

Available online at www.sciencedirect.com



Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 5310–5315

## Pyrrolidine-carboxamides and oxadiazoles as potent hNK<sub>1</sub> antagonists

Jonathan R. Young,<sup>a,\*</sup> Ronsar Eid,<sup>a</sup> Cherilyn Turner,<sup>a</sup> Robert J. DeVita,<sup>a</sup> Marc M. Kurtz,<sup>b</sup> Kwei-Lan C. Tsao,<sup>b</sup> Gary G. Chicchi,<sup>b</sup> Alan Wheeldon,<sup>c</sup> Emma Carlson<sup>c</sup> and Sander G. Mills<sup>a</sup>

<sup>a</sup>Department of Medicinal Chemistry, Merck Research Laboratories, PO 2000, Rahway, NJ 07065-0900, USA <sup>b</sup>Department of Immunology, Merck Research Laboratories, PO 2000, Rahway, NJ 07065-0900, USA <sup>c</sup>Merck Sharpe & Dohme Research Laboratories, Harlow, UK

> Received 11 July 2007; revised 9 August 2007; accepted 13 August 2007 Available online 16 August 2007

**Abstract**—The preparation and structure–activity-relationships of novel pyrrolidine-carboxamides and oxadiazoles are described. Compounds in this series were found to be potent  $hNK_1$  antagonists in vitro and efficacious in vivo with minimal interactions with  $P_{450}$  liver enzymes. Oxadiazole analog **22** was determined to have excellent  $hNK_1$  binding affinity, functional activity, and a good PD response in vivo.

© 2007 Elsevier Ltd. All rights reserved.

Neurokinin-1 (NK<sub>1</sub>) is a member of the superfamily of G-protein-coupled-receptors whose natural ligand is Substance P. The receptor is highly expressed in both the CNS and also peripheral tissues. Antagonism of the NK<sub>1</sub> receptor has been proposed as a therapeutic strategy for conditions such as cystitis,<sup>1</sup> emesis,<sup>2</sup> and major CNS disorders<sup>3</sup> due to effects of NK<sub>1</sub> agonists in animal models of those disorders.

Previous efforts from these laboratories produced Aprepitant  $(1)^4$  which is approved for use in chemotherapy-induced nausea and vomiting and for post-operative nausea and vomiting (Fig. 1). The goals of our backup program focused on achieving sufficient brain penetration and pharmacokinetics consistent with once daily oral dosing, while minimizing the potential for cytochrome P<sub>450</sub> interactions. This paper will describe the discovery of novel pyrrolidine scaffold **3** and a subsequent article will describe the piperidine scaffold **2**, both of which led to potent and efficacious NK<sub>1</sub> antagonists with insignificant inhibition of the P<sub>450</sub> class of enzymes.



Figure 1. From Aprepitant (1) to rationally derived leads 2 and 3.

An essential structural component to Aprepitant (1) and other NK<sub>1</sub>antagonists has been the bis-phenyl motif, typically a tethered-bis-CF<sub>3</sub>-phenyl moiety adjacent to a phenyl group appended to a central core ring. While maintaining this crucial feature, we were interested in replacing the ether tether found in 1 with an amide side-chain. To generate diversity, a systematic survey of disubstituted pyrrolidine and piperidine scaffolds employing an amide linkage to the bis-CF<sub>3</sub>-phenyl was undertaken in which all regio- and stereochemical combinations were prepared and evaluated. Two promising leads emerged from this initial study, specifically piperidine **2** and pyrrolidine **3a** (Fig. 1).

Keywords: NK1 antagonists; Substance P.

<sup>\*</sup> Corresponding author. Present address: Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston MA 02115, USA. Tel.: +1 6179922331; fax: +1 6179922406; e-mail: jonathan\_young@ merck.com

