 1H, 4-H-Ph), 7.97-8.04 (m, 2H, 2-H-Ph) ppm. <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 14.0 (8-C), 22.2 (3'-C), 23.3 (4'-C), 25.3 (2'-C), 31.0, 31.1 (6-C, 7-C), 32.1 (5-C), 75.2 (1'-C), 82.0 (2-C), 126.5 (3-C), 128.5 (3-C-Ph), 130.0 (2-C-Ph), 133.5 (1-C-Ph), 133.7 (4-C-Ph), 135.0 (4-C), 170.7 (1-C), 194.9 (PhCO) ppm. **HRMS:** ESI+ calcd. for C<sub>21</sub>H<sub>28</sub>O<sub>4</sub>Na [M+Na]+: 367.1880, found: 367.1881. **IR** (ATR): v = 3467 (br, w), 2932 (s), 2859 (w), 1728 (s), 1686 (m), 1598 (w), 1581 (w), 1450 (m), 1375 (w), 1259 (w), 1228 (s), 1159 (m), 1121 (w), 1072 (w), 1034 (w), 1009 (m), 972 (w), 932 (w), 908 (w), 832 (w), 708 (w), 691 (m), 649 (w) cm<sup>-1</sup>.

#### Cyclohexyl (E)-2-hydroxy-2-(-4-phenylbutanoyl)oct-3-enoate (42c)

The title compound was prepared from *E*-alkenyl iodide**36** (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.71 mL, 1.00 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **15c** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.00 mL, 1.00 mmol, 2.0 equiv.) according to **GP8** to afford **42c** (89 mg, 0.23 mmol, 46%) as colourless oil after SCC (*n*-pentane/ EtOAc 20:1).

10.1002/ejoc.201601598



<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 0.98 (t, J = 7.2 Hz, 3H, 8-H), 1.35-1.50 (m, 6H, 3"-Ha, 4"-Ha, 6-H, 7-H), 1.50-1.60 (m, 2H, 2"-H<sub>a</sub>), 1.59-1.65 (m, 1H, 4"-H<sub>b</sub>), 1.76-1.83 (m, 2H, 3"-H<sub>b</sub>), 1.87-1.93 (m, 2H, 2"-H<sub>b</sub>), 1.96-2.06 (m, 2H, 3'-H), 2.16-2.21 (m, 2H, 5-H), 2.67-2.84 (m, 4H, 2'-H, 4'-H), 4.35 (s, 1H, OH), 4.90-4.97 (m, 1H, 1"-H), 5.97 (d, *J* = 15.4 Hz, 1H, 3-H), 6.09 (dt, J = 6.8, 15.4 Hz, 1H, 4-H), 7.23-7.31 (m, 3H, Ph), 7.34-7.41 (m, 2H, Ph) ppm.  $^{13}$ C-NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  = 14.0 (8-C), 22.3 (7-C), 23.6 (3"-C), 25.3 (4"-C), 25.4 (3'-C), 31.1 (6-C), 31.3 (2"-C), 31.9 (5-H), 35.1 (4'-C), 36.4 (2'-C), 75.5 (1"-C), 83.7 (2-C), 124.9 (3-C), 126.1 (4-C-Ph), 128.5, 128.6 (2-C-Ph, 3-C-Ph), 134.1 (4-C), 141.5 (1-C-Ph), 169.9 (1-C), 205.5 (1'-C) ppm. HRMS: ESI+ calcd. for C24H34O4Na [M+Na]+: 409.2349; found: 409.2352. IR (ATR): v = 3482 (br, w), 3027 (w), 2932 (s), 2859 (w), 1717 (s), 1604 (w), 1496 (w), 1452 (m), 1363 (w), 1255 (s), 1199 (w), 1170 (w), 1120 (w), 1097 (w), 1033 (w), 1011 (w), 976 (w), 928 (w), 908 (w), 838 (w), 804 (w), 745 (w), 700 (m), 491 (w) cm<sup>-1</sup>.

