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Gold-Catalyzed Cyclization–Cycloaddition Cascade Reactions of Allenyl
Acetals with Nitrones
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Gold-catalyzed cyclization–cycloaddition reactions[1] of
oxoalkynes,[2] oxoallenes,[3] oxoalkenes,[4] and allenyl ace-
tals[5] are powerful tools for accessing complicated carbo-
and oxacyclic frameworks. These reactions allow the simul-
taneous generation of two new rings and three chemical
bonds. In the presence of gold complexes, such difunctional
substrates undergo an initial cyclization to form reactive car-
bocation-like intermediates that can be trapped with suita-
ble nucleophiles to achieve stereocontrolled cycloaddi-
tions.[2–5] We recently reported[5b] a gold-catalyzed cascade
reaction between allenyl acetals and dinucleophilic phenols
and one between allylsilanes and cyclic 1,3-diones, reactions
that gave complex products stereoselectively. In those re-
ports, allenyl acetals function as dication equivalents
(Scheme 1). Herein, we report a different type of cycliza-
tion–cycloaddition cascade reaction of the same substrates
(1): they react as 1,2-dipole equivalents with suitable nitro-
nes in [3+2]-cycloadditions.[6,7] . Although the new reactions
afford two diastereomeric products 3, a subsequent HOAc-
catalyzed hydrolysis of this isomeric mixture gave tricyclic
ketones 6 as single diastereomers.

Table 1 shows our efforts to realize a cyclization–cycload-
dition cascade reaction between allenyl acetal 1 a (1 equiva-
lent) and nitrone 2 a (1.2 equivalents) in dichloroethane
(DCE, 25 8C) by using various gold catalysts. Cationic gold
species were selected and screened for their activity in pro-
moting this cascade reaction because of their superior per-
formance in the cyclizations of allenyl acetals with dinucleo-
philic molecules.[5b] The use of [PPh3AuCl]/AgNTf2 resulted
in complete consumption of starting material 1 a to give cy-
cloadducts 3 a and 3 a’ in 54 % and 28 % yields, respectively,
after their separation using silica-gel column chromatogra-
phy (Table 1, entry 1). We obtained product 3 a exclusively
in 80 % yield when using bulky complex [LAuNTf2] (L= (o-
biphenyl)P ACHTUNGTRENNUNG(tBu)2; Table 1, entry 2). The use of [LAuSbF6]
led to a decrease in the yield of compound 3 a (73 %;
Table 1, entry 3). The use of [IPrAuCl]/AgNTf2 gave com-
pound 3 a and 3 a’ in 53 % and 25 % yields, respectively

(Table 1, entry 4). The solvent was varied for the reaction
catalyzed by [LAuCl]/AgNTf2 and it was found that di-
chloromethane (CH2Cl2) was as effective as DCE, giving cy-
cloadduct 3 a as the sole product; however, the use of THF
gave compounds 3 a and 3 a’ in 32 and 28 % yields, respec-
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Scheme 1. Different pathways for the cyclization–cycloaddition cascade
reaction of allenyl acetals.

Table 1. The activities of various gold complexes in catalyzing the cas-
cade reaction.

Entry[a] Catalyst Solvent 3 Yield [%][b]

1 ACHTUNGTRENNUNG[PPh3AuCl]/AgNTf2 DCE 3a (54), 3a’ (28)
2 ACHTUNGTRENNUNG[LAuCl]/AgNTf2 DCE 3a (80)
3 ACHTUNGTRENNUNG[LAuCl]/AgSbF6 DCE 3a (73)
4 ACHTUNGTRENNUNG[IPrAuCl]/AgNTf2 DCE 3a (53), 3a’ (25)
5 ACHTUNGTRENNUNG[LAuCl]/AgNTf2 CH2Cl2 3a (77)
6 ACHTUNGTRENNUNG[LAuCl]/AgNTf2 THF 3a (32), 3a’ (28)
7 AgNTf2 DCE 3a (35), 3a’ (13)

[a] [1a]=0.2 m. [b] Product yields were measured after purification. L=

(o-biphenyl)P ACHTUNGTRENNUNG(tBu)2, IPr=1,3-bis(diisopropylphenyl)imidazol-2-ylidene,
Tf= trifluoromethanesulfonyl.
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tively, (Table 1, entry 6). In a control experiment, we found
that AgNTf2 in DCE in the absence of a gold complex also
afforded compounds 3 a and 3 a’, albeit in low yields
(Table 1, entry 7). In its 1H NMR spectrum, the signals asso-
ciated with the hydrogen atoms on the isoxazolidine ring in
compound 3 a showed a coupling constant indicative of a
trans relationship (JH,H =1.6 Hz) whereas those in 3 a’
showed a coupling constant indicative of a cis relationship
(JH,H =8.8 Hz). The molecular structure of compound 3 a
was confirmed by X-ray diffraction analysis of derivative
4 c.[8]