<sup>0960-894</sup>X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.08.028





**b** Synthesis of racemic *cis*-pyrrolidine **14** 



**C** Synthesis of chiral *trans*-pyrrolidine carboxylic acids **17-18** 



**17:**  $R^1 = BOC$  **18:**  $R^1 = BOC$ 

Scheme 1. Reagents and conditions: (a) *N*-(methoxymethyl)-*N*-(trimethylsilylmethyl)benzylamine, TFA, DCM; (b) ACE-Cl, PhMe, 110 °C; MeOH, 80 °C; (c) BOC<sub>2</sub>O, DMAP, Et<sub>3</sub>N, DCM; (d) NaOH, THF; (e) EDC, HOBT, DMAP, *N*-methyl-3,5-bis-trifluoromethylbenzylamine, DCM; (f) HCl-EtOAc; (g) EDC, DMAP, R<sub>1</sub>CO<sub>2</sub>H, DCM; (h) 1-piperidinecarbonyl chloride, DCM, Et<sub>3</sub>N, DMAP or cyclohexy-lisocyanate; (i) cyclohexanecarboxaldehyde, Na(OAc)<sub>3</sub>BH, HOAc, DCE; (j) (F<sub>3</sub>CCH<sub>2</sub>O)<sub>2</sub>POCH<sub>2</sub>CO<sub>2</sub>Me, NaHMDS, 18-C-6, THF; (k) pivoyl chloride, Et<sub>3</sub>N, DCM; (*S*)-benzyloxazolidine, LiCl, Et<sub>3</sub>N, THF; separate diastereomers; (l) LiOOH, THF.

Azomethine ylide [3+2] cycloadditions afforded convenient access, after protecting group manipulations, to both trans and cis pyrrolidine derivatives **5** and **13** from the corresponding E and  $Z^5$  cinnamate esters **4** and **12**, respectively, as key synthetic intermediates (Scheme 1).

The racemic analogs in Table 1 required preparation of the common pyrrolidine intermediate 7 which was readily prepared from ester 5 after saponification, amide coupling, and pyrrolidine deprotection. Pyrrolidine 7 was converted to amides 8 (EDC, HOBT, carboxylic acids), ureas 9 (carbamoyl chlorides or isocyanates), or alkylamines 10 (reductive amination) to yield the targeted analogs. *Cis*-pyrrolidine 14 was prepared from ester 13 analogously to the sequence from 5 to 9.

The pure enantiomers found in Table 2 were prepared from acid 6 by conversion to the separable acyl-oxazolidinone diastereomers 15 and  $16^6$  under the conditions reported by Ho and Mathre.<sup>7</sup> Hydrolysis of intermediates 15 and 16 using LiOOH furnished chiral acids 17 and 18 which were transformed to 27–29 (see Table 2) according to the procedures described for racemic acid 6.

Oxadiazoles 20, 22, 25, and 26 were prepared from amide-oximes 19, 21, and 24 by methodology reported from these laboratories,<sup>8</sup> wherein the requisite acids were coupled to the amide-oximes (EDC/HOBT) followed by thermal cyclodehydration (Scheme 2). Amide-oximes 19, 23, and 24 in turn were prepared in three steps from acids 17a, 18a, and 23,<sup>9</sup> respectively, by conversion to the primary amides, dehydration to the nitrile, followed by treatment with hydroxylamine. Deprotection of the *tert*-butylcarbamate group under acidic conditions followed by coupling to 1-acetyl-4-piperidinecarboxylic acid furnished targeted amides 20, 22, 25, and 26.

The hNK<sub>1</sub> binding affinities of carboxamides **3** (Fig. 1) were found to be sensitive to amide substitution. For example, *N*-methyl-amide **3b** led to a >10-fold improvement in receptor binding affinity over **3a**. We therefore maintained this potency-enhancing feature in subsequent analogs.

We next focused on *N*-pyrrolidine variations (Table 1) and found that amides (8) were generally well tolerated and preferred over amines (10). For example, the  $hNK_1$ antagonist activity of cyclohexylamide 8a was 2-orders of magnitude more potent than the corresponding amine 10a. Urea 9a which is isosteric with amide 8a was substantially less potent than 8a. The homologated urea 9b on the other hand was equipotent to 8a. Incorporation of basic substituents, such as piperidine 8b, led to decreased receptor binding affinity compared to 8a. However, acylated derivatives of **8b**, such as amide **8c**, retained the potency of **8a**. The receptor binding affinity of the pyrimidine amides was sensitive to the substitution pattern in which the  $IC_{50}$ 's were in the order:  $8d < 8f \ll 8g$ . Pyrazines 8e and 8h and pyrimidine 8d were the most potent heteroaromatic carboxamide analogs identified.

