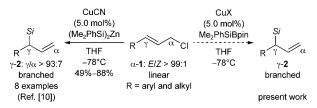

Ingewandte

## Allylic Substitution

## Copper-Catalyzed Si-B Bond Activation in Branched-Selective Allylic Substitution of Linear Allylic Chlorides\*\*

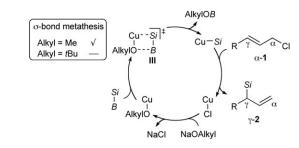

Devendra J. Vyas and Martin Oestreich\*

The transmetalation of interelement linkages with Cu<sup>1</sup>– Oalkyl complexes provides a facile entry into nucleophilic main group element/copper(I) compounds. An intriguing  $\sigma$ bond metathesis is believed to be the activating step, thus building a conceptual bridge between the emerging areas of Cu<sup>I</sup>–H,<sup>[1a]</sup> Cu<sup>I</sup>–B,<sup>[1b]</sup> and Cu<sup>I</sup>–Si<sup>[1c]</sup> chemistry (**I**–III; Figure 1). Both conjugate addition<sup>[2-4]</sup> and allylic or propargylic substitutions<sup>[5-7]</sup> with these reagents are currently attracting tremendous attention.



**Figure 1.** Transmetalation of interelement linkages through  $\sigma$ -bond metathesis as the common denominator ( $Si = SiMe_2Ph$  and B = Bpin with pin = pinacolato).

As part of our continuing focus on selective C-Si bondforming reactions, we have developed a broadly applicable method for the catalytic generation of Cu<sup>I</sup>-Si reagents from  $(Me_2PhSi)_2Zn$  and CuX (X = I or CN).<sup>[8]</sup> The thus-generated silicon-based cuprate reagents were particularly useful for the preparation of branched allylic silanes, either by enantiospecific allylic substitution of  $\alpha$ -chiral allylic precursors with an oxygen leaving group (carboxylate or carbamate)<sup>[9]</sup> or by regioselective allylic transposition of linear allylic halides (a- $1 \rightarrow \gamma$ -2; Scheme 1, left).<sup>[10]</sup> An alternative way of accessing a Cu<sup>I</sup>-Si reagent is the above-mentioned activation of a Si-B bond with a copper(I) alkoxide (III; Figure 1).<sup>[4,11]</sup> Treatment of readily prepared Me<sub>2</sub>PhSiBpin<sup>[12]</sup> with CuX ( $X = OtBu^{[4]}$  or OAc<sup>[11]</sup>) is expected to yield Me<sub>2</sub>PhSiCu, the same copper(I) complex as generated from  $(Me_2PhSi)_2Zn$  and CuX (X = I orCN). These  $Cu^{I}$ -Si reagents only seem to be identical (neglecting different counteranions), as the latter is contaminated with excess lithium chloride introduced with the zinc




**Scheme 1.** Branched-selective allylic substitution of allylic chlorides. THF = tetrahydrofuran.

reagent.<sup>[8]</sup> The lithium chloride is an issue in asymmetric variants, and we verified experimentally the detrimental effect of lithium cations on enantioselective conjugate additions.<sup>[13]</sup> The role of chloride anions still remains to be elucidated. It is therefore desirable to devise a method for the generation of Cu<sup>L</sup>–*Si* reagents<sup>[14]</sup> not burdened with excess lithium chloride. Herein, we report an unprecedented allylic substitution of linear allylic chlorides to produce branched allylic silanes by utilizing the copper-catalyzed activation of a Si–B bond ( $\alpha$ -1 $\rightarrow$  $\gamma$ -2; Scheme 1, right).

Our previous studies on the  $\gamma$ -selective allylic transposition of linear allylic precursors by using the (Me<sub>2</sub>PhSi)<sub>2</sub>Znderived copper(I) reagent had shown that allylic chlorides  $\alpha$ -1 were superior (rs > 93:7; see Scheme 1).<sup>[10]</sup> We therefore started to survey Me<sub>2</sub>PhSiBpin–CuCN combinations with and without additives in that reaction ( $\alpha$ -1 $a \rightarrow \gamma$ -2a and  $\alpha$ -2a; Table 1). CuCN alone was unable to promote this allylic displacement (Table 1, entry 1). Unexpectedly, no conversion was seen despite the addition of NaOtBu to form air- and moisture-sensitive CuOtBu (Table 1, entry 2). NaOtBu is a common base in such copper(I) catalyses,<sup>[2-6]</sup> and our result stands in contrast to the report by Lee and Hoveyda (see Scheme 2).<sup>[4]</sup> The use of NaOMe instead of bulkier NaOtBu was, however, successful (Table 1, entry 3), thus agreeing with findings by Chatani and co-workers (CuOAc/MeOH).<sup>[11]</sup>

The moderate level of regiocontrol  $(\gamma/\alpha = 90:10)$  was improved to excellent regioselectivity  $(\gamma/\alpha = 98:2)$  by lowering the reaction temperature from 0°C to -78°C (Table 1,



Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201004658.