#### Cyclohexyl (Z)-2-benzoyl-2-hydroxyoct-3-enoate (43a)

The title compound was prepared from Z-alkenyl iodide **37** (0.5 M in THF, 1.00 mL, 0.50 mmol, 1.0 equiv.), sec-butyl lithium (1.4 M in cyclohexane, 0.71 mL, 1.00 mmol, 2.0 equiv.), dineopentylzinc (1.0 M in benzene, 1.00 mL, 1.00 mmol, 2.0 equiv.) and  $\alpha$ , $\beta$ -diketoester **15a** (0.5 M in CH<sub>2</sub>Cl<sub>2</sub>, 2.00 mL, 1.00 mmol, 2.0 equiv.) according to **GP8** to afford **43a** (25 mg, 72.6 µmol, 15%) as colourless oil after SCC (*n*-pentane/ EtOAc 30:1).



43a TLC: R<sub>f</sub>= 0.68 (n-pentane/EtOAc 10:1). <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>) δ = 0.78 (t, J = 7.1 Hz, 3H, 8-H), 1.10-1.25 (m, 7H, 7-H, 3'-Ha, 4'-Ha, 2'-Ha, 6-H), 1.27-1.36 (m, 1H, 3'-Ha), 1.38-1.48 (m, 3H, 2'-Ha, 7), 1.27-1.36 (m, 1H, 3'-Ha), 1.38-1.48 (m, 3H, 2'-Ha), 1.27-1.36 (m, 1H, 3'-Ha), 1.38-1.48 (m, 3H, 2'-Ha), 1.38(m, 3H, 2'-Ha), 1.38(m, 3H, 2'-Ha), 1.38(m, 3H, 2'-Ha), 1.38( 3'-H<sub>b</sub>, 4'-H<sub>b</sub>), 1.54-1.60 (m, 1H, 2'-H<sub>b</sub>), 1.61-1.67 (m, 1H, 3-H<sub>b</sub>), 1.73-1.80  $(m, \ 1H, \ 2\text{-}H_{b}), \ 1.86\text{-}1.96 \ (m, \ 1H, \ 5\text{-}H_{a}), \ 2.05\text{-}2.14 \ (m, \ 1H, \ 5\text{-}H_{b}), \ 4.78\text{-}1.86\text{-}1.96 \ (m, \ 1H, \ 5\text{-}H_{b}), \ 4.78\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text{-}1.86\text$ 4.85 (m, 1H, 1'-H), 4.88 (s, 1H, OH), 5.69 (dt, J = 7.5, 11.4 Hz, 1H, 4-H), 6.32 (dt, J = 1.7, 11.4 Hz, 1H, 3-H), 7.40-7.45 (m, 2H, 3-H-Ph), 7.52-7.59 (m, 1H, 4-H-Ph), 8.03 (dd, J = 1.2, 8.5 Hz, 2H, 2-H-Ph) ppm. <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>) δ = 14.0 (8-C), 22.4 (7-C), 23.3, 23.4 (3'-C), 25.3 (4'-C), 28.3 (5-C), 31.0, 31.1 (2'-C), 31.3 (6-C), 75.1 (1'-C), 81.4 (2-C), 125.5 (3-C), 128.5 (3-C-Ph), 130.3 (2-C-Ph), 132.6 (1-C-Ph), 133.9 (4-C-Ph), 138.7 (4-C), 170.3 (1-C), 195.7 (3-C) ppm. HRMS: ESI+ calcd. for C21H28O4Na [M+Na]\*: 367.1880, found: 367.1879. IR (ATR): v = 3459 (br, w), 2933 (m), 2859 (w), 1735 (m), 1682 (s), 1597 (w), 1580 (w), 1450 (m), 1359 (w), 1318 (w), 1257 (w), 1223 (s), 1184 (w), 1146 (w), 1122 (w), 1100 (w), 1060 (w), 1034 (w), 1010 (m), 964 (w), 925 (m), 827 (w), 802 (w), 690 (s) cm<sup>-1</sup>.

## Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (Ko 1349/17-1) is gratefully acknowledged.

