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ABSTRACT

The aryl sulfoxide moiety (ArSO) allows an expedient two-step meta-, para-difunctionalization of readily available diaryl sulfoxides. In the first
step, the sulfoxide plays the role of a directing metalation group. In the second step, triggered by i-PrMgCl·LiCl, it becomes a leaving group
and undergoes a regioselective sulfoxide-magnesium exchange.

The functionalization of arenes via organometallic intermedi-
ates is of central importance for the preparation of poly-
functional aromatics.1 Whereas arylmagnesium compounds
are readily prepared via a directed ortho-metalation,2 a
magnesium insertion,3or a halogen-magnesium exchange,4

the use of diaryl sulfoxides for the synthesis of functionalized
arylmagnesium derivatives via a sulfoxide-magnesium
exchange has barely been reported.5 This is surprising since
the sulfoxide group also has an exceptional directing meta-

lation ability6 and would therefore allow access to unusual
substitution patterns of arenes. Furthermore, the sulfoxide
group is a versatile functionality, which has found numerous
applications in organic synthesis.7

We have envisaged that sulfoxides of type 1, bearing various
functional groups (FG ) F, Cl, CN, CO2-t-Bu, CF3, alkynyl)
can be magnesiated in the ortho-position using tmpMgCl·LiCl
(2),8 leading after quenching with an electrophile (E1) to arenes
of type 3. A subsequent sulfoxide-magnesium exchange using
i-PrMgCl·LiCl will provide an intermediate magnesium reagent
4, which by reaction with a second electrophile (E2) is giving
meta- and para-difunctionalized aromatics of type 5, a substitu-
tion pattern difficult to reach by standard methods.9 Thus, the
starting diaryl sulfoxides 1a-f can be considered as being
synthetic equivalents of the bis-carbanionic synthon 6 (Scheme
1). To perform successfully this sequence, the sulfoxides 1a-f
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should undergo a regioselective deprotonation on the aromatic
ring bearing the functional group FG, as well as a regioselective
sulfoxide-magnesium exchange reaction producing an inter-
mediate magnesium reagent of type 4 (and not the alternative
exchange product: ArMgCl; Scheme 1). After extensive ex-
perimentation, we have solved both of these problems by
introducing donor substituents at the para-position of the Ar
group of 1.10 Thus, two types of diaryl sulfoxides proved to be
excellent starting materials: the 4-N,N-dimethylaminophenyl
sulfoxide derivatives 1a,b and the 4-methoxyphenyl sulfoxide
compounds 1c-f. These sulfoxides were prepared by two
convergent and practical synthetic routes (Scheme 2). Thus, the
N,N-dimethylamino-substituted sulfoxides 1a,b were prepared
by the reaction of functionalized arylmagnesium reagents of
type 74 with 4-(dimethylamino)phenyl thiocyanate (8,
Me2NC6H4SCN)11,12 followed by m-CPBA oxidation
(CH2Cl2, -20 °C, 1.1 equiv), leading to sulfoxides 1a (64%)
and 1b13 (69%).

On the other hand, the reaction of functionalized
arylmagnesium reagents of type 74 with 4-methoxyben-

zenesulfinyl chloride (9, MeOC6H4S(O)Cl)14 affords the
desired 4-methoxy-substituted sulfoxides 1c-f (FG: CF3,

15

CN, CO2-t-Bu, alkynyl16) in 70-90% yield. Having
prepared the required diaryl sulfoxides 1a-f, we have
performed the directed metalation step (step 1 of Scheme
1). Thus, the sulfoxide 1a was deprotonated with
tmpMgCl·LiCl at -30 °C within 20 min. After transmeta-
lation to the corresponding zinc reagent (using ZnCl2 in
THF), a Pd-catalyzed (Pd(Ph3)4, 2 mol %) cross-coupling17

with 4-iodobenzonitrile or 4-iodobromobenzene gave the
expected sulfoxides 3a,b in 82-92% yield (entries 1 and
2, Table 1). Reaction of the magnesiated derivative of 1a
(FG ) Cl) with tosyl cyanide led to the nitrile 3c in 73%
yield (entry 3). Similarly, the sulfoxide 1b (FG ) F) was
metalated with tmpMgCl·LiCl at -30 °C within 20 min.
Quenching of this magnesium species with iodine, fol-
lowed by a Negishi cross-coupling with 2-phenylethy-
nylzinc chloride, furnished the product 3d in 95% yield
(entry 4).16

Palladium-catalyzed cross-coupling with 4-iodoanisole
gave the sulfoxide 3e in 93% yield (entry 5). Using similar
procedures, we were able to functionalize the diaryl sulfox-
ides 1c (FG ) CF3), 1d (FG ) TMS-acetylene), 1e (FG )
CO2-t-Bu), and 1f (FG ) CN) in 68-79% yield (entries
6-9). The second step of the synthetic sequence (Scheme
1), i.e., the sulfoxide-magnesium exchange, was >95%
regioselective, providing only the desired magnesium re-
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Scheme 2. Preparation of Sulfoxides of Type 1

