Journal Pre-proofs

Trifluoromethylthiolation and Trifluoromethanesulfonylation of β,γ -Unsaturated Hydrazones

Hongqing Xiao, Weidong Meng, Xiu-Hua Xu, Yangen Huang

PII:	S0040-4039(20)30370-1
DOI:	https://doi.org/10.1016/j.tetlet.2020.151927
Reference:	TETL 151927
To appear in:	Tetrahedron Letters
Received Date:	20 February 2020
Revised Date:	4 April 2020
Accepted Date:	10 April 2020

Please cite this article as: Xiao, H., Meng, W., Xu, X-H., Huang, Y., Trifluoromethylthiolation and Trifluoromethanesulfonylation of β , γ -Unsaturated Hydrazones, *Tetrahedron Letters* (2020), doi: https://doi.org/10.1016/j.tetlet.2020.151927

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Graphical Abstract

Tetrahedron Letters

journal homepage: www.elsevier.com

Trifluoromethylthiolation and Trifluoromethanesulfonylation of β , γ -Unsaturated Hydrazones

Hongqing Xiao^a, Weidong Meng^a, Xiu-Hua Xu^b and Yangen Huang^a,*

"Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, Shanghai 200032, China

ARTICLE INFO * Corresponding author. Tel.: +86-21-6779 2612; fax: +86-21-6779 2608; e-mail: hyg@dhu.edu.cn

Article history: Received Received in revised form Accepted Available online Keywords:

Trifluoromethylthiolation Trifluoromethanesulfonylation β,γ-Unsaturated hydrazine Dihydropyrazole

The

The trifluoromethylthiolation and trifluoromethanesulfonylation of β_{γ} -unsaturated hydrazones was accomplished with silver(I) trifluoromethanethiolate (AgSCF₃) as a CF₃S source and sodium trifluoromethylsulfinate (CF₃SO₂Na) as a CF₃SO₂ source, respectively. These general methods for the preparation of dihydropyrazoles containing CF₃S or CF₃SO₂ groups were characterized by mild reaction conditions and good functional group tolerance.

2009 Elsevier Ltd. All rights reserved.

Fluorine-containing compounds are useful in applications as agrochemicals, pharmaceuticals and materials due to their significantly enhanced properties such as high thermal and oxidative stability, lipophilicity, metabolic stability, and improved bioactivities comparing to their non-fluorinated analogues.¹ Therefore, compounds containing trifluoromethylthio $(CF_3S)^2$ or trifluoromethanesulfonyl $(CF_3SO_2)^3$ groups have attracted significant attention due to their extremely high lipophilicity and electron-withdrawing properties. During the past decades, significant progress has been achieved in the formation of these compounds through direct trifluoromethylthiolation or trifluoromethanesulfonylation, and the trifluoromethylation of sulfur-containing compounds. Dihydropyrazole derivatives have been widely recognized for their remarkable biological activities and are widely found in Nature. They are also important intermediates in organic synthesis.⁴ The direct cyclization/difunctionalization of β , γ unsaturated hydrazones represents an attractive method for the synthesis of diversely functionalized dihvdropvrazole compounds. Representative studies have been reported by Han, Wang and Xiao (Scheme 1a).⁵ In the presence of copper salts, β,γ -unsaturated hydrazones can undergo rapid 5-exo-trig cyclization to give the corresponding C-centered radical I, which could be trapped by radical acceptors such as azides, halogens, thiocyanates and amines.6 Xiao and co-workers have developed an efficient and mild strategy for generating free radical intermediates I using photocatalysts and bases under visible light (Scheme 1a).7 They also discovered that under photocatalysis, Umemoto's reagent can act as a CF₃ source to react with β , γ unsaturated hydrazones to produce the radical intermediate II, which was then further oxidized to carbocation intermediate III. final cyclization afforded trifluoromethylated

dihydropyrazoles (Scheme 1b).8 Hu and co-workers also implemented the construction of trifluoromethylated dihydropyrazoles using the Ruppert-Prakash reagent as the CF₃ source and TCCA as a promoter (Scheme 1c).9

Han, Wang, and Xiao's work:

 R^2

Scheme 1. Synthesis of functionalized dihydropyrazole compounds via β , γ -unsaturated hydrazones.

