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Fluorine-containing compounds are useful in applications as 
agrochemicals, pharmaceuticals and materials due to their 
significantly enhanced properties such as high thermal and 
oxidative stability, lipophilicity, metabolic stability, and 
improved bioactivities comparing to their non-fluorinated 
analogues.1 Therefore, compounds containing trifluoromethylthio 
(CF3S)2 or trifluoromethanesulfonyl (CF3SO2)3 groups have 
attracted significant attention due to their extremely high 
lipophilicity and electron-withdrawing properties. During the 
past decades, significant progress has been achieved in the 
formation of these compounds through direct 
trifluoromethylthiolation or trifluoromethanesulfonylation, and 
the trifluoromethylation of sulfur-containing compounds. 
Dihydropyrazole derivatives have been widely recognized for 
their remarkable biological activities and are widely found in 
Nature. They are also important intermediates in organic 
synthesis.4 The direct cyclization/difunctionalization of β,γ-
unsaturated hydrazones represents an attractive method for the 
synthesis of diversely functionalized dihydropyrazole 
compounds. Representative studies have been reported by Han, 
Wang and Xiao (Scheme 1a).5 In the presence of copper salts, 
β,γ-unsaturated hydrazones can undergo rapid 5-exo-trig 
cyclization to give the corresponding C-centered radical I, which 
could be trapped by radical acceptors such as azides, halogens, 
thiocyanates and amines.6 Xiao and co-workers have developed 
an efficient and mild strategy for generating free radical 
intermediates I using photocatalysts and bases under visible light 
(Scheme 1a).7 They also discovered that under photocatalysis, 
Umemoto’s reagent can act as a CF3 source to react with β,γ-
unsaturated hydrazones to produce the radical intermediate II, 
which was then further oxidized to carbocation intermediate III. 
The final cyclization afforded trifluoromethylated 

dihydropyrazoles (Scheme 1b).8 Hu and co-workers also 
implemented the construction of trifluoromethylated 
dihydropyrazoles using the Ruppert-Prakash reagent as the CF3 
source and TCCA as a promoter (Scheme 1c).9 
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Scheme 1. Synthesis of functionalized dihydropyrazole 
compounds via β,γ-unsaturated hydrazones.

Considering the unique characteristics of CF3S/CF3SO2 
groups, herein, we report the cascade cyclization and 
trifluoromethylthiolation/trifluoromethanesulfonylation of β,γ-
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The trifluoromethylthiolation and trifluoromethanesulfonylation of β,γ-unsaturated 
hydrazones was accomplished with silver(I) trifluoromethanethiolate (AgSCF3) as a CF3S 
source and sodium trifluoromethylsulfinate (CF3SO2Na) as a CF3SO2 source, respectively. 
These general methods for the preparation of dihydropyrazoles containing CF3S or CF3SO2 
groups were characterized by mild reaction conditions and good functional group 
tolerance.

 2009 Elsevier Ltd. All rights reserved.



2
unsaturated hydrazones to give a series of CF3S/CF3SO2-
substituted dihydropyrazole derivatives. 

Firstly, the trifluoromethylthiolation of β,γ-unsaturated 
hydrazones was investigated with AgSCF3 as a CF3S source. 
When a mixture of N-phenyl-β,γ-unsaturated hydrazone 1a (0.1 
mmol), AgSCF3 (2.0 equiv.) and Cu(OAc)2 (0.2 equiv.) in DMSO 
(1.0 mL) was stirred at 80 oC for 12 h, the expected cascade 
trifluoromethylthiolation/cyclization afforded the desired product 
3a in 33% yield (Table 1, entry 1). The reaction conditions were 
then further optimized. To explore the capacity of copper 
catalysts in this reaction, several copper salts including Cu(BF4)2, 
CuCl2, CuSO4, CuBr, CuCN, CuSCN, CuCl and CuI (Entries 2-9) 
were tested. The copper salts with different valences were all 
effective, and CuI gave the best yield (38%, entry 9). The yield 
could be slightly improved to 53% by decreasing the reaction 
time from 12 h to 4 h (Entries 10-12). DMSO was proved to be 
the only suitable solvent for the reaction; none of the desired 
product 3a was detected when the reaction was carried out with 
other solvents, such as CH2Cl2, DMF, THF, and NMP (Entries 
13-16). Further investigation of the reaction temperature revealed 
that 70 oC was optimal giving 3a in 75% yield (Entries 17-18).