Homepage: http://www.uni-muenster.de/Chemie.oc/oestreich

[\*\*] D.J.V. thanks the NRW Graduate School of Chemistry for a

Angew. Chem. Int. Ed. 2010, 49, 8513-8515

[\*] D. J. Vyas, Prof. Dr. M. Oestreich

Fax: (+49) 251-83-36501

Organisch-Chemisches Institut

Westfälische Wilhelms-Universität Münster

E-mail: martin.oestreich@uni-muenster.de

predoctoral fellowship (2008-2011).

Corrensstrasse 40, 48149 Münster (Germany)

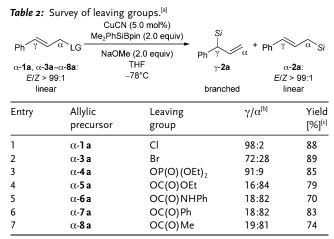
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 2. Proposed catalytic cycle.

 Table 1: Optimization of the reaction conditions.<sup>[a]</sup>

 CuCN (5.0 mol%)

ligand (5.0 mol%)


|                                                                          | N N    | $Me_2PhSiBpin (2.0 equiv)$                      |                    | Si<br>I                |                                                |                             |
|--------------------------------------------------------------------------|--------|-------------------------------------------------|--------------------|------------------------|------------------------------------------------|-----------------------------|
| Ph <sup>2</sup> γ 2 α Cl -<br>α- <b>1a</b> : <i>E/Z</i> > 99:1<br>linear |        | base (2.0 equiv)<br>THF<br><i>t</i> at <i>T</i> |                    | γ- <b>2a</b><br>anched | + Ph´ Υ ベ<br>α- <b>2a</b> : <i>Ε/2</i><br>line |                             |
| Entry                                                                    | Base   | Ligand                                          | Т<br>[°С]          | <i>t</i><br>[h]        | $\gamma/\alpha^{[b]}$                          | Yield<br>[%] <sup>[c]</sup> |
| 1                                                                        | -      | _                                               | $0 \rightarrow RT$ | 48                     | -                                              | _[d]                        |
| 2                                                                        | NaOtBu | -                                               | 0                  | 1                      | -                                              | _[e]                        |
| 3                                                                        | NaOMe  | -                                               | 0                  | 1                      | 90:10                                          | 71                          |
| 4                                                                        | NaOMe  | -                                               | -78                | 6                      | 98:2                                           | 88                          |
| 5                                                                        | NaOMe  | Ph₃P <sup>[f]</sup>                             | $0 \rightarrow RT$ | 24                     | 96:4                                           | 71                          |
| 6                                                                        | NaOMe  | dppp                                            | $0 \rightarrow RT$ | 72                     | 95:5                                           | 56                          |
| 7                                                                        | NaOMe  | dppf                                            | $0 \rightarrow RT$ | 24                     | 98:2                                           | 71                          |
| 8                                                                        | NaOMe  | DPEphos                                         | $0 \rightarrow RT$ | 48                     | 98:2                                           | 57                          |

[a] All reactions were conducted according to the general procedure with addition of the indicated ligand (entries 5–8). [b] Ratio of regioisomers determined by GLC analysis prior to purification. [c] Combined yield of analytically pure regioisomers after purification by flash chromatography on silica gel. [d] No reaction. [e] No conversion of allylic chloride and decomposition of Me<sub>2</sub>PhSiBpin observed. [f] 10 mol%. dppp=1,3-bis(diphenylphosphanyl)propane, dppf=1,1'-bis(diphenylphosphanyl)-ferrocene, DPEphos=bis(2-diphenylphosphanylphenyl) ether.

entries 3 and 4). Both  $\gamma/\alpha$  ratios are perfectly in accord with those obtained with the  $(Me_2PhSi)_2Zn$ –CuCN reagent,<sup>[10]</sup> again corroborating the assumption that  $Me_2PhSiCu$  is the nucleophile in these catalyses.<sup>[8d,10]</sup> We then tested Ph<sub>3</sub>P and a series of bidentate phosphines (Table 1, entries 5–8) to see whether a prospective asymmetric variant would be potentially fruitful. Added ligands had a dramatic effect on the reaction rate, and the reactions had to be performed at 0 °C. It is remarkable though that the regioselectivities were as high as those obtained under the "ligand-free" reaction conditions at -78 °C. A control experiment without CuCN but with NaOMe gave no conversion.