Considering the unique characteristics of CF₃S/CF₃SO₂ groups, herein, we report the cascade cyclization and trifluoromethylthiolation/trifluoromethanesulfonylation of β.γ-

Firstly, the trifluoromethylthiolation of β , γ -unsaturated hydrazones was investigated with AgSCF3 as a CF3S source. When a mixture of N-phenyl- β , γ -unsaturated hydrazone 1a (0.1 mmol), AgSCF₃ (2.0 equiv.) and Cu(OAc)₂ (0.2 equiv.) in DMSO (1.0 mL) was stirred at 80 °C for 12 h, the expected cascade trifluoromethylthiolation/cyclization afforded the desired product 3a in 33% yield (Table 1, entry 1). The reaction conditions were then further optimized. To explore the capacity of copper catalysts in this reaction, several copper salts including $Cu(BF_4)_2$. CuCl₂, CuSO₄, CuBr, CuCN, CuSCN, CuCl and CuI (Entries 2-9) were tested. The copper salts with different valences were all effective, and CuI gave the best yield (38%, entry 9). The yield could be slightly improved to 53% by decreasing the reaction time from 12 h to 4 h (Entries 10-12). DMSO was proved to be the only suitable solvent for the reaction; none of the desired product 3a was detected when the reaction was carried out with other solvents, such as CH₂Cl₂, DMF, THF, and NMP (Entries 13-16). Further investigation of the reaction temperature revealed that 70 °C was optimal giving 3a in 75% yield (Entries 17-18).

With the optimal reaction conditions (Table 1, entry 18) in hand, the scope of the substrates was then explored (Table 2). A series of β , γ -unsaturated hydrazones were reacted with AgSCF₃ to give the corresponding CF₃S-containing dihydropyrazole products. Aryl-substituted substrates with electron-donating (MeO, Me, phenyl and isopropyl) or electron-withdrawing (F, Cl, Br, I and CF₃) groups at the para- and meta- positions of the benzene ring gave the desired CF₃S-containing dihydropyrazoles 3b-j and 3k-o, respectively, in good yields. Moreover, naphthyl and heterocycle substituted unsaturated hydrazones were applicable in this transformation, giving the corresponding products 3p, 3q and 3r in 58%, 65% and 52% yield, respectively.

Table 1. Optimization of the reaction conditions for the trifluoromethylthiolation of 1a with AgSCF3.ª

... Dh

	HN ⁻¹ ''			N-N	RCE			
+ AgSCF ₃ additive solvent temperature								
1a		2a		3a				
Entry	Additive	Solvent	Temp (°C)	Time (h)	Yield 3a (%) ^b			
1	Cu(OAc) ₂	DMSO	80	12	33			
2	$Cu(BF_4)_2$	DMSO	80	12	0			
3	CuCl ₂	DMSO	80	12	14			
4	CuSO ₄	DMSO	80	12	15			
5	CuBr	DMSO	80	12	3			
6	CuCN	DMSO	80	12	15			
7	CuSCN	DMSO	80	12	16			
8	CuCl	DMSO	80	12	17			
9	CuI	DMSO	80	12	38			
10	CuI	DMSO	80	2	45			
11	CuI	DMSO	80	4	53			
12	CuI	DMSO	80	6	42			
13	CuI	CH_2Cl_2	80	4	0			
14	CuI	DMF	80	4	0			
15	CuI	THF	80	4	0			
16	CuI	NMP	80	4	0			
17	CuI	DMSO	60	4	69			
18	CuI	DMSO	70	4	75			

^a Reagents and conditions: 1a (0.1 mmol), AgSCF₃ (0.2 mmol), additive (0.02 mmol), solvent (1.0 mL), time, temperature, under N2. ^b Yield determined by ¹⁹F NMR spectroscopy using trifluoromethylbenzene as an internal standard.
 Table 2. Substrate scope for the trifluoromethylthiolation of
 β,γ -unsaturated hydrazones.^a

X-ray crystal structure of 3h 3x 47% ^a Reagents and conditions: 1 (0.2 mmol), AgSCF₃ (0.4 mmol), CuI (0.04 mmol), dry DMSO (2.0 mL), 70 °C, under N2, 4 h, isolated yield. ^b 2.0 mmol scale.

