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Abstract—p-tert-Calix[6]-1,4-2,5-biscrown-4 was subjected to functionalization by benzyl bromide or ethyl bromoacetate. Two pairs
of disubstituted calix[6]biscrown stereoisomers were obtained. Their structures had been deduced from 1H NMR and ESI-MS (elec-
trospray ionization mass spectroscopy). One of the bisethyloxycarbonylmethylated derivatives 3a was further investigated by X-ray
crystallographic analysis. Two-phase extraction experiments indicated that bisethyloxycarbonylmethylated derivatives exhibited
high Cs+/Na+ selectivity. By ESI-MS and 1H NMR experiments it was confirmed that 3a formed 1:1 complex with Cs+.
� 2005 Published by Elsevier Ltd.
Calixcrowns, which are constructed by incorporating
crown ether segment into calixarene skeleton, play
unique roles in the calixarene chemistry due to their
outstanding selectivity towards alkali metal ions.1,2 In
2000, two types of calix[6]biscrowns, namely 1,4-2,5
and 1,3-4,6 double bridged calix[6]biscrowns, had been
reported for the first time.3–6 The 2,5-diallyl derivative
of calix[6]-1,3-4,6-biscrown-4 in the cone conformation
showed a high Cs+/Na+ selectivity and exhibited a cer-
tain extent extraction ability towards K+ ion.3 Recently,
we developed a convenient and simple method for the
synthesis of p-tert-calix[6]-1,4-2,5-biscrown-4.7 It is also
well documented that the complexation ability of
calixarene towards metal ions could be improved by
incorporating additional ligands such as CH2COOC2H5,
CH2CONMe2, etc. Therefore, the derivatives, which are
based on the p-tert-calix[6]-1,4-2,5-biscrown-4 frame-
work could be a new candidate for ion receptors because
of their more rigid conformation and polytopic binding
sites. Besides, it is possible to give stereoisomers in such
functionalized calixbiscrowns if the rotation of the func-
tionalized phenolic groups is prohibited. To the best of
our knowledge, little is known about the functionaliza-
tion of calix[6]biscrowns.8,9

Herein we wish to report our work on functionalizing
p-tert-butylcalix[6]-1,4-2,5-biscrown-4 (2), a new kind
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of stereoisomerism as well as the strengthened complex-
ation ability and selectivity towards Cs+ ion of some
derivatives. The functionalization was performed as
shown in Scheme 1.

The reaction of p-tert-calix[6]arene (1) with triethylene
glycol ditosylates in xylene with K2CO3 as a base affor-
ded p-tert-calix-1,4-2,5-biscrown-4 (2) in 52% yield
conveniently.10 Further treatment of p-tert-butylca-
lix[6]-1,4-2,5-crown-4 with 2 equiv benzyl bromide or
ethyl bromoacetate in refluxing acetonitrile in the pres-
ence of 10 equiv K2CO3 for 12 h, gave two pairs of disub-
stituted derivatives, 3a and 3b, 4a and 4b in 65%, 23%,
52% and 34% yield, respectively. The structures of these
compounds were characterized by ESI-MS spectra, ele-
mental analyses and 1H NMR studies.11 It is interesting
to note that compounds 3a and 3b, or 4a and 4b both have
the same molecular weight. This indicated that 3a and 3b
should be a pair of stereoisomers. It was the same to 4a
and 4b. From their constructed pattern, the only possibil-
ity was two benzyl or ethyloxycarbonylmethyl groups
adopting different orientations (3,6-syn or 3,6-anti) and
they were a pair of stereoisomers as shown in Figure 1.

As shown in Figure 1, the 3,6-syn-isomer has a C2 sym-
metry axis passing through the centre of calix[6]arene
cavity and the 3,6-anti-isomer has a horizontal C2 sym-
metry axis through the plane of the molecule. It was in
agreement with that the 1H NMR spectra where three
singlets in a ratio of 1:1:1 for six tert-butyl groups were
observed. The signals of tert-butyl of 3a appeared at
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Scheme 1. Reagents and conditions: (i) K2CO3/xylene, triethylene glycol ditosylates, reflux, 12 h, 52%; (ii) K2CO3/MeCN, ethyl bromoacetate,
reflux, 12 h, 3a, 65%, 3b, 23%; (iii) K2CO3/MeCN, benzyl bromide, reflux, 12 h, 4a, 52%, 4b, 34%.
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Figure 1. Stereoisomers of disubstituted derivatives.