Intrigued by the potent hNK<sub>1</sub> binding activity of **8c**, we prepared the single enantiomer and determined that the active component was the 3(R)-carboxamide-4(S)-phenyl isomer **27** (Table 2). As a major indication for NK<sub>1</sub> antagonists is the treatment of chemotherapy-induced emesis, it is beneficial to design NK<sub>1</sub> antagonists that lack the potential to participate in drug-drug interactions. Accordingly, we were gratified to observe that **27** along with all analogs in Table 2 were only weak inhibitors of the P<sub>450</sub> liver enzymes.

|                         | Ĵ                         | - 3                          |  |
|-------------------------|---------------------------|------------------------------|--|
|                         | Me. <sub>N</sub>          |                              |  |
|                         |                           |                              |  |
|                         |                           | h                            |  |
| Entry <sup>a</sup>      | R                         | $hNK_1^{\circ} IC_{50} (nM)$ |  |
| 3a <sup>c</sup>         | $\rightarrow \circ$       | 142                          |  |
| 3b                      | $\rightarrow o$           | 11                           |  |
| 8a                      |                           | 0.68                         |  |
| 10a                     | $\int_{-\infty}^{\infty}$ | 62                           |  |
| 9a                      | O                         | 13                           |  |
| 9b                      |                           | 0.79                         |  |
| 8b                      |                           | 4.1                          |  |
| 8c                      |                           | 0.42                         |  |
| <b>14a</b> <sup>d</sup> |                           | 3.7                          |  |
| 8d                      |                           | 0.84                         |  |
| 8e                      | N_N                       | 0.74                         |  |
| 8f                      |                           | 3.4                          |  |
| 8g                      |                           | 24                           |  |
| 8h                      |                           | 0.58                         |  |

Table 1. Optimization of the nitrogen substituent

## F<sub>3</sub>C<sub>C</sub>F<sub>3</sub>

<sup>a</sup> All compounds are racemic and gave satisfactory <sup>1</sup>H NMR and mass spectral data.

<sup>b</sup> Displacement of [<sup>125</sup>I] SP from the human hNK<sub>1</sub> receptor expressed in CHO cells. All values represent the average of 2-6 independent experiments. Interexperimental variability was typically less than twofold. See Ref. 4 and references cited therein.

<sup>c</sup> 3a is a secondary amide (see Fig. 1).

<sup>d</sup> 14a was a *cis*-3,4 pyrrolidine.

Receptor binding affinity was also sensitive to the stereochemistry of the pyrrolidine scaffold. In contrast to the morpholine scaffold present in Aprepitant 1 wherein the 1,2-cis relationship was favored (10-fold),<sup>4a</sup> the 1,2*trans* stereochemistry of 8c was > 10-fold more potent than that of the *cis*-isomer 14a in the pyrrolidine class of hNK<sub>1</sub> inhibitors. This finding was consistent with the cyclopentane analogs described from these laboratories.<sup>10</sup>

Administration of an NK<sub>1</sub> agonist (icv) has previously been reported to elicit a rapid and robust foot tapping response in gerbils and provides the basis for an important in vivo model of functional antagonist activity.<sup>11</sup> The assay was performed by dosing the test compound by iv infusion, followed by the central administration of the NK<sub>1</sub> agonist at a specified time post-drug infusion and monitoring the ability of the compound to block the agonist effect.

We evaluated **8c** in the in vivo gerbil foot tapping (GFT) model and found that 8c demonstrated rapid brain penetration and was able to effectively block the agonist-induced foot-tapping response in the gerbil at an early time point (t = 0; ID<sub>50</sub> = 0.41 mpk), but showed a poor duration of action (24 h pre-dose prior to agonist administration). This was consistent with the short in vivo half-life determined in rats ( $t_{1/2} = 0.7$  h). Amide 8c showed a 10-fold shift in receptor-antagonism when the binding assay was performed in the presence of 50% human serum, which often correlates with in vivo plasma protein binding, and should have a significant impact on in vivo activity.

