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ABSTRACT: A highly enantioselective asymmetric transfer hydro-
genation (ATH) of densely functionalized diheteroaryl and diaryl
ketones was developed using Ru-catalysts of minimal stereogenicity.
Various ketone substrates with structurally and electronically similar
groups attached to the prochiral centers were reduced successfully in
good to excellent enantioselectivities and yields. This protocol provides
practical and efficient access to chiral diheteroarylmethanols and
benzhydrols, which are key intermediates in pharmaceuticals and
biologically active compounds.

Enantiopure diheteroarylmethanols are ubiquitous and
valuable intermediates and structural motifs in numerous

medicines, agrochemicals, and biologically active compounds
(Figure 1).1−3 It is thus of substantial importance to develop

efficient protocols for enantioselective synthesis of these
structures.4 Among the developed synthetic strategies, the
catalytic asymmetric reduction of ketones represents the most
potential approach from the practical and atom-economic
points of view. However, despite the great progress that has
been achieved for asymmetric reduction of a wide range of
ketones in the past several decades,5,6 the enantioselective
reduction of diheteroaryl ketones remains a challenging task.
In fact, due to the difficulty for chiral catalysts to

differentiate two structurally and electronically similar groups
in the ketones and the capability of the diheteroaryl ketones as
well as the alcohol products to inhibit the catalytic activity by
coordination of the heteroatoms to metal complexes,7,8 few
reports for asymmetric reduction of diheteroaryl ketones have
emerged.2a,9,10 In 2003, Chen9a reported asymmetric hydro-

genation of aryl-heteroaryl ketones using trans-RuCl2[(R)-
xylbinap][(R)-daipen] as the catalyst, and only two diheter-
oaryl ketones were disclosed, both of which have bulky
substituents on heteroaromatic rings (Scheme 1a). Recently,
Rueping and co-workers10 reported asymmetric hydroboration
of heteroaryl ketones, and three diheteroaryl ketones without
bulky substituents were found to lead to excellent yields and
ee’s. However, mechanistic studies in this work showed that a
2-pyridyl group was required for coordinating to the aluminum
center to control the enantioselectivity (Scheme 1a).10 It is
transparent that a generally viable catalytic enantioselective
protocol to deliver such diheteroarylmethanols remains elusive.
Very recently, we11 developed a class of chiral Ru-catalysts

with minimal stereogenicity (i.e., merely a single chirality
element) and fairly simplified structure that has been shown to
be highly versatile in the asymmetric transfer hydrogenation of
aryl alkyl and aryl N-heteroaryl ketones. This finding
encouraged us to explore the asymmetric transfer hydro-
genation of the more challenging diheteroaryl ketones that
bear two structurally and/or electronically similar groups
attached to prochiral centers by such Ru-catalyst system.
Herein, we reported an efficient asymmetric transfer hydro-
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Figure 1. Substances containing chiral diheteroarylmethanols.
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genation of a series of general diheteroaryl ketones as well as
diaryl ketones, producing the corresponding chiral diheteroar-
ylmethanols and benzhydrols in good to excellent ee’s
(Scheme 1b). It is worth noting that substrates bearing two
groups with exactly same structures but different substitution
positions, thus leading to subtle difference in both sterics and
electronics, were successfully reduced in high levels of
enantioselectivities (Scheme 1b). To the best of our knowl-
edge, it is the first time that these kinds of ketones could be
enantioselectively reduced.
We initially selected pyridin-2-yl(pyridin-3-yl)methanone as