With the phosphine-free protocol in hand, we next probed the effect of the leaving group on the regioselectivity ( $\alpha$ -**3a**– $\alpha$ -**8a**  $\rightarrow \gamma$ -**2a** and  $\alpha$ -**2a**; Table 2). We were anticipating the same trend as in our previous study,<sup>[10]</sup> that is,  $\gamma$  selectivity for halides and phosphates (Table 2, entries 1–3) and  $\alpha$  selectivity for carbonates, carbamates, and carboxylates (Table 2, entries 4–7). We found this to be also true for the novel catalytic system with a noteworthy deviation:  $\alpha$ -**5a**– $\alpha$ -**8a** with oxygen leaving groups react with substantially eroded  $\alpha$  selectivities of  $\gamma/\alpha \approx 18:82$  (Table 2, entries 4–7) as opposed to flawless  $\gamma/\alpha < 1:99$  in the cuprate series.<sup>[8c,10]</sup> From this data, it appears that the Me<sub>2</sub>PhSiBpin–CuCN–NaOMe system tends to prefer the branched isomer.

Encouraged by the superb regioselectivity obtained with  $\alpha$ -1a, we set out to extend the scope of the new method ( $\alpha$ -1b- $\alpha$ -1h  $\rightarrow \gamma$ -2b- $\gamma$ -2h and  $\alpha$ -2b- $\alpha$ -2h; Table 3). We were also able to use less Me<sub>2</sub>PhSiBpin and NaOMe, now 1.5 equivalents each. To our delight, both aryl- and alkyl-substituted precursors  $\alpha$ -1a- $\alpha$ -1e and  $\alpha$ -1f- $\alpha$ -1g, respectively, yielded the corresponding allylic silanes with excellent regioselectivities (Table 3, entries 1–5 as well as entries 6 and 7), exceeding previously reported ones.<sup>[10]</sup> The  $\gamma/\alpha$  ratio for



[a] All reactions were conducted according to the general procedure, using the indicated allylic precursors  $\alpha$ -**3 a** $-\alpha$ -**8a**. [b] Ratio of regioisomers determined by GLC analysis prior to purification. [c] Combined yield of analytically pure regioisomers after purification by flash chromatography on silica gel. LG = leaving group.

**Table 3:** Copper-catalyzed,  $\gamma$ -selective allylic substitution of allylic chlorides.

| R γ α Cl<br>α- <b>1a</b> -α- <b>1h</b> :<br><i>E/Z</i> > 99:1<br>linear |                     | CuCN (5.0 mol%)<br>Me <sub>2</sub> PhSiBpin (1.5 equiv)<br>NaOMe (1.5 equiv)<br>THF<br>-78°C | Si<br>R γ α<br>γ-2a-γ-2h<br>branched | <i>E/Z</i> > 99:1     |                             |
|-------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|-----------------------------|
| Entry                                                                   | Allylic<br>precurso | Substituent<br>or R                                                                          | Allylic<br>silane                    | $\gamma/\alpha^{[a]}$ | Yield<br>[%] <sup>[b]</sup> |
| 1                                                                       | α- <b>] a</b>       | Ph                                                                                           | γ/α- <b>2 a</b>                      | 98:2                  | 88                          |
| 2                                                                       | α- <b>1b</b>        | 4-MeOC <sub>6</sub> H <sub>4</sub>                                                           | γ/α- <b>2 b</b>                      | 98:2                  | 77 <sup>[c]</sup>           |
| 3                                                                       | α- <b>lc</b>        | 3-MeOC <sub>6</sub> H₄                                                                       | γ/α- <b>2 c</b>                      | 99:1                  | 94                          |
| 4                                                                       | α-1 d               | $4-F_3CC_6H_4$                                                                               | γ/α- <b>2 d</b>                      | 98:2                  | 83                          |
| 5                                                                       | α- <b>le</b>        | $4-BrC_6H_4$                                                                                 | γ/α- <b>2</b> e                      | 98:2                  | 95                          |
| 6                                                                       | α- <b>1 f</b>       | Су                                                                                           | γ/α- <b>2</b> f                      | >99:1                 | 81                          |
| 7                                                                       | α- <b>1g</b>        | iPr                                                                                          | γ/α- <b>2 g</b>                      | >99:1                 | 84                          |
| 8                                                                       | α-1 <b>h</b>        | Me <sub>3</sub> Si                                                                           | γ/α- <b>2 h</b>                      | 76:24                 | 72                          |