Another potential contributing factor to the poor duration of the pharmacodynamic response could be due to a rapid dissociation from the receptor. We have recently developed a functional binding assay (IP-1) that measures the ability of an hNK<sub>1</sub> antagonist (100 nM) to block the biochemical response (inositol phosphate generation) to Substance P (at a concentration of  $10 \ \mu M$ ) in CHO cells engineered to overexpress hNK1.12 Significant suppression of the maximal response can be interpreted as a desirable property for an antagonist, insofar as it implies that the compound can maintain receptor blockade even in the presence of a large excess of agonist. The data are reported as the percent of the Substance P response remaining (% SPRR) after a 30 min incubation time between the drug (100 nM) and hNK<sub>1</sub> cells followed by treatment with the agonist (10  $\mu$ M). Pyrrolidine 8c was found to be functionally ineffective (81% SPRR) at blocking the effect of Substance P in this assay.

During the course of our optimization studies of the 4phenylpyrrolidine substituent, a key discovery that led to improved IP-1 functional activity across this series was incorporation of an ortho-methyl on the phenyl ring. For example, 2-methyl-4-fluorophenyl analog 28 was able to block 97% (3% SPRR) of the Substance response despite showing only a modest twofold improvement in intrinsic binding activity over analog 27. Amide 28 showed good in vivo activity for up to 4 h in the GFT

Table 2. SAR for enantiomerically pure pyrrolidine carboxamides and oxadiazles

| Compound <sup>a</sup> | Structure <sup>a</sup> | hNK <sub>1</sub> <sup>b</sup> IC <sub>50</sub><br>(nM)/50% HS | IP-1 <sup>12</sup> % SPRR | P <sub>450</sub> Inh Isozyme:<br>IC <sub>50</sub> (μM) | Gerbil Foot Tapping <sup>11</sup>            |
|-----------------------|------------------------|---------------------------------------------------------------|---------------------------|--------------------------------------------------------|----------------------------------------------|
| 8c                    |                        | 0.42/4.5                                                      | 81%                       | 3A4: 18                                                | ED <sub>50</sub> = 0.41 mpk at (0 h)         |
|                       |                        |                                                               |                           | 2C9: 26<br>2D6: 24                                     | 29% inh at 3 mpk (24 h)                      |
| 27<br>ent- <b>27</b>  |                        | 0.12/ND<br>0.97/ND                                            | 87%<br>ND <sup>c</sup>    | ND                                                     | ND                                           |
| 28                    |                        | 0.05/0.21                                                     | 3%                        | 3A4: 11<br>2C9: 69                                     | 100% inh at 2 mpk (4 h)                      |
|                       |                        |                                                               |                           | 2D6: 92                                                | 24% inh at 6 mpk (24 h)                      |
|                       |                        |                                                               |                           |                                                        |                                              |
| 29                    |                        | 0.05/0.51                                                     | 6%                        | 3A4: 49<br>2C9: >100                                   | 100% inh at 2 mpk (4 h)                      |
|                       |                        |                                                               |                           | 2D6: 57                                                | 2% inh at 6 mpk (24 h)                       |
| 30                    |                        |                                                               |                           | 3A4: 11                                                |                                              |
|                       | N N F                  | 0.09/8.0                                                      | 23%                       | 2C9: 43<br>2D6: 73                                     | $ED_{50} = 6 \text{ mpk at } (24 \text{ h})$ |
|                       |                        |                                                               |                           |                                                        |                                              |
| 24                    |                        | 0.07/2.8                                                      | 4%                        | 3A4: 23<br>2C9: 47                                     | 92% inh at 2 mpk (4 h)                       |
|                       |                        |                                                               |                           | 2D6: >100                                              | 1% inh at 6 mpk (24 h)                       |
|                       |                        |                                                               |                           |                                                        |                                              |
| 25                    | N F F                  | 0.17/20                                                       | 91%                       | 3A4: 28<br>2C9: 89<br>2D6: >100                        | 1% inh at 6 mpk (24 h)                       |
|                       |                        |                                                               |                           |                                                        |                                              |
| 20                    |                        | 0.07/6                                                        | 66%                       | 3A4: 100<br>2C9: 9<br>2D6: 63                          | ND                                           |
| 22                    |                        | 0.03/0.17                                                     | 13%                       | ND                                                     | 60% inh at 6 mpk (24 h)                      |
|                       | 0                      |                                                               |                           |                                                        |                                              |

<sup>a</sup> All compounds, except **8 c**, are enantiomerically pure and gave satisfactory <sup>1</sup>H NMR and mass spectral data.