3w 54%

 β , γ -Unsaturated hydrazones with multiple substitutions on the benzene ring also afforded the corresponding products 3s-u in good yields. However, aliphatic substituted β , γ -unsaturated hydrazone 1v was not suitable and gave the desired product 3v in low yield (32%). Substituents such as p-NO₂ and p-MeO on the aromatic hydrazines gave the corresponding products 3w and 3x in moderate yields of 54% and 47%, respectively. Unfortunately, N-acetyl hydrazones without two methyl groups in the allylic position¹⁰ were incompatible with this transformation. Encouraged by the above results, we increased the scale of the reaction from 0.2 mmol to 2.0 mmol, and the isolated yield of dihydropyrazole 3a remained high (68%). The structure of CF₃Scontaining dihydropyrazole 3h was unambiguously established by X-ray diffraction studies.11

Because of CF₃SO₂-containing compounds are highly interesting, oxidation of the CF₃S group to the CF₃SO₂ group was then tested. However, none of the desired product was isolated with CF₃S-containing dihydropyrazole 3a as a substrate under different oxidation conditions including H₂O₂, H₅IO₆ and m-CPBA, which may due to the low stability of 3a under oxidative conditions. In 2016, iodine-mediated an trifluoromethanesulfonylation of styrenes with sodium trifluoromethylsulfinate (CF₃SO₂Na) was developed in our group.¹² Under these conditions the CF₃SO₂-containing dihydropyrazole 4a was detected in 30% yield (Table 3). Then the reaction conditions including iodine source, solvent, reaction temperature and time were further optimized, and the highest yield (65%) was achieved using 3.0 equiv. of CF₃SO₂Na, 4.0 equiv. of I₂ and glycol dimethyl ether (DME) as the solvent at 25 °C for 15 min (Table 3, entry 16). The generality of this trifluoromethanesulfonylation reaction was subsequently

Journal Pre-proof

3 3S

substituents on the benzene ring including electron-donating groups (Me, MeO) and electron-withdrawing groups (Cl, CN) gave products **4a-h** in moderate yields. A disadvantage of the direct introduction of CF_3SO_2 is that the substrate scope is not as broad as for trifluoromethylthiolation, which may due to the relatively lower stability of CF_3SO_2 -containing dihydropyrazoles.

Table 3. Optimization of the reaction conditions for the trifluoromethanesulfonylation of 1a with CF₃SO₂Na.^a

Entry	Additive	Solvent	Temp (°C)	Time	Yield 4a (%) ^b
1	I_2	CH ₃ CN	25	2 h	30
2	-	CH ₃ CN	25	2 h	0
3	NIS	CH ₃ CN	25	2 h	0
4	TBAI	CH ₃ CN	25	2 h	20
5	I_2	DMSO	25	2 h	8
6	I_2	THF	25	2 h	12
7	I_2	CH_2Cl_2	25	2 h	6
8	I_2	t-BuOH	25	2 h	3
9	I_2	DMF	25	2 h	10
10	I_2	DME	25	2 h	46
11	I_2	DME	40	2 h	36
12	I_2	DME	10	2 h	28
13	I_2	DME	25	1 h	50
14	I_2	DME	25	30	50
15	I_2	DME	25	10	48
16°	I2	DME	25	15	65

^a Reagents and conditions: **1** (0.1 mmol), CF₃SO₂Na (0.3 mmol), additive (0.3 mmol), solvent (1.0 mL), time, temperature. ^b Yields determined by ¹⁹F NMR spectroscopy using trifluoromethylbenzene as an internal standard. ^c After 10 min, 0.1 mmol of I₂ was added and reacted for 5 min.

Table 4. Substrate scope for the trifluoromethanesulfonylation of β , γ -unsaturated hydrazones.^a

Reagents and conditions: 1 (0.2 mmol), CF_3SO_2Na (0.6 mmol), I_2 (0.6 mmol), DME (2.0 mL), 25 °C, 10 min, after 10 min, 0.1 mmol of I_2 was added and reacted for 5 min, isolated yield.

In order to further understand the reaction mechanism of trifluoromethylthiolation, three control experiments were carried out as shown in Scheme 2. First, the radical scavenger TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl, 2 equiv.) was added to the reaction system, and only trace amounts of the desired product **3a** was detected by ¹⁹F NMR spectroscopy analysis. The dihydropyrazole **5** was formed in 72% yield, due to trapping of the C-centered radical derived from the 5-exo-trig cyclization of

radical was involved in this reaction, F_3CSSCF_3 , which is known to produce SCF₃ radicals with Cu(I), was prepared in the presence of $K_2S_2O_8$ and introduced to the reaction (Scheme 2, eq 2). However, product **3a** was not observed, which indicated that the SCF₃ radical may not be involved in the trifluoromethylthiolation process. When the copper salt was removed and CuSCF₃ was used instead of AgSCF₃, the desired product **3a** was obtained in 40% yield, indicating that CuSCF₃ may be an intermediate during the reaction process (Scheme 2, eq 3).