Scheme 1. Metalation of Sulfoxides, Followed by a
Sulfoxide-Magnesium Exchange Reaction Leading to Meta-

and Para-Difunctionalized Arenes (FG ) F, Cl, CN, CO2-t-Bu,
CF3, Alkynyl)
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Table 1. ortho-Magnesiation of Functionalized Sulfoxides
Followed by Electrophilic Reaction

a Isolated yield of analytically pure product. b After transmetalation to
zinc using zinc chloride 1 M in THF; Ar1 ) pC6H4NMe2; Ar2 ) pC6H4-
OMe.

Table 2. Sulfoxide-Magnesium Exchange of Functionalized
Sulfoxides Followed by Electrophilic Reaction

a Isolated yield of analytically pure product referring to 0.8 equiv of
electrophile. b After transmetalation to zinc using zinc chloride 1 M in
THF.
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agents 4 (and not the alternative cleavage product ArMgCl).
Thus, the reaction of 3a with i-PrMgCl·LiCl at -50 °C within
1 h, followed by cross-coupling with 4-iodobenzonitrile,
furnished the terphenyl 5a in 81% yield (entry 1, Table 2).18

A range of polyfunctional compounds (5c-f) was obtained
in 83-87% yield, applying the same procedure to the
sulfoxides 3c-f (entries 6-9). Interestingly, the bromine-
substituted sulfoxide 3b undergoes a selective sulfoxide-
magnesium exchange within 5 h at -50 °C and gives with
3,4-dichlorobenzaldehyde the alcohol 5b in 63% yield (entry
2), showing that this sulfoxide/magnesium exchange is faster
than the corresponding Br/Mg exchange. Diaryl sulfoxides
3g-i bearing sensitve functional groups (CO2-t-Bu, CN)
reacted smoothly with i-PrMgCl·LiCl and were trapped
successfully with electrophiles, producing the compounds
5g-i in 68-88% yield (entry 7-9). We have applied this
sequence to the preparation of the biological active sulfide

10, which is a serotonin reuptake inhibitor.19 Thus, the
sulfoxide 1b (FG ) F) was metalated with tmpMgCl·LiCl
at -30 °C within 20 min. Quenching of the resulting
magnesium species with (S)-(4-chlorophenyl)benzene thio-
sulfonate20 led to the expected sulfide 11 in 82% yield. This
sulfoxide was treated with i-PrMgCl·LiCl at -50 °C furnish-
ing the corresponding magnesium intermediate within 3 h,
which reacted cleanly with the iminium salt 1221 to give the
serotonin reuptake inhibitor 1018 in 82% yield (Sch-
eme 3).

In summary, we have developed an efficient two-step
sequence allowing a meta-, para-difunctionalization of
aromatics using the chameleon chemical behavior of the
sulfoxide moiety (ArSO). This versatile functional group acts
asametalationdirectinggroupin thepresenceof tmpMgCl·LiCl
(2) and as a leaving group in the presence of i-PrMgCl·LiCl,
generating a new Grignard reagent. Further extensions of
the use of the sulfoxide group for generating polyfunctional
Grignard reagents are currently being studied in our labo-
ratories.

Acknowledgment. We thank the Fonds der Chemischen
Industrie and the DFG for financial support and Chemetall
GmbH (Frankfurt) and BASF AG (Ludwigshafen) for
generous gifts of chemicals.

Supporting Information Available: Experimental pro-
cedures and full characterization of all new compounds. This
material is available free of charge via the Internet at
http://pubs.acs.org.

OL801431Z

(18) Performing the sulfoxide-magnesium exchange reaction in THF
led to 10-35% of protonated Grignard reagent 4. In spite of numerous
deuteration experiments, the proton source could not be identified. However,
by using 2-methyltetrahydrofuran, this protonation could be reduced to
10-20%.

(19) Polivka, Z.; Dobrovsk, K.; Silhankova, A.; Sindelar, K.; Mickova,
R.; Valenta, V.; Krejci, I. PCT Int. Appl. WO 9717325, 1997.

(20) Fujiki, K.; Tanifuji, N.; Sasaki, Y.; Yokoyama, T. Synthesis 2002,
343.

(21) (a) Millot, N.; Piazza, C.; Avolio, S.; Knochel, P. Synthesis 2000,
941. (b) Gommermann, N.; Koradin, C.; Knochel, P. Synthesis 2002, 2143.

Scheme 3. Two-Step Preparation of the Serotonin Reuptake
Inhibitor 10

3894 Org. Lett., Vol. 10, No. 17, 2008