With the optimal reaction conditions (Table 1, entry 18) in 
hand, the scope of the substrates was then explored (Table 2). A 
series of β,γ-unsaturated hydrazones were reacted with AgSCF3 
to give the corresponding CF3S-containing dihydropyrazole 
products. Aryl-substituted substrates with electron-donating 
(MeO, Me, phenyl and isopropyl) or electron-withdrawing (F, Cl, 
Br, I and CF3) groups at the para- and meta- positions of the 
benzene ring gave the desired CF3S-containing dihydropyrazoles 
3b-j and 3k-o, respectively, in good yields. Moreover, naphthyl 
and heterocycle substituted unsaturated hydrazones were 
applicable in this transformation, giving the corresponding 
products 3p, 3q and 3r in 58%, 65% and 52% yield, respectively. 

Table 1. Optimization of the reaction conditions for the 
trifluoromethylthiolation of 1a with AgSCF3.a

N
HN Ph

N N
Ph

AgSCF3

1a 3a

additive
solvent

temperature
2a

SCF3

Entry Additive Solvent Temp ( oC) Time 
(h)

Yield 
3a (%)b

1 Cu(OAc)2 DMSO 80 12 33
2 Cu(BF4)2 DMSO 80 12 0
3 CuCl2 DMSO 80 12 14
4 CuSO4 DMSO 80 12 15
5 CuBr DMSO 80 12 3
6 CuCN DMSO 80 12 15
7 CuSCN DMSO 80 12 16
8 CuCl DMSO 80 12 17
9 CuI DMSO 80 12 38
10 CuI DMSO 80 2 45
11 CuI DMSO 80 4 53
12 CuI DMSO 80 6 42
13 CuI CH2Cl2 80 4 0
14 CuI DMF 80 4 0
15 CuI THF 80 4 0
16 CuI NMP 80 4 0
17 CuI DMSO 60 4 69
18 CuI DMSO 70 4 75

a Reagents and conditions: 1a (0.1 mmol), AgSCF3 (0.2 mmol), additive (0.02 
mmol), solvent (1.0 mL), time, temperature, under N2. b Yield determined by 
19F NMR spectroscopy using trifluoromethylbenzene as an internal standard. 
Table 2. Substrate scope for the trifluoromethylthiolation of 
β,γ-unsaturated hydrazones.a
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3o (R = CN), 66%;

X-ray crystal structure of 3h
a Reagents and conditions: 1 (0.2 mmol), AgSCF3 (0.4 mmol), CuI (0.04 
mmol), dry DMSO (2.0 mL), 70 oC, under N2, 4 h, isolated yield. b 2.0 mmol 
scale. 

β,γ-Unsaturated hydrazones with multiple substitutions on the 
benzene ring also afforded the corresponding products 3s-u in 
good yields. However, aliphatic substituted β,γ-unsaturated 
hydrazone 1v was not suitable and gave the desired product 3v in 
low yield (32%). Substituents such as p-NO2 and p-MeO on the 
aromatic hydrazines gave the corresponding products 3w and 3x 
in moderate yields of 54% and 47%, respectively. Unfortunately, 
N-acetyl hydrazones without two methyl groups in the allylic 
position10 were incompatible with this transformation. 
Encouraged by the above results, we increased the scale of the 
reaction from 0.2 mmol to 2.0 mmol, and the isolated yield of 
dihydropyrazole 3a remained high (68%). The structure of CF3S-
containing dihydropyrazole 3h was unambiguously established 
by X-ray diffraction studies.11