Table 2 shows the results of cyclization–cycloaddition re-
actions of allenyl acetal 1 a with various nitrones 2 b–2 l ; for
several of these reactions, we obtained the corresponding di-
astereomeric cycloadducts, which were separable using

silica-gel column chromatography. Using nitrone 2 b, which
bears a methyl group at the nitrone carbon atom, desired
products 3 b and 3 b’ were obtained in 65 % and 17 % yields,
respectively (Table 2, entry 1). For nitrones 2 c–2 e, which
contain electron-deficient and electron-rich imine moieties
(R1 =4-XC6H4; X=Cl, Br, and OMe), the corresponding cy-
cloadducts 3 c, 3 d/3 d’, and 3 e were obtained in good yields
(total yield of diastereomeric products; Table 2, entries 2–4).
Nitrones 2 f–2 i, which contain heteroaryl imine moieties
(R1 =2- and 3-furanyl, and 2- and 3-thienyl), were also used
as substrates in this cyclization–cycloaddition reaction and
the corresponding cycloadducts 3 f/3 f’, 3 g/3 g’, 3 h, and 3 i/3 i’
with yields of greater than 67 % (Table 2, entries 5–8). For
nitrones 2 j–2 l, which contain alterable aniline moieties
(R2 =4-XC6H4; X=Br, Me, and OMe), cycloadducts 3 j/3 j’,
3 k/3 k’, and 3 l/3 l’ were obtained in moderate to good yields
(53–84 %; Table 2, entries 9–11).

We examined the reactions of nitrone 2 a with various al-
lenyl acetals 1 b–1 g including both cyclic and acyclic com-
pounds (Table 3). The cyclization–cycloaddition of sub-
strates 1 b and 1 c, which both contain substituted cyclohex-

ene moieties, gave the desired cycloadducts 4 b/4 b’ and 4 c
in 76–79 % yields. The structure of compound 4 c was con-
firmed by X-ray diffraction analysis.[8] The fact that species
4 c was obtained with excellent diastereoselectivity is not
surprising because it has a similar structure to that of allenyl
acetal 1 a. For substrate 1 d, which contains a cycloheptenyl
moiety, the gold-catalyzed reaction gave cycloadduct 4 d and
dienyl ester 5 d in 41 % and 35 % yields, respectively
(Table 3, entry 3). For allenyl acetal 1 e, which was used as
an isomeric mixture (Z/E= 3.2:1), we obtained the desired
[3+2]-cycloadducts 4 e/4 e’ as two inseparable diastereomers
in equal proportions; the yield (73 %) was estimated based
on the Z isomer of starting material 1 e. We also prepared
acyclic Z-configured allenyl acetals 1 f and 1 g and when
they were used as substrates in the cyclization–cycloaddition
reaction, the corresponding products 4 f/4 f’ and 4 g/4 g’ were
obtained in 75–83 % overall yields (Table 3, entries 5 and 6).

Table 2. The reaction with various nitrones.

Entry[a] Nitrone
R1, R2 (2)

t [min] 3 Yield [%][b]

1 Me, Ph (2b) 25 3b (65), 3b’ (17)
2 4-ClC6H4, Ph (2c) 15 3c (82)
3 4-BrC6H4, Ph (2d) 20 3d (61), 3d’ (17)
4 4-MeOC6H4, Ph (2e) 10 3e (87)
5 2-furanyl, Ph (2 f) 25 3 f (56), 3 f’ (19)
6 3-furanyl, Ph (2 g) 5 3g (58), 3g’ (28)
7 2-thienyl, Ph (2h) 20 3h (67)
8 3-thienyl, Ph (2 i) 10 3 i (56), 3 i’ (23)
9 Ph, 4-BrC6H4 (2j) 5 3j (43), 3j’ (41)
10 Ph, 4-MeC6H4 (2 k) 10 3k (43), 3k’ (41)
11 Ph, 4-MeOC6H4 (2 l) 5 3 l (38), 3 l’ (15)

[a] [1a]=0.2 m. [b] Product yields were measured after purification.

Table 3. The reaction with various allenyl acetals.