Figure 2. X-ray crystal structure of compound 3a.
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1.36, 1.22 and 1.16 ppm, and those of 3b appeared at
1.26, 1.23 and 1.18 ppm. It was remarkable that one of
the signals in 3a appeared at much lower field
(1.36 ppm) as compared with the other tert-butyl (near-
by 1.20 ppm). Secondly, there are six singlets (ratio of
1:1:1:1:1:1) for aromatic protons in the 1H NMR spectra
of 3a, and for 3b the aromatic protons appeared as four
doublets and one singlet in a ratio of 1:1:1:1:2. However,
it could not be assigned whether it was 3,6-syn-isomer
or 3,6-anti-isomer by 1H NMR data alone. The unam-
biguous proof was obtained by a single crystal X-ray
analysis of 3a, which confirmed 3a with 3,6-syn-configu-
ration (Fig. 2). Details are given in the Experimental
section.12

Based on the above discussion, the structure of 4a and
4b were deduced from similarity of their 1H NMR spec-
tra with 3a and 3b.
The alkali metal binding properties of p-tert-butyl-
calix[6]-1,4-2,5-crown-4 derivatives were investigated
using the metal picrate extraction method, in which
aqueous solutions of the picrate salts (2.0 · 10�3 M,
2 mL) were shaken with chloroform solutions of the
hosts (2.0 · 10�3 M, 2 mL) at 25 �C.13 The result of
extraction studies was expressed as association constants
listing in Table 1.

It was worthy to note that the ethoxycarbonylmethyl
derivatives (3a,b) have higher extraction ability and
selectivity towards Cs+ comparing to the parent calix-
biscrown (2) and the others. Especially, the Cs+/Na+

selectivity of compound 3a (3,6-syn-isomer) is higher
than that of compound 3b (3,6-anti-isomer). It was
proved again that the introduction of appropriate sub-
stituent onto special position could greatly increase the
binding ability of p-tert-calix[6]-1,4-2,5-biscrown-4
towards certain metal ions.

Moreover, the stoichiometry of 3a with Cs+ was investi-
gated. After 24 h precomplexation with 10 equiv of
Cs+Pic� in chloroform/methanol (3:1), electrospray
mass spectrometry showed that only an intense peak



Table 1. Association constants (Ka · 10�5) for complexes of alkali
metals with derivatives in CHCl3 deduced from metal picrate extrac-
tion data

2 3a 3b 4a 4b

Cs+ 7.8 900.0 150.0 5.3 3.8
K+ 9.2 130.0 24.1 11.0 5.5
Na+ 12.2 3.8 2.6 10.2 9.4
Li+ 6.5 5.0 3.0 6.0 8.0

Figure 3. Electrospray ionization mass spectra for the complexation of
compound 3a with Cs+.
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at m/z 1506.3 (Fig. 3) corresponding to the [3a+Cs+] ion
was observed. This indicated that only 1:1 complex was
formed even in the presence of an excess of Cs+Pic�.

The result was also confirmed by 1H NMR experiments.
The changes of the chemical shifts of free ligand 3a upon
addition of Cs+Pic� were observed. Among them, the
change of one pair of tert-butyl protons was remarkable
(Fig. 4). Its downfield shift reached maximum by
Dd = 0.17 ppm when the molar ratio of Cs+Pic� to
ligand 3a was equal to 1:1, and no further change could
be observed by addition more Cs+Pic�.
Figure 4. tert-Butyl region of 1H NMR (300 MHz) spectra (CDCl3/
CD3OD, v/v = 4:1, 298 K) of (A): free ligand 3a; (B): 3a+0.5 equiv of
Cs+Pic�; (C): 3a+1 equiv of Cs+Pic�; (D): 3a+4 equiv of Cs+Pic�.
In conclusion, this paper described the synthesis of
disubstituted p-tert-butylcalix[6]-1,4-2,5-crown-4 and
the stereoisomerism of them. One of them (3a) was fur-
ther investigated by single crystal X-ray analysis. We
found that the ethyloxycarbonylmethylated derivatives,
especially the 3,6-syn-isomer exhibited excellent com-
plexation ability and high selectivity towards Cs+ ions.
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