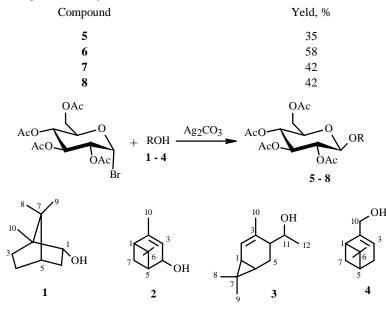
SYNTHESIS OF CERTAIN MONOTERPENOID GLUCOSIDES

S. A. Patov, V. V. Punegov, A. V. Kuchin, and L. L. Frolova

UDC 247.918

The monoterpenols borneol, verbenol, 4-(1-hydroxyethyl)carene-2, and myrtenol were glucosylated using acetobromoglucose. The structures of the prepared derivatives were established using PMR and ¹³C NMR spectroscopy.


Key words: monoterpenoids, glucosylation.

Monoterpenoids are found in essential oils of many medicinal plants and medicinal agents based on them. Monoterpene glucosides have been isolated from the medicinal plants *Origanum vulgare* L., *Rosa gallica*, which possess distinct fungicidal properties [1, 2]; and *Paeona peregrine*, which has a unique structure and possesses adaptogenic activity among others [3, 4].

The physiological activity of monoterpene glucosides was studied by synthesizing glucosides of the terpene alcohols borneol (1), verbenol (2), 4-(1-hydroxyethyl)carene-2 (3), and myrtenol (4), which have chemical structures identical to the natural ones except for 3.

Glucosides were synthesized using the Koenig—Knorr method [5] and silver carbonate catalyst. Unreacted monoterpenoids were removed after the reactions were completed by steam distillation. Then, compounds were purified over silica-gel columns with elution by CHCl₃:CH₃OH of increasing polarity.

We believe that the scatter in the product yields is explained by steric hindrances in the structures of the actual monoterpenoids. In particular, the hydroxyl in 2 is more reactive because it is allylic and as far as possible from the *gem*-dimethyl on C-6. Therefore, the yield of verbenol glucoside is slightly greater than that of the other alcohols. The low yield of borneol (1) glucoside is explained by the fact that the C-2 hydroxyl has the *endo*-configuration that is known to be sterically shielded. Compounds 3 and 4 give similar yields:

Institute of Chemistry, Komi Scientific Center, Urals Division, Russian Academy of Sciences, 167000, Syktyvkar, ul. Pervomaiskaya, 48, fax (88212) 43 66 77, e-mail: patov-sa@chemi.komisc.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 348-349, July-August, 2006. Original article submitted April 24, 2006.

C atom	Compound							
	5		6		7		8	
	¹³ C	$^{1}\mathrm{H}$						
1	49.0	-	47.7	1.8	213.0	0.9	42.1	2.4
2	72.6	3.8	149.7	-	122.4	5.2	142.8	-
3	39.1	1.5	114.8	5.5	137.5	-	123.1	5.6
4	47.9	1.6	76.6	4.0	45.3	2.4	34.7	2.0
5	26.3	1.7	46.6	2.8	27.6	1.7	40.8	3.2
6	28.2	1.5	35.5	-	21.3	0.6	37.6	-
7	47.9	-	27.6	1.6	22.3	-	26.5	1.5
8	20.3	0.8	26.6	1.1	20.0	1.0	24.0	1.0
9	18.8	0.9	22.8	1.2	20.6	1.1	23.4	1.0
10	15.0	1.0	22.4	1.7	68.7	1.6	68.3	3.9
11	-	-	-	-	20.7	3.6	-	-
12	-	-	-	-	20.7	0.7	-	-
1′	102.3	4.7	98.9	4.2	98.8	4.6	101.1	4.4
2′	71.8	4.4	71.0	4.3	69.8	4.5	71.9	4.8
3′	71.2	5.0	69.8	4.8	68.8	5.0	70.9	5.4
4′	68.6	4.7	68.4	4.8	67.2	4.8	67.1	5.0
5′	72.6	3.7	72.9	3.5	71.0	3.5	69.7	4.0
6′	62.0	4.2	61.9	4.0	61.9	4.2	61.9	4.1
O-C=O	169-170	-	169-170	-	169-170	-	169-170	-
OCH ₃	19-21	2.0	19-21	2.0	19-21	2.0	19-21	2.0