Entry[a] Allenyl acetal Products (Yield)[b]

1

2

3

4

5

6

7[c] complicated mixture

[a] [1]=0.2 m ; reaction time of 15 min [b] Product yields were measured
after purification. [c] Reaction time of 60 min.
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In contrast, the use of E-configured acyclic substrate 1 g’
gave a complicated mixture of unknown species.

To our delight, the isomeric products of this reaction un-
dergo Brønsted-acid-catalyzed hydrolysis to give the same
product, an a-isopropylidene cyclopentanone. As shown in
Table 4, treatment of major diastereomer 3 a with neat

HOAc at 25 8C (8 hours) afforded tricyclic ketone 6 a in
76 % yield (Table 4, entry 1); 1H NOE spectra and X-ray
diffraction analysis[8] confirmed its structure, which contains
trans-related geminal hydrogen atoms on the isoxazolidine
ring. Interestingly, a similar hydrolysis of its isomer, 3 a’, af-
forded the same ketone 6 a in 73 % yield (Table 4, entry 2).
We also subjected other diastereomeric mixtures to this
acid-catalyzed hydrolysis: 4 b/4 b’ (d.r.= 3.9:1) and 4 e/4 e’
(d.r.=1:1) were converted into bicyclic ketones 6 b (60%)
and 6 d (76%), respectively, as the only products (Table 4,
entries 3 and 5). Compound 4 c was converted into desired
ketone 6 c in 71 % yield (Table 4, entry 4).

This new nitrone-based cyclization—cycloaddition reac-
tion is mechanistically interesting because the allenyl acetals
function as 1,2-dipole equivalents. Scheme 2 shows a plausi-
ble mechanism for the nitrone-based cyclization–[3+2]-cy-

cloaddition reaction. In the presence of a cationic gold spe-
cies, the acetal moiety of species 1 is converted into an oxo-
nium ion moiety, thus giving intermediate A, which then un-
dergoes an intramolecular cyclization to give allylic cation
B. We envisage that the released Au–OMe species then as-
sists in the deprotonation of species B to give highly nucleo-
philic 1-methoxyfulvene C,[9–12] which reacts with nitrone
through an exo cycloaddition reaction to afford diastereo-
meric cycloadducts 3 and 4 as the major products. The ster-
eochemical outcome is consistent with a report on a [3+2]-
cycloaddition reaction of fulvene and nitrone.[12] This reac-
tion together with previous reports show that these allenyl
acetal substrates can undergo two different cascade reac-
tions catalyzed by similar gold catalysts.

The cyclization–cycloaddition cascade reaction described
herein involves an attack of 1-methoxyfulvene C on nitrone
whereas in the previously reported cascade reaction
(Scheme 1) a nucleophilic attack of either 1,3-diketones or
phenols at allylic cation B is involved.

We then attempted to obtain enantioenriched 3 a to un-
derstand the nature of its hydrolysis with HOAc. The treat-
ment of substrate 1 a with a range of chiral bisphosphine–
gold complexes, [LAu2Cl2]/2AgX, gave diastereomer 3 a ex-
clusively in greater than 63 % yield, albeit with low ee values
(5–18 %).[13] With [LAu2Cl2]/2AgX (L= (R)-DM-Segphos
and X= NTf2), we obtained (+)-3 a in 18 % ee (Scheme 3).
A further treatment of this sample with neat HOAc (25 8C,
8 h) gave desired 6 a (2 % ee) with a large loss in optical
purity. This observation suggests that Brønsted acid not only
enables the hydrolysis of the enol ether of 3 a to ketone 6 a,
but also leads to the racemization of 3 a, a process that pre-
sumably involves the two key steps, 6 a!D and F!ent-6 a;
this process causes the configurations of all three stereogen-
ic centers to invert in a reversible manner.

In summary, we have developed a gold-catalyzed cycliza-
tion–cycloaddition cascade reaction between allenyl ace-
tals[14] and nitrones. A key intermediate in the cascade reac-
tion is postulated to be a 1-methoxyfulvene species.[12] These
reactions reveal that the allenyl acetal substrates act as 1,2-
dipole equivalents, a behavior that is in contrast with the
“dication behavior” described in our previous investiga-
tion.[5b] Although we often obtained two diastereomeric
products in this cascade reaction, HOAc-catalyzed hydroly-

Table 4. HOAc-catalyzed hydrolysis of cycloadducts.

Entry[a] Cycloadduct T [h] Product (Yield)[b]

1 8

2 8

3 12

4 12

5 10

[a] [Cycloadduct] =0.2m. [b] Product yields were measured after purifica-
tion.