On the basis of these observations and previous reports,^{5b, 13} a mechanism for the cascade cvclization plausible trifluoromethylthiolation was proposed as shown in Scheme 3. First, Cu(I) is oxidized to Cu(II) by DMSO.5b, 14 Next, an intramolecular amination of 1a likely occurs to activate the olefin ultimately resulting in V. Intermediate IV undergoes cleavage to form the radical intermediate VI. The reaction of VI with CuSCF₃, which is derived from ligand exchange between the Cu(II) species and AgSCF₃, produces intermediate VII. Finally, product 3a is formed through reductive elimination and regenerates the Cu(I) species.

Next, based on previous reports of the cyclization reaction of unsaturated hydrazones, ¹⁵ the reaction mechanism of the cascade cyclization/trifluoromethanesulfonylation was studied. Three control experiments were carried out as shown in Scheme 4. Under standard conditions, the reaction of iodide 6 with CF₃SO₂Na did not occur, indicating that it was not formed as an intermediate from the olefin and I₂ (Scheme 4, eq 4). Upon addition of TEMPO to this reaction system, the desired product 4a could only be observed in 5% yield based on ¹⁹F NMR analysis and the starting material 1a was recovered in 87% yield (Scheme 4, eq 5). However, the reaction gave the desired product 4a in 62% yield in the presence of the free radical scavenger BHT (2,6-di-tert-butyl-4-methylphenol, 3 equiv.) (Scheme 4, eq 6). These results indicated that the reaction might not proceed through a free radical pathway. The reaction was dramatically suppressed by TEMPO mainly due to its oxidizing capacity instead of its free radical scavenging ability. 14a

trifluoromethylthiolation of β , γ -unsaturated hydrazones.

Scheme 4. Control experiments for trifluoromethanesulfonylation of 1a with CF_3SO_2Na .

Scheme 5. Proposed reaction mechanism for the trifluoromethanesulfonylation of β , γ -unsaturated hydrazones.

Although the precise mechanism of the reaction is unclear at present, a plausible reaction mechanism is depicted in Scheme 5 based on these observations and previous reports of the iodinemediated trifluoromethanesulfonylation of styrenes.¹² First, CF₃SO₂Na reacts with I₂ to form CF₃SO₂I or I₂ which electrophilically adds to the double bond of **1a** to give the threemembered iodonium ion intermediate **VIII**. Subsequently, CF₃SO₂Na attacks **VIII** in an anti-Markovnikov manner to give intermediate **IX**. Finally, the elimination of HI takes place to afford CF₃SO₂-substituted intermediate **X**, which undergoes intramolecular ring closure and proton transfer to obtain the final product **4a**.

In summary, straightforward methods for preparing various CF₃S/CF₃SO₂-functionalized dihydropyrazole derivatives *via* the reaction of AgSCF₃/CF₃SO₂Na with β , γ -unsaturated hydrazones were developed. Mechanistic studies showed that different reaction pathways were involved for the trifluoromethylthiolation and trifluoromethanesulfonylation. Further studies on the application of AgSCF₃/CF₃SO₂Na as CF₃S/CF₃SO₂ sources are ongoing in our laboratory.

Acknowledgment

We thank the National Natural Science Foundation of China (Nos. 21991123, 21677094) for financial support.

Supplementary data

Supplementary data (experimental procedures and full characterization for all compounds) associated with this article can be found, in the online version, at xxx.

1. (a) Hird, M. Chem. Soc. Rev. 2007, 36, 2070; (b) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827; (c) Ondachi, P.; Castro, A.; Luetje, C. W.; Damaj, M. I.; Mascarella, S. W. J. Med. Chem. 2012, 55, 6512; (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (e) Ni, C. F.; Hu, M. Y.; Hu, J. B. Chem. Rev. 2015, 115, 765; (f) Alonso, C.; Marigorta, E. M.; Palacios, F. Chem. Rev. 2015, 115, 1847; (g) Shen, C.; Xu, J.; Ying, B. B.; Zhang, P. F. ChemCatChem. 2016, 8, 3560; (h) Xu, J.; Qiao, L.; Shen, J. B.; Chai, K. J.; Shen, C.; Zhang, P. F. Org. Lett. 2017, 19, 5661. (i) Wang, Q.; Qu, Y.; Tian, H.; Liu, Y. X.; Song, H. J.; Wang, Q. M. Chem. Eur. J. 2019, 25, 1; (j) Zhang, B.; Fraser, B. H.; Klenner, M. A.; Chen, Z.; Liang, S. H.; Massi, M.; Robinson, A. J.; Pascali, G. Chem. Eur. J. 2019, 25, 7613. (k) Wang, X. S.; Truesdale, L.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 3648; (1) Yang, Z. J.; Liu, C. Z.; Hu, B. L.; Deng, C. L.; Zhang, X. G. Chem. Commun. 2014, 50, 14554.