TABLE 1. ¹³C NMR and PMR Chemical Shifts of Monoterpenoid Glycosides, ppm*

*Acetates in acylated glycosides were removed by a Zemplen reaction [6].

According to PMR and ¹³C NMR spectra, the resulting glucosides have a β -D-glucoside bond. This was confirmed by the presence in the spectra of signals at 4.2-4.6 ppm (J_{1'2'} = 8-8.5 Hz) and 99-101 ppm, respectively (Table 1). According to the literature, most glucosides isolated from medicinal plants have the β -D-configuration.

EXPERIMENTAL

 13 C NMR and PMR spectra were recorded on a Bruker DRX 400 spectrometer at working frequency 400 and 100 MHz, respectively, in CDCl₃. TLC was performed on Silufol (Czech Rep.) plates using CHCl₃:CH₃OH (9:1 and 6:1); column chromatography, over silica gel L (100/160 µm) using mixtures of CHCl₃:CH₃OH (10:1-4:1). Compounds were detected by phosphotungstic acid solution (20%) in ethanol with heating at 120°C for 1 min.

2,3,4,6-Tetra-O-acetyl- α **-D-glucopyranosylbromide** was prepared by the literature method [7], silver carbonate, by reacting silver nitrate (2 g) with saturated Na₂CO₃ solution (100 mL) in the dark. The resulting yellow powder was dried with anhydrous acetone and then lyophilized. Diethylether was distilled from metallic Na.

Synthesis of 5-8. A weighed portion of starting alcohol (50 mg) in absolute diethylether (20 mL) was stirred and treated with glycosylating agent (2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranosylbromide, 0.7 mol amount) and AgCO₃ (2-fold excess, 71 mg). The reaction mixture was stirred at room temperature for 1 d. The course of the reaction was monitored by TLC. After the reaction was finished, solvent was evaporated. The excess of monoterpenoids was steam distilled. The solid was placed on a SiO₂ column and eluted by CHCl₃:CH₃OH (20:1-6:1).

Removal of Acetates. A solution of acetylated glucoside in anhydrous CH_3OH (25 mL) was treated with a solution prepared by dissolving metallic Na (10 mg, 0.435 mmol) in CH_3OH (absolute, 25 mL) and stirred for 5 h at room temperature. The reaction mixture was neutralized by adding cation-exchanger KU-2 (1 g) in the H-form. Yield 95-97%.

REFERENCES

- 1. V. Manohar, C. Ingram, J. Gray, N. A. Talpur, B. W. Echard, D. Bagchi, and H. G. Preuss, *Mol. Cell. Biochem.*, **228**, 111 (2001).
- 2. P. S. Bugorskii and V. N. Mel'nikov, Khim. Prir. Soedin., 864 (1977).
- 3. I. N. Kostova, M. F. Simeonov, D. I. Todorova, and P. L. Petkova, *Phytochemistry*, 48, No. 3, 511 (1998).
- 4. H.-C. Lin, H.-Y. Ding, T. Shung, and P.-L. Wu, *Phytochemistry*, **41**, No. 1, 237 (1996).
- 5. N. K. Kochetkov, *Methods of Carbohydrate Chemistry* [in Russian], Mir, Moscow (1967).
- 6. L. F. Tietze and T. Eicher, *Preparative Organic Chemistry* [translated from Ger.], Mir, Moscow (1999).
- 7. Yu. A. Zhdanov, *Practicum in Carbohydrate Chemistry* [in Russian], Vysshaya Shkola, Moscow (1973).