Scheme 2. A plausible reaction mechanism.
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sis of these isomeric mixtures afforded isopropylidene cyclo-
pentanones as single products.
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Scheme 3. Loss of optical purity in HOAc-catalyzed hydrolysis.

www.chemeurj.org � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Eur. J. 0000, 00, 0 – 0

�� These are not the final page numbers!
&4&

R.-S. Liu and D. Vasu

http://dx.doi.org/10.1021/cr000436x
http://dx.doi.org/10.1039/b816696j
http://dx.doi.org/10.1021/cr050041j
http://dx.doi.org/10.1021/cr050041j
http://dx.doi.org/10.1039/b807499m
http://dx.doi.org/10.1039/b807499m
http://dx.doi.org/10.1021/cr100376w
http://dx.doi.org/10.1039/c1cs15279c
http://dx.doi.org/10.1021/ja106493h
http://dx.doi.org/10.1021/ja106493h
http://dx.doi.org/10.1021/ja802294t
http://dx.doi.org/10.1021/ja802294t
http://dx.doi.org/10.1002/ange.201003136
http://dx.doi.org/10.1002/ange.201003136
http://dx.doi.org/10.1002/anie.201003136
http://dx.doi.org/10.1002/ange.200901299
http://dx.doi.org/10.1002/anie.200901299
http://dx.doi.org/10.1002/anie.200901299
http://dx.doi.org/10.1021/ja044194k
http://dx.doi.org/10.1002/ange.200351390
http://dx.doi.org/10.1002/anie.200351390
http://dx.doi.org/10.1002/anie.200351390
http://dx.doi.org/10.1021/ja0477367
http://dx.doi.org/10.1021/ja809560c
http://dx.doi.org/10.1002/asia.201200046
http://dx.doi.org/10.1021/ja1043837
http://dx.doi.org/10.1021/ja806415t
http://dx.doi.org/10.1021/ja806415t
http://dx.doi.org/10.1021/ja069171f
http://dx.doi.org/10.1021/ja807384a
http://dx.doi.org/10.1002/chem.201000041
http://dx.doi.org/10.1002/chem.201000041
http://dx.doi.org/10.1021/cr078371m
http://dx.doi.org/10.1021/cr970324e
http://dx.doi.org/10.1002/ange.200502640
http://dx.doi.org/10.1002/anie.200502640
http://dx.doi.org/10.1002/anie.200502640
http://dx.doi.org/10.1002/chem.200901133
http://dx.doi.org/10.1002/chem.200901133
http://dx.doi.org/10.1002/chem.200903342
http://dx.doi.org/10.1002/chem.200903342
http://dx.doi.org/10.1002/chem.201002395
http://dx.doi.org/10.1021/ol026103z
http://dx.doi.org/10.1021/ja108516b
http://dx.doi.org/10.1021/ja00304a065
http://dx.doi.org/10.1021/ja00438a068
http://dx.doi.org/10.1021/ja00438a068
http://dx.doi.org/10.1021/jo970984j
http://dx.doi.org/10.1021/jo970984j
http://dx.doi.org/10.1021/ja2091992
http://dx.doi.org/10.1021/om200946m
http://dx.doi.org/10.1021/om200946m
http://dx.doi.org/10.1002/adsc.201200086
http://dx.doi.org/10.1002/adsc.201200086
http://dx.doi.org/10.1002/ange.201109183
http://dx.doi.org/10.1002/ange.201109183
http://dx.doi.org/10.1002/anie.201109183
http://dx.doi.org/10.1039/b106892j
http://dx.doi.org/10.1016/S0040-4039(02)02241-4
http://dx.doi.org/10.1016/S0040-4039(98)01971-6
http://dx.doi.org/10.1016/S0040-4039(98)01971-6
www.chemeurj.org


Gold Catalysis

D. Vasu, R.-S. Liu* . . . . . . . . . . &&&&—&&&&

Gold-Catalyzed Cyclization–Cycload-
dition Cascade Reactions of Allenyl
Acetals with NitronesGold and silver : When allenyl acetals

and nitrones are treated with a cata-
lytic amount of a gold complex and a
silver salt they react through a cycliza-
tion—cycloaddition cascade reaction
to give a mixture of diastereomeric tri-

cyclic products. The mixture converges
to a single product upon acid hydroly-
sis (see scheme). The key intermediate
is postulated to be a 1-methoxyfulvene
species.
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