(a) Zhu, S. Q.; Xu, X. H.; Qing, F. L. *Eur. J. Org. Chem.* 2014, 4453;
 (b) Bootwicha, T.; Liu, X. Q.; Pluta, R.; Atodiresei, L.; Rueping, M. *Angew. Chem. Int. Ed.* 2013, 52, 12856;
 (c) Zhai, L.; Li, Y.; Yin, J.; Jin, K.; Zhang, R.; Fu, X.; Duan, C., *Tetrahedron.* 2013, 69, 10262.
 (d) Xu, X. H.; Matsuzaki, K.; Shibata, N.; *Chem. Rev.* 2015, 115, 731;
 (e) Rouxel, C.; Mongin, O.; Droumaguet, C. L.; Magnier, E.; Blanchard-Desce, M. *Chem. Eur. J.* 2012, 18, 12487;

3. (a) Liao, J. H.; Guo, W.; Zhang, Z. M.; Tang, X. D.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2016, 81, 1304; (b) Xing, B.; Ni, C. F.; Hu, J. B.; Chin. J. Chem. 2018, 36, 206; (c) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165; (d) Huang, P.; Ramphal, J.; Wei, J.; Liang, C. X.; Jallal, B.; McMahon, G.; Tang, C. Bioorg. Med. Chem. 2003, 11, 1835; (e) Terrier, F.; Magnier, E.; Kizilian, E.; Wakselman, C.; Buncel, E. J. Am. Chem. Soc. 2005, 127, 5563; (f) Yanai, H.; Yoshino, T.; Fujita, M.; Fukaya, H.; Kotani, A.; Kusu, F.; Taguchi, T. Angew. Chem. Int. Ed. 2013, 52, 1560;

4. (a) Acker, T. M.; Khatri, A.; Vance, K. M.; Slabber, C.; Bacsa, J.; Snyder, J. P.; Traynelis, S. F.; Liotta, D. C. J. Med. Chem. 2013, 56, 6434; (b) Acharya, B. N.; Saraswat, D.; Tiwari, M.; Shrivastava, A. K.; Ghorpade, R.; Bapna, S.; Kaushik, M. P. Eur. J. Med. Chem. 2010, 45, 430; (c) Dardic, D.; Lauro, G.; Bifulco, G.; Laboudie, P.; Sakhaii, P.; Bauer, A.; Vilcinskas, A.; Hammann, P. E.; Plaza, A.; Svetamycins, M. P.; J. Org. Chem. 2017, 82, 6032; (d) Kashiwa, M.; Kuwata, Y.; Sonoda, M.; Tanimori, S. Tetrahedron. 2016, 72, 304; (e) Padmavathi, V.; Thriveni, P.; Sudhakar Reddy, G.; Deepti, D. Eur. J. Med. Chem. 2008, 43, 917; (f) Silver, K. S.; Soderlund, D. M. Pestic. Biochem. Phys. 2005, 81, 136; (g) Huang, Y. Y.; Yang, X.; Chen, Z.; Verpoort, F.; Shibata, N. Chem. Eur. J. 2015, 21, 12487; (h) Wu, P.; Hilgraf, R.; Fokin, V. V. Adv. Synth. Catal. 2006, 348, 1079. 5. (a) Wang, L. J.; Ren, P. X.; Qi, L.; Chen, M. M.; Lu, Y. L.; Zhao, J. Y.; Liu, R.; Chen, J. M.; Li, W. Org. Lett. 2018, 20, 4411; (b) Chen, M.; Wang, L. J.; Ren, P. X.; Hou, X. Y.; Fang, Z.; Han, M. N.; Li, W. Org. Lett. 2018, 20, 510.

6. (a) Dong, K. Y.; Qin, H. T.; Liu, F.; Zhu, C.; *Eur. J. Org. Chem.*2015, 1419; (b) Duan, X. Y.; Yang, X. L.; Jia, P. P.; Zhang, M.; Han,
B. *Org. Lett.* 2015, 17, 6022; (c) Liu, R. H.; Wang, Z. Q.; Wei, B. Y.;
Zhang, J. W.; Zhou, B.; Han, B. *Org. Lett.* 2018, 20, 4183; (d)
Punner, F.; Sohtome, Y.; Sodeoka, M. *Chem. Commun.* 2016, 52, 14093; (e) Yu, J. M.; Cai, C. *Org. Biomol. Chem.* 2018, 16, 490.