[a] Ratio of regioisomers determined by GLC analysis or by <sup>1</sup>H NMR spectroscopy prior to purification. [b] Combined yield of analytically pure regioisomers after purification by flash chromatography on silica gel. [c] Yield of isolated product over two steps based on the corresponding allylic alcohol. Cy = cyclohexyl.

silyl-substituted  $\alpha$ -**1h** was comparable to that seen with the known method<sup>[10]</sup> (Table 3, entry 8). We explain this modest  $\gamma$  selectivity ( $\gamma/\alpha = 76.24$ ) by a steric rather than an electronic effect because the *t*Bu-substituted allylic chloride (not shown) reacted with even worse selectivity ( $\gamma/\alpha = 62.38$ ), whereas *i*Pr-substituted  $\alpha$ -**1g** produced the  $\gamma$  regioisomer with  $\gamma/\alpha > 99:1$  (Table 3, entry 7).

The tentative mechanism (Scheme 2) is based on the quantumchemical analysis of the related activation of the B– B linkage by Marder and co-workers (II and III; Figure 1).<sup>[1b]</sup> We emphasize the role of added or generated alkoxide:  $OtBu^{[4]}$  (in CuOtBu) is likely to be too sterically hindered to allow for the  $\sigma$ -bond metathesis to occur, whereas OMe (in  $CuOMe^{[11]}$ ) secures smooth Si–B bond activation, which agrees with our experiments (Table 1, entries 2 and 3).

This copper-catalyzed Si–B bond activation through transmetalation and its application to allylic substitution closes an important gap.<sup>[18]</sup> It is a competitive alternative to the established cuprate chemistry.<sup>[8a,10]</sup> Branched allylic silanes are now accessible with synthetically useful levels of regiocontrol. We also showed that phosphine ligands are tolerated in this catalysis, finally opening the door to asymmetric variants.<sup>[9,19–21]</sup>

Received: July 28, 2010 Published online: September 10, 2010

**Keywords:** allylic substitution  $\cdot$  copper  $\cdot$  regioselectivity  $\cdot$  silicon  $\cdot$  transmetalation

- For investigations into the mechanisms, see a) Cu<sup>1</sup>-H: S. Rendler, O. Plefka, B. Karatas, G. Auer, R. Fröhlich, C. Mück-Lichtenfeld, S. Grimme, M. Oestreich, *Chem. Eur. J.* 2008, 14, 11512-11528; b) Cu<sup>1</sup>-B: L. Dang, Z. Lin, T. B. Marder, *Organometallics* 2008, 27, 4443-4454; c) Cu<sup>1</sup>-Si: we are not aware of any reports related to the mechanism of this transmetalation.
- [2] For authoritative reviews of Cu<sup>I</sup>-H in conjugate addition, see
  a) C. Deutsch, N. Krause, B. H. Lipshutz, *Chem. Rev.* 2008, 108, 2916-2927; b) S. Rendler, M. Oestreich, *Angew. Chem.* 2007, 119, 504-510; *Angew. Chem. Int. Ed.* 2007, 46, 498-504.
- [3] For recent summaries of Cu<sup>L</sup>-B in conjugate addition, see
  a) J. A. Schiffner, K. Müther, M. Oestreich, Angew. Chem. 2010, 122, 1214-1216; Angew. Chem. Int. Ed. 2010, 49, 1194-1196;
  b) L. Dang, Z. Lin, T. B. Marder, Chem. Commun. 2009, 3987-3995.
- [4] For Cu<sup>L</sup>-Si in conjugate addition, see K.-s. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 2898-2900.
- [5] For Cu<sup>L</sup>-H in propargylic substitution, see a) C. Zhong, Y. Sasaki, H. Ito, M. Sawamura, *Chem. Commun.* 2009, 5850–5852; b) C. Deutsch, N. Krause, B. H. Lipshutz, *Org. Lett.* 2009, *11*, 5010–5012.
- [6] For Cu<sup>1</sup>–B in allylic substitution, see a) H. Ito, C. Kawakami, M. Sawamura, J. Am. Chem. Soc. 2005, 127, 16034–16035; b) H. Ito, S. Ito, Y. Sasaki, K. Matsuura, M. Sawamura, J. Am. Chem. Soc. 2007, 129, 14856–14857; c) H. Ito, T. Okura, K. Matsuura, M. Sawamura, Angew. Chem. 2010, 122, 570–573; Angew. Chem. Int. Ed. 2010, 49, 560–563; d) A. Guzman-Martinez, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10634–10637.
- [7] There are no reports of Cu<sup>L</sup>-Si in allylic substitution by transmetalation of interelement bonds. This is the topic of the present investigation.
- [8] For an account of the versatile (Me<sub>2</sub>PhSi)<sub>2</sub>Zn–CuX chemistry, see a) A. Weickgenannt, M. Oestreich, *Chem. Eur. J.* 2010, 16,