<sup>b</sup> Displacement of [<sup>125</sup>IJSP from the human hNK<sub>1</sub> receptor expressed in CHO cells. All values represent the average of 2–6 independent experiments. Interexperimental variability was typically less than twofold. See Ref. 4 and references cited therein.

<sup>c</sup> ND stands for no data obtained.

model but was only marginally efficacious after 24 h. Analog 29, bearing a geminal-dimethyl group at the benzylic position, was equipotent to 28 but resulted in no improvement in in vivo activity. The 4-methylpyrazine carboxamide **30** had good intrinsic receptor-binding affinity that was substantially diminished in the



Scheme 2. Reagents and conditions: (a) EDC, HOBT, H<sub>4</sub>NCl, *N*-methylmorpholine; (b) 2,4,6-trichlorotriazine, DMF; (c) H<sub>2</sub>NOH, EtOH–H<sub>2</sub>O, 80 °C; (d) EDC, DMAP, 23; toluene 110 °C; (e) HCl–EtOAc; (f) EDC, DMAP, 1-acetyl-4-piperidinecarboxylic acid, DCM; (g) EDC, DMAP, 17 or 18 (X = 2-methyl-4-fluoro); toluene 110 °C.

presence of human serum (90-fold), yet **30** had only slightly reduced IP-1 functional potency compared to the acetylpiperidine analogs. Interestingly, compound **30** did provide 24 h efficacy in the gerbil assay. Based on these data, we cannot rule out the possibility that the in vivo activity was driven in part due to an active metabolite.

We next examined amide replacements embedded in the tether to see if improved metabolic stability would translate to longer duration of in vivo activity. We prepared the enantiomeric oxadiazoles 24 and 25, which were surprisingly equipotent in terms of intrinsic receptor affinity, but only isomer 24 demonstrated substantial functional receptor blockade. Although oxadiazole 24 showed in vivo activity out to 4 h, this modification did not provide the 24 h coverage that was desired. The regioisomeric oxadiazoles 20 and 22 had exquisite intrinsic activity, but only 22 had a low shift in the presence of 50% human serum (sixfold) and good functional activity. An interesting and surprising feature was that 22 possessed the opposite absolute configuration to the other carboxamides described thus far. Oxadiazole 22 showed improved (24 h) in vivo activity compared to amide 28 presumably due to enhanced metabolic stability.

We have described a series of pyrrolidine carboxamides and oxadiazoles that displayed potent antagonism toward the  $hNK_1$  receptor and showed reduced potential for inhibition of  $CYP_{450}$  metabolizing enzymes compared to Aprepitant. Acylation of the pyrrolidine core led to increased  $hNK_1$  binding affinity. The *ortho* substituent on the 4-phenyl group was important for IP-1 functional activity. Replacement of the amide tether with an oxadiazole was well-tolerated and equal to the amide in all in vitro respects. Finally, carboxamide **30** and oxadiazole **22** were capable of inhibiting the effect of an agonist 24 h after an initial iv dose in the gerbil foot tapping assay.

## Acknowledgments

The authors thank Sanjeev Kumar and the Drug Metabolism group for  $P_{450}$  counter-screening and the Synthetic Services team for scale-up and large scale separation of synthetic intermediates. Help from Paul Finke in preparing this manuscript is also gratefully acknowledged.