7. (a) Hu, X. Q.; Feng, G.; Chen, J. R.; Yan, D. M.; Zhao, Q. Q.; Wei,
Q.; Xiao, W. J. Org. Biomol. Chem. 2015, 13, 3457; (b) Hu, X. Q.;
Qi, X.; Chen, J. R.; Zhao, Q. Q.; Wei, Q.; Lan, Y; Xiao, W. J. Nat.
Commun. 2016, 7, 11188; (c) Hu, X. Q.; Chen, J. R.; Wei, Q.; Liu, F.
L.; Deng, Q. H. Angew. Chem. Int. Ed. 2014, 53, 12163; (d) Yang, M.
N.; Yan, D. M.; Zhao, Q. Q.; Chen, J. R.; Xiao, W. J. Org. Lett. 2017,
19, 5208; (e) Zhao, Q. Q.; Hu, X. Q.; Yang, M. N.; Chen, J. R.; Xiao,
W. J. Chem. Commun. 2016, 52, 12749.

8. Wei, Q.; Chen, J. R.; Hu, X. Q.; Yang, X. C.; Lu, B.; Xiao, W. J. Org. Lett. 2015, 17, 4464.

9. (a) Ruppert, I.; Schlich, K.; Volbach, W., *Tetrahedron Lett.* 1984,
25, 2195; (b) Chang, B.; Su, Y.; Huang, D.; Wang, K. H.; Zhang,
W.; Shi, Y.; Zhang, X.; Hu, Y. J. Org. Chem. 2018, 83, 4365.

10. Guo, Y.-Q.; Zhao, M.-N.; Ren, Z.-H.; Guan, Z.-H. Org. Lett. 2018, 20, 3337.

11. The supplementary crystallographic data can be obtained free of charge from The Cambridge Cryatallographic Data Center via www.ccdc.cam.uk/data_request/cif (CCDC No. 1921839).

13. (a) Shen, K.; Wang, Q. *Chem. Sci.* **2015**, 6, 4279; (b) Liu, R. H.; Wei, D.; Han, B.; Yu, W. *ACS Catal.* **2016**, 6, 6525; (c) Lin, J. S.; Xiong, Y. P.; Ma, C. L.; Zhao, L. G.; Tan, B.; Liu, X. Y. *Chem. Eur. J.* **2014**, 20, 1332; (d) Duan, X. Y.; Yang, X. L.; Fang, R.; Peng, X. X.; Yu, W.; Han, B. *J. Org. Chem.* **2013**, 78, 10692; (e) Chen, M.; Qi, L.; Chen, J. M.; Ren, P. X.; Du, J.; Wang, L. G; Li, W. *Org. Biomol. Chem.* **2018**, 16, 5136; (f) Meng, F.; Zhang, H. L.; He, H.; Xu, N.; Fang, Q.; Guo, K.; Cao, S. J.; Shi, Y.; Zhu, Y. G. *Adv. Synth. Catal.* **2020**, 362, 248.

14. (a) Creary, X.; Losch, A. *Org. Lett.* **2008**, 10, 4975; (b) Tang, X.; Huang, L.; Qi, C.; Wu, X.; Wu, W.; Jiang, H. *Chem. Commun.* **2013**, 49, 6102; (c) Xu, R.; Wan, J. P.; Mao, H.; Pan, Y.; *J. Am. Chem. Soc.* **2010**, 132, 15531.

15. (a) Li, X. Q.; Wang, X. Q.; Wang, Z.; Yan, X. H.; Xu, X. S. *ACS Sustain. Chem. Eng.* **2019**, 7, 1875; (b) Gao, X.; Yang, H.; Cheng, C.; Jia, Q.; Gao, F.; Chen, H.; Cai, Q.; Wang, C. *Green Chem.* **2018**, 20, 2225. (c) Wang, Y. B.; Ding, J.; Zhao, J. H.; Sun, W.; Lian, C.; Chen, C.; Zhu, B. L. *Org. Chem. Front.* **2019**, 6, 2240.

Graphical Abstract

Highlights

- A rapid access to heterocyclic compounds with fluorinated substituents.
- Cascade cyclization and trifluoromethylthiolation/trifluoromethanesulfo nylation.
- Under a mild condition with a good functional group tolerance.