402-412; conjugate addition: b) M. Oestreich, B. Weiner, *Synlett* **2004**, 2139-2142; allylic substitution: c) M. Oestreich, G. Auer, *Adv. Synth. Catal.* **2005**, *347*, 637-640; alkyne, diene, and styrene addition: d) G. Auer, M. Oestreich, *Chem. Commun.* **2006**, 311-313.

- [9] E. S. Schmidtmann, M. Oestreich, Chem. Commun. 2006, 3643– 3645.
- [10] D. J. Vyas, M. Oestreich, *Chem. Commun.* 2010, 46, 568–570, and references therein.
- [11] To date, the only reports of Me<sub>2</sub>PhSiBpin activation are:
  a) Ref. [4]; b) M. Tobisu, H. Fujihara, K. Koh, N. Chatani, J. Org. Chem. 2010, 75, 4841-4847.
- [12] For the preparation of Me<sub>2</sub>PhSiBpin from Me<sub>2</sub>PhSiLi and HBpin, see a) M. Suginome, T. Matsuda, Y. Ito, *Organometallics* 2000, *19*, 4647–4649; for a recent summary of Me<sub>2</sub>PhSiBpin chemistry, see b) T. Ohmura, M. Suginome, *Bull. Chem. Soc. Jpn.* 2009, *82*, 29–49.
- [13] G. Auer, B. Weiner, M. Oestreich, Synthesis 2006, 2113-2116.
- [14] Our research group introduced the rhodium-catalyzed Si–B activation,<sup>[15]</sup> which is likely to follow a similar transmetalation mechanism (see **III**; Figure 1). The resultant nucleophilic  $Rh^{L}$ -Si reagent participates in conjugate addition<sup>[15]</sup> and propargylic substitution<sup>[16]</sup> but, in our hands, not in allylic substitution.<sup>[17]</sup> We, therefore, decided to study the related copper(I) catalysis.
- [15] a) C. Walter, G. Auer, M. Oestreich, Angew. Chem. 2006, 118, 5803-5805; Angew. Chem. Int. Ed. 2006, 45, 5675-5677; b) C. Walter, M. Oestreich, Angew. Chem. 2008, 120, 3878-3880; Angew. Chem. Int. Ed. 2008, 47, 3818-3820; c) C. Walter, R. Fröhlich, M. Oestreich, Tetrahedron 2009, 65, 5513-5520; d) E. Hartmann, M. Oestreich, Angew. Chem. 2010, 122, 6331-6334; Angew. Chem. Int. Ed. 2010, 49, 6195-6198.
- [16] H. Ohmiya, H. Ito, M. Sawamura, Org. Lett. 2009, 11, 5618– 5620.
- [17] K. Müther, M. Oestreich, unpublished results, 2009.
- [18] For a palladium-catalyzed allylic silane synthesis involving oxidative addition of Me<sub>2</sub>PhSiBpin, see T. Ohmura, H. Taniguchi, M. Suginome, J. Am. Chem. Soc. 2006, 128, 13682–13683.
- [19] For a review of the chemistry of allylic silanes, see a) L. Chabaud, P. James, Y. Landais, *Eur. J. Org. Chem.* 2004, 3173– 3199; for the preparation of allylic silanes, see b) T. K. Sarkar in *Science of Synthesis, Vol. 4* (Ed.: I. Fleming), Thieme, Stuttgart, 2002, pp. 837–925.
- [20] For recent (indirect syntheses) of  $\alpha$ -chiral allylic silane, see a) D. Li, T. Tanaka, H. Ohmiya, M. Sawamura, *Org. Lett.* **2010**, *12*, 3344–3347; b) M. A. Kacprzynski, T. L. May, S. A. Kazane, A. H. Hoveyda, *Angew. Chem.* **2007**, *119*, 4638–4642; *Angew. Chem. Int. Ed.* **2007**, *46*, 4554–4558.
- [21] A few test runs using binap (rs = 98:2) and josiphos (rs = 90:10) yielded only racemic  $\gamma$ -**2a**, not even reaching full conversion after several days at ambient temperature (binap = 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl and josiphos = 1-[2-(diphenylphosphanyl)ferrocenyl]ethyldicyclohexylphosphine).