## **References and notes**

- Saban, R.; Saban, M. R.; Nguyen, N.-B.; Lu, B.; Gerard, C.; Gerard, N. P.; Hammaond, T. G. *Am. J. Pathol.* 2000, *156*, 775.
- 2. Andrews, P. L. R.; Rapeport, W. G.; Sanger, W. G. Trends Pharmacol. Sci. 1988, 9, 334.
- Kramer, M. S.; Cutler, N.; Feighner, J. Shrivastava, R.; Carman, J.; Sramek, J. J.; Reines, S. A.; Liu, G.; Snavely, D.; Wyatt-Knowles, E.; Hale, J. J.; Mills, S. G.; MacCoss, M.; Swain, C. J.; Harrison, T.; Hill, R. G.; Hefto, F; Scolnick, E. M.; Cascieri, M. A.; Chicchi, G. G.; Sadowski, S.; Williams, A. R.; Hewson, L.; Smith, D.; Carlson, E. J.; Hargreaves, R. J.; Rupniak, N. M. J. Science. 1998, 281, 22, 1640.
- (a) Hale, J. J.; Mills, S. G.; MacCoss, M.; Shah, S. K.; Qi, H.; Mathre, D. J.; Cascieri, M. A.; Sadowski, S.; Strader, C. D.; MacIntyre, D. E.; Metzger, J. M. J. Med. Chem. 1996, 39, 1760; (b) Hale, J. J.; Mills, S. G.; MacCoss, M.; Finke, P. E.; Cascieri, M. A.; Sadowski, S.; Ber, E.; Chicchi, G. G.; Kurtz, M.; Metzger, J. M.; Eiermann, G.; Tsou, N. N.; Tattersall, F. D.; Rupniak, N. M. J.; Williams, A. R.; Rycroft, W.; Hargreaves, R.; MacIntyre, D. E. J. Med. Chem. 1998, 41, 4607.
- 5. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
- Hale, J. J.; Budhu, R. J.; Mills, S. G.; MacCoss, M.; Malkowitz, L.; Siciliano, S.; Gould, S. L.; DeMartino, J. A.; Springer, M. S. *Bioorg. Med. Chem. Lett.* 2001, 11, 1437.
- 7. Ho, G. J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271.
- 8. Liang, G.-B.; Feng, D. D. Tetraheron Lett. 1996, 37, 6627.
- 9. Acid 23 was prepared in 2 steps from methyl 3,5-bistrifluoromethylphenylacetate: (1) LHMDS (3 eq), THF, MeI (3 eq); (2) NaOH, MeOH.
- (a) Finke, P. E.; Meurer, L. C.; Levorse, D. A.; Mills, S. G.; MacCoss, M.; Sadowski, S.; Cascieri, M. A.; Tsao, K.-L.; Chicchi, G. G.; Metzger, J. M.; MacIntyre, D. E. *Bioorg Med. Chem. Lett.* 2006, *16*, 4497; (b) Meurer, L. C.; Finke, P. E.; Owens, K. A.; Tsou, N. N.; Ball, R. G.; Mills, S. G.; MacCoss, M.; Sadowski, S.; Cascieri, M. A.; Tsao, K.-L.; Chicchi, G. G.; Egger, L. A.; Luell, S.; Metzger, J. M.; MacIntyre, D. E.; Rupniak, N. M. J.; Williams, A. R.; Hargreaves, R. J. *Bioorg. Med. Chem. Lett.* 2006, *16*, 4504.

- Rupniak, N. M. J.; Tattersall, F. D.; Williams, A. R.; Rycroft, W.; Carlson, E. J.; Cascieri, M. A.; Sadowski, S.; Ber, E.; Hale, J. J.; Mills, S. G.; MacCoss, M.; Seward, E.; Huscroft, I.; Owen, S.; Swain, C. J.; Hill, R. G.; Hargreaves, R. J. Eur. J. Pharmcol. 1997, 326, 201.
- 12. Briefly, CHO cells  $(2.5 \times 10^4)$  stably expressing recombinant human NK<sub>1</sub> receptors were plated in 96-well tissue culture dishes overnight followed by prelabeling overnight with [<sup>3</sup>H]-myo-inositol (10–25 Ci/mmol, 1 µCi/well) in inositol-free medium with 0.02% BSA at 37 °C. The cells were incubated with 10 mM LiCl, to inhibit inositol monophos-

phatases, in Hepes-buffered inositol-free (DMEM) medium with 0.02% BSA for 15 min. Antagonists (100 nM) or DMSO were added for 30 min then Substance P (10  $\mu$ M) was added for another 30 min, all at 37 °C. The reaction was terminated by removal of the medium and addition of 60  $\mu$ L of 10 mM formic acid for 60 min. at 22 °C. Lysates (15  $\mu$ L) were incubated with 1 mg RNA Binding Yittrium Silicate (2–5  $\mu$ m) SPA beads (Amersham) in Optiplates with shaking for 2 h at 22 °C. [<sup>3</sup>H]-inositol phosphate generation was quantitated on a Packard Topcount and the data were analyzed using Prism (GraphPad).