Because of CF3SO2-containing compounds are highly 
interesting, oxidation of the CF3S group to the CF3SO2 group was 
then tested. However, none of the desired product was isolated 
with CF3S-containing dihydropyrazole 3a as a substrate under 
different oxidation conditions including H2O2, H5IO6 and m-
CPBA, which may due to the low stability of 3a under oxidative 
conditions. In 2016, an iodine-mediated 
trifluoromethanesulfonylation of styrenes with sodium 
trifluoromethylsulfinate (CF3SO2Na) was developed in our 
group.12 Under these conditions the CF3SO2-containing 
dihydropyrazole 4a was detected in 30% yield (Table 3). Then 
the reaction conditions including iodine source, solvent, reaction 
temperature and time were further optimized, and the highest 
yield (65%) was achieved using 3.0 equiv. of CF3SO2Na, 4.0 
equiv. of I2 and glycol dimethyl ether (DME) as the solvent at 25 
°C for 15 min (Table 3, entry 16). The generality of this 
trifluoromethanesulfonylation reaction was subsequently 
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investigated (Table 4). A series of hydrazone substrates with 
substituents on the benzene ring including electron-donating 
groups (Me, MeO) and electron-withdrawing groups (Cl, CN) 
gave products 4a-h in moderate yields. A disadvantage of the 
direct introduction of CF3SO2 is that the substrate scope is not as 
broad as for trifluoromethylthiolation, which may due to the 
relatively lower stability of CF3SO2-containing dihydropyrazoles.

Table 3. Optimization of the reaction conditions for the 
trifluoromethanesulfonylation of 1a with CF3SO2Na.a

N
HN Ph

N N
Ph

CF3SO2Na

1a 4a

additive
solvent

temperature
2b

SO2CF3

Entry Additive Solvent Temp ( oC)
 

Time Yield 4a (%)b

1 I2 CH3CN 25 2 h 30
2 - CH3CN 25 2 h 0
3 NIS CH3CN 25 2 h 0
4 TBAI CH3CN 25 2 h 20
5 I2 DMSO 25 2 h 8
6 I2 THF 25 2 h 12
7 I2 CH2Cl2 25 2 h 6
8 I2 t-BuOH 25 2 h 3
9 I2 DMF 25 2 h 10
10 I2 DME 25 2 h 46
11 I2 DME 40 2 h 36
12 I2 DME 10 2 h 28
13 I2 DME 25 1 h 50
14 I2 DME 25 30 

min
50

15 I2 DME 25 10 
min

48
16c I2 DME 25 15 

min
65

a Reagents and conditions: 1 (0.1 mmol), CF3SO2Na (0.3 mmol), additive (0.3 
mmol), solvent (1.0 mL), time, temperature. b Yields determined by 19F NMR 
spectroscopy using trifluoromethylbenzene as an internal standard. c After 10 
min, 0.1 mmol of I2 was added and reacted for 5 min.

Table 4. Substrate scope for the 
trifluoromethanesulfonylation of β,γ-unsaturated hydrazones.a
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Reagents and conditions: 1 (0.2 mmol), CF3SO2Na (0.6 mmol), I2 (0.6 mmol), 
DME (2.0 mL), 25 oC, 10 min, after 10 min, 0.1 mmol of I2 was added and 
reacted for 5 min, isolated yield.