**Keywords:** vic-tricarbonyl compounds•organo zinc reagents• zincates•ketones•chemoselectivity

- a) H. H. Wasserman, J. Parr, Acc. Chem. Res. 2004, 37, 687-701; b) H.
   H. Wasserman, Aldrichchimica Acta 1987, 20, 63-74.
- [2] M. B. Rubin, R. Gleiter, *Chem. Rev.* **2000**, *100*, 1121-1164.
- [3] L. Selter, L. Zygalski, E. Kerste, U. Koert, Synthesis 2017, 49, 17-18.
- [4] J. Roßbach, J. Baumeister, K. Harms U. Koert, Eur. J. Org. Chem. 2013, 662-665.
- a) P. Knochel, R. D. Singer, *Chem. Rev.* 1993, *93*, 2117-2188; b) *The Chemistry of Organozinc Compounds* (eds Z. Rappoport and I. Marek), John Wiley & Sons, Ltd, Chichester, UK 2006, doi: 10.1002/9780470093399; c) A. D. Dilman, V. V. Levin, *Tetrahedron Lett.* 2016, *57*, 3986-3992; d) A. E. H. Wheatley, *New. J. Chem.* 2004, *28*, 435-443.
- [6] a) F. Sachs, V. Herold, Ber. Dtsch. Chem. Ges. 1901, 40, 2714-2730;
   b) P. Ehrlich, F. Sachs, Ber. Dtsch. Chem. Ges. 1899, 32, 2341-2346.
- [7] H. Asahara, N. Nishiwaki, J. Org. Chem. 2014, 79, 11735-11739.
- [8] M. Regitz, H.-G. Adolph, *Justus Liebigs Ann. Chem.* **1969**, *723*, 47-60.
  [9] D. W. Brooks, L. D.-L. Lu, S. Masamune, *Angew. Chem.* **1979**, *91*, 76-77; *Angew. Chem. Int. Ed. Engl.* **1979**, *18*, 72-74.
- [10] F. von Rekowski, C. Koch, R. M. Gschwind, J. Am. Chem. Soc. 2014, 136, 11389-11395.
- a) P. Wipf, W. Xu, *Tetrahedron Lett.* **1994**, *35*, 5197-5200; b) H. Li, P. J.
   Walsh, *J. Am. Chem. Soc.* **2005**, *127*, 8355-8361.
- [12] a) W. Oppolzer, R. N. Radinov, *Helv. Chim. Acta* **1992**, *75*, 170-173; b)
   G. R. Stanton, G. Koz, P. J. Walsh, *J. Am. Chem. Soc.* **2011**, *133*, 7969-7976.
- [13] a) W. Oppolzer, R. N. Radinov, *Tetrahedron Lett.* 1991, *32*, 5777-5780;
   b) P. Eidam, J. A. Marshall, *Org. Lett.* 2004, *6*, 445-448.
- [14] M.-Y- Ngai, T. J. Hunter, B. M. O'Keefe, C. S. Brindle, B. Biannic, B. M. Trost, J. Am. Chem. Soc. 2015, 137, 11594-11597.
- [15] K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408-7410.
- a) W. Tückmantel, K. Oshima, H. Nozaki, *Chem. Ber.* 1986, *119*, 1581-1593; b) S. Berger, F. Langer, C. Lutz, P. Knochel, T. A. Mobley, C. K. Reddy, *Angew. Chem. Int. Ed.* 1997, *36*, 1496-1498; c) R. B. Bedford, M. Huwe, M. C. Wilkinson, *Chem. Commun.* 2009, 600-602.
- [17] R. Schrock, J. D. Fellmann, J. Am. Chem. Soc. 1978, 100, 3359-3370.
- [18] J. H. Simpson, J. K. Stille, J. Am. Chem. Soc. **1987**, 109, 2138-2152.
- [19] K. Zhao, G. Stork, Tetrahedron Lett. **1989**, 30, 2173-2174.
- [20] CCDC-1522383 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

This article is protected by copyright. All rights reserved.

# WILEY-VCH

## Entry for the Table of Contents (Please choose one layout)

# FULL PAPER



The reaction of  $\alpha,\beta$ -diketoesters with various organozinc reagents is described. Diorganozinc reagents are suitable for alkylation and arylation while alkenyl-dineopentyl zincates transfer the alkenyl group to the central. carbonyl group of  $\alpha,\beta$ -diketoester.

Key Topic: mixed triorganozincates

L. Selter, K. Harms, U. Koert\*

Page No. – Page No. Addition of Mixed Alkenyl-Dialkyl Zincates to Vicinal Diketoester