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Acid-Catalyzed Photoreaction of 6-Chloro-1,3-dimethyluracil in Frozen Benzene: Formation of
Novel Cycloadducts, Tetrahydropentaleno[1,2-e]pyrimidine-2,4-dione Derivatives
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Contrasting to the photoreaction of 6-chloro-1,3-dimethyl-
uracil in benzene at ambient temperature in the presence of
trifluoroacetic acid, whereby 1,3-dimethylcyclooctapyrimidine
was produced as a sole cycloadduct, the similar photoreaction in
frozen benzene at -15 ~ -20 °C proceeded quite differently to give
three novel photocycloadducts, 7-chloro-1,3-dimethyl-4b,5,7a,8-
tetrahydropentaleno[1,2-e]pyrimidine-2,4-dione, 5-chloro-1,3-
dimethyl-4b,7,7a,8-tetrahydropentaleno[ 1, 2-e] pyrimidine-2, 4 -
dione, and 6-chloro-10,12-diazapentacyclo[6.4.0.01,3.02.5,04.8]-
dodecane-9,11-dione.

It is well known that photoreactions in frozen solutions
proceed in a different manner from those in liquid solutions, as
demonstrated in the photodimerization of pyrimidine bases! or
photocoupling of S5-bromouracil and 5-bromouridine to
tryptophan.2 We have reported that the photolysis of 6-chloro-
1,3-dimethyluracil (1) in benzene3 and its mono-substituted
derivatives? in the presence of trifluoroacetic acid (TFA) gave
1,3-dimethylcyclooctapyrimidine-2,4-dione (2) and its
derivatives, presumably via ortho-cycloaddition. Similar
photolyses of p- and m-xylene were found to produce pentacyclic
compounds, 6-methylene-9,11,n-trimethyl-9,11-diazapentacyclo-
[6.4.0.01:3.02:5.048]dodecane-10,12-diones, together with cy-
clooctapyrimidine derivatives.>

With a view to explore the scope of the acid-catalyzed
photoreaction® for the construction of new ring systems, we have
conducted the above photoreaction in frozen benzene. In the
present paper, we describe our findings that photolysis of 1 in
frozen benzene in the presence of TFA gave novel photo-
cycloadducts, pentalenopyrimidine derivatives (3,4) and a
diazapentacyclo[6.4.0.01,3.02:6.04.8] dodecane derivative (5) as
the major cycloadducts.
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UV-irradiation of 1 in frozen benzene in the absence of TFA
gave no detectable amounts of photoproducts, while the reaction
in the presence of TFA7 resulted in the consumption of 93% 1 to
give 2 (4.6%) and three cycloadducts, 7-chloro-1,3-dimethyl-
4b,5,7a,8-tetrahydropentaleno[ 1,2-e]pyrimidine-2,4-dione (3)
(2.8%), S-chloro-1,3-dimethyl-4b,7,7a,8-tetrahydropentaleno-
[1,2-e]pyrimidine-2,4-dione (4) (3.4%) and 5-chloro-9,11-di-
azapentacyclo[ 6.4.0.01,3.02.6.04.8 Jdodecane-10,12-dione (5)
(9.1%), together with a large amount of 1,3-dimethylbarbituric
acid (6)8 (43%) (Scheme 1).9 Similarly, the photoreaction in the
presence of methanesulfonic acid (CH3SO3H, 2 equiv. molar)
resulted in a 58% conversion of 1 with the formation of photo-
products, 2, 3, 4 and 5 in yields of 1.0, 4.3, 2.1 and 1.9%, re-
spectively. Some changes in the product distribution were ob-
served: the ratio of the yields of 2 vs. total yields of cycloadducts
(2 +3 + 4 + 5) was appreciably suppressed in comparison with
those from the reaction with TFA. The structures!0 of 3,11 4,12
and 513 were deduced essentially on the basis of the 1H-NMR
spectra and the NOE experiments (Scheme 1). UV-irradiation of
a solution of 3 in benzene, whereby 3 was converted into 5 in
high yield (86%) supported the structures of 3 and 5.

The formation of 3, and 4 may result from the addition of
hydrogen chloride (HCI) to the intermediate II. Subsequent
[2+2]-intramolecular photocycloaddition of 3 results in the
formation of the pentacyclic compound 5 (Scheme 2).

Thus, the formation of the intermediate (IT), which might be
derived from the meta-adduct (I)14) (Scheme 2), is suggested by
the isolation of the cycloadducts 3 and 4. The reasons for the
changes in the product distributions in the presence of TFA and
CH;S03H are unclear. It is noteworthy that in liquid benzene, 2
was the predominant product,3 whereas in frozen benzene, the re-
action proceeded quite differently to give novel cycloadducts con-
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Scheme 2.

sisting of a pentalene ring fused to a pyrimidine skeleton (3, 4)
and their derivative (5) through [2+2]-intramolecular photo-
cycloaddition.
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A solution of a mixture of 1 (0.025 mmol) and an acid (0.05
mmol) in frozen benzene (5 ml) was irradiated with a high
pressure mercury lamp in a degassed Pyrex tube for 1 h at
-15~-20 °C.