In order to further understand the reaction mechanism of 
trifluoromethylthiolation, three control experiments were carried 
out as shown in Scheme 2. First, the radical scavenger TEMPO 
(2,2,6,6-tetramethylpiperidine-1-oxyl, 2 equiv.) was added to the 
reaction system, and only trace amounts of the desired product 3a 
was detected by 19F NMR spectroscopy analysis. The 
dihydropyrazole 5 was formed in 72% yield, due to trapping of 
the C-centered radical derived from the 5-exo-trig cyclization of 

1a by TEMPO (Scheme 2, eq 1). To verify whether the CF3S 
radical was involved in this reaction, F3CSSCF3, which is known 
to produce SCF3 radicals with Cu(I), was prepared in the 
presence of K2S2O8 and introduced to the reaction (Scheme 2, eq 
2). However, product 3a was not observed, which indicated that 
the SCF3 radical may not be involved in the 
trifluoromethylthiolation process. When the copper salt was 
removed and CuSCF3 was used instead of AgSCF3, the desired 
product 3a was obtained in 40% yield, indicating that CuSCF3 
may be an intermediate during the reaction process (Scheme 2, eq 
3).

On the basis of these observations and previous reports,5b, 13 a 
plausible mechanism for the cascade cyclization 
trifluoromethylthiolation was proposed as shown in Scheme 3. 
First, Cu(I) is oxidized to Cu(II) by DMSO.5b, 14 Next, an 
intramolecular amination of 1a likely occurs to activate the olefin 
ultimately resulting in V. Intermediate IV undergoes cleavage to 
form the radical intermediate VI. The reaction of VI with 
CuSCF3, which is derived from ligand exchange between the 
Cu(II) species and AgSCF3, produces intermediate VII. Finally, 
product 3a is formed through reductive elimination and 
regenerates the Cu(I) species.

Next, based on previous reports of the cyclization reaction of 
unsaturated hydrazones, 15 the reaction mechanism of the cascade 
cyclization/trifluoromethanesulfonylation was studied. Three 
control experiments were carried out as shown in Scheme 4. 
Under standard conditions, the reaction of iodide 6 with 
CF3SO2Na did not occur, indicating that it was not formed as an 
intermediate from the olefin and I2 (Scheme 4, eq 4). Upon 
addition of TEMPO to this reaction system, the desired product 
4a could only be observed in 5% yield based on 19F NMR 
analysis and the starting material 1a was recovered in 87% yield 
(Scheme 4, eq 5). However, the reaction gave the desired product 
4a in 62% yield in the presence of the free radical scavenger 
BHT (2,6-di-tert-butyl-4-methylphenol, 3 equiv.) (Scheme 4, eq 
6). These results indicated that the reaction might not proceed 
through a free radical pathway. The reaction was dramatically 
suppressed by TEMPO mainly due to its oxidizing capacity 
instead of its free radical scavenging ability. 14a
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Scheme 3. Proposed reaction mechanism for the 
trifluoromethylthiolation of β,γ-unsaturated hydrazones.
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Scheme 5. Proposed reaction mechanism for the 
trifluoromethanesulfonylation of β,γ-unsaturated hydrazones.

Although the precise mechanism of the reaction is unclear at 
present, a plausible reaction mechanism is depicted in Scheme 5 
based on these observations and previous reports of the iodine-
mediated trifluoromethanesulfonylation of styrenes.12 First, 
CF3SO2Na reacts with I2 to form CF3SO2I or I2 which 
electrophilically adds to the double bond of 1a to give the three-
membered iodonium ion intermediate VIII. Subsequently, 
CF3SO2Na attacks VIII in an anti-Markovnikov manner to give 
intermediate IX. Finally, the elimination of HI takes place to 
afford CF3SO2-substituted intermediate X, which undergoes 
intramolecular ring closure and proton transfer to obtain the final 
product 4a.

In summary, straightforward methods for preparing various 
CF3S/CF3SO2-functionalized dihydropyrazole derivatives via the 
reaction of AgSCF3/CF3SO2Na with β,γ-unsaturated hydrazones 
were developed. Mechanistic studies showed that different 
reaction pathways were involved for the trifluoromethylthiolation 
and trifluoromethanesulfonylation. Further studies on the 
application of AgSCF3/CF3SO2Na as CF3S/CF3SO2 sources are 
ongoing in our laboratory.
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