Spectroscopic studies on the effects of the added acids have
been reported 4 5)

Details of the mechanism for the formation of 6 are not
elucidated.

Yields were determined by !H-NMR spectra.

All new compounds gave satisfactory elemental analyses.
IH-NMR (400 MHz, benzene-dg) data for 3 (position number):
8 2.41(3H, s) (1-CH3), 3.26 (3H, s) (3-CH3), 4.10 (1H, m, J =
7.7, 2.4, 2.4,2.0, and 1.8 Hz) (4b), 6.26 (1H, m, J= 5.2, 2.4,
and 0.8 Hz) (5), 549 (1H, m,J = 5.2, 2.4, and 2.4 Hz) (6),
425 (1H, m, J.=2.4,2.4,2.0, and 0.8 Hz) (7),2.79 (1H, m, J=
104, 7.7, 5.0, and 2.4 Hz) (7a), 1.41 (1H, m, J = 17.6, 5.0, and
1.8 Hz) (8-H?), 1.82 (1H, dd, J = 17.6, 10.4 Hz) (8-Hb). 13C-
NMR(benzene-dg) (position number): & 27.64 (3-CHz), 31.59
(1-CHj3), 36.32 (8), 48.83 (7a), 53.70 (4b), 69.95 (7), 111.39
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(4a), 130.78 (6), 137.24 (5), 151.19 (8a), 152.38 (2), 159.99
(4). MS m/z (relative intensity) 254 (M, 17), 252 (M*, 42), 217
(100).

12 TH-NMR (400 MHz, CDCl3) data for 4 (position number): &

13

3.32 (3H, s) (1-CHy), 3.33 (3H, s) (3-CH3), 3.96 (1H, m, J =
6.8, 2.0, 2.0, and 0.6 Hz) (4b), 5.19 (1H, m, J = 2.0, 1.8, and
0.6 Hz) (5), 5.91 (1H, m, J = 5.6, 2.0, and 2.0 Hz) (6), 5.84
(1H, dd, J = 5.6 and 2.0 Hz) (7), 3.81 (14, m, J= 9.2, 6.8, 2.0,
2.0, 2.0, and 1.8 Hz) (7a), 2.66 (1H, m, J = 17.6, 2.0, and 2.0
Hz) (8-H?), 3.11 (1H, m, J = 17.6, 9.2 and 2.0 Hz) (8-Hb).
I3C.NMR (CDCI3) (position number): & 27.90 (3-CH3), 32.69
(1-CH3), 35.89 (8), 44.74 (7a), 55.99 (4b), 65.08 (5), 110.60
(4a), 132.47 (6), 137.09 (7), 152.75 (8a), 152.79 (2), 160.72
(4). MS m/z (relative intensity) 254 (M+,15), 252 (M™, 56), 217
(100).
IH-NMR (400 MHz, CDCl3) data for 5 (position number): &
3.15 (1H, m, J=5.2, 3.6 and 1.2 Hz) (2), 3.22 (1H, dd, J=5.2
and 2.4 Hz) (3), 2.70 (1H, m, J = 2.4, 2.4, 2.4 and 1.2 Hz) (4),
3.82 (1H, dd, J = 2.4 and 0.8 Hz) (5), 2.86 (1H, m, J= 3.6, 4.4,
and 0.8 Hz) (7a), 1.67 (1H, d, J = 10 Hz) (7-H?), 1.63 (1H, dd,
=10.0 and 2.4 Hz) (7-HP), 2.89 (3H, s) (9-CH3), 3.22 (3H, s)
(11-CH3).13C-NMR (CDCl3) (position number): & 27.90 (11-
CH3), 31.12 (9-CH3), 36.18 (2), 37.92 (3), 38.71 (1), 44.34
(7), 44.69 (6), 46.29 (4), 62.08 (8), 68.17 (5), 153.15 (10),
166.45 (12). HMBC spectrum; H-2 with C-4, C-5, C-6; H-3
with C-1, C-7, and C-8; H-4 with C-6; H-5 with C-2 and C-3; H-
6 with C-4 and C-8; 7-H? with C-1, C-4, C-5, and C-6; 7-HP
with C-1, C-2, C-5, C-6, and C-8; 9-CH3 with C-1 and C-10; 11-
CHj3 with C-10 and C-12. MS m/z (relative intensity) 254 (M™,
27), 252 (M, 7.4), 217 (100).

14 Meta-cycloaddition of arenes to olefins has been investigated

for long time; J. Photochem., J. Mattay, 37, 167 (1987), and
references therein.