a model substrate, which contains two potentially coordinative
pyridyl groups (Figure 2). Moreover, the substituents attached
to the prochiral center, 2-pyridyl group and 3-pyridyl group,
are of virtually the same size. As such, considerable difficulty
may be readily anticipated for chiral transition-metal catalysts
to differentiate their corresponding Si- and Re- faces of the
substrate. When using our previously reported Ru-
(S)-iPrPyme-catalyst A1, we were delighted to find that the
alcohol product 1 was obtained in 89% ee and 94% yield. The
absolute configuration of (R)-1 was determined via X-ray
diffraction analysis. Encouraged by this preliminary result, we
further attempted to modify catalyst A1 by tuning the
electronic nature of the pyridyl group in the diamine ligand.
Pleasingly, an electron-donating methoxy substituent at the
para position of the pyridyl group in catalyst A2 helps to
improve the enantioselectivity of alcohol product 1 to 92%. In
contrast, catalyst A3 with an electron-withdrawing chloro-
substituent at the para position of the pyridyl group resulted in
poor yield and moderate ee. Other catalysts, such as A4 and
A5 with electron-rich, larger conjugated system in the diamine
ligand, provided similar results with catalyst A1. As a result, A2
was chosen as the optimal catalyst for the following screening

of substrate scope. The structure of A2 was also unambigu-
ously determined by X-ray diffraction analysis.
As shown in Table 1, we initially evaluated a number of

bispyridyl ketones, and good to excellent ee’s and yields were
obtained (1−15, 80−96% ee’s and 73−98% yields). Ketone
substrates with both electron-donating and electron-with-
drawing groups at 2- and 5-positions of the 3-pyridyl group
can be reduced to the desired alcohols 2−6 in excellent ee’s
and yields (92−96% ee’s, 82−98% yields). Halogen groups on
the 4-position of the 2-pyridyl group can be tolerated,
furnishing reduced products (7−8) in good ee’s (84−86%)
and excellent yields (90−97%). Notably, the disubstituted
substrates can also be smoothly reduced to corresponding
products 9−12 in good to excellent ee’s (81−94%). Besides
pyridin-2-yl(pyridin-3-yl)methanones, substrates with pyridin-
2-yl(pyridin-4-yl)methanone as skeleton could be transformed
into chiral alcohols 13−15 successfully (80−93% ee’s, 91−95%
yields). It merits a note that pyridin-2-yl(pyridin-4-yl)-
methanone, which also bears two exactly the same structures
but with different substitution positions, was reduced in good
enantioselectivity (13, 84% ee). We had unambiguously
determined the absolute stereochemistry of products 9 and
15 by X-ray diffraction analysis.
Next, the diheteroaryl ketones with different heteroaryl

groups were examined. Pleasingly, we found that substrates
bearing varieties of heteroaryl rings could be asymmetrically
reduced in good to excellent ee’s and yields (16−30).
Diheteroaryl ketones bearing pyridyl groups and quinolinyl
or isoquinolinyl groups were demonstrated to be suitable
substrates, delivering corresponding chiral diheteroarylmetha-
nols in good results (16−20, 83−93% ee’s and 85−95%
yields). Transfer hydrogenations of furan/thiophene/thiazole
pyridyl ketones were also investigated and good to excellent
enantioselectivities and yields were obtained (21−25, 85−95%
ee’s and 77−99% yields). It was noteworthy that diheteroaryl
ketones without 2-pyridyl groups and bulky substituents, which
have not been asymmetrically reduced by those reported
strategies, were smoothly reduced in our reaction systems
(22−25). Encouraged by the above results, we further
explored more challenging diheteroaryl ketone bearing two
heteroaryl groups with very similar structural and electronic

Scheme 1. Catalytic Asymmetric Reduction of Diheteroaryl
Ketones

Figure 2. Catalyst screening.
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Table 1. Substrate Scope for Diheteroaryl Ketonesa

aGeneral conditions: ketone (0.1 mmol), catalyst A2 (1 mol %), tBuOK (15 mol %), iPrOH/CH2Cl2 (2:1), room temperature, 15 min. Yields of
isolated products are given. bReaction was conducted at 0 °C. cReaction was conducted in 5 min.

Table 2. Substrate Scope for Diaryl Ketonesa

aGeneral conditions: ketone (0.1 mmol), catalyst A2 (1 mol %), tBuOK (15 mol %), iPrOH/CH2Cl2 (2:1), 23 °C, 2 h. Yields of isolated products
are given. bReaction was conducted in 1 h. c1 mol % catalyst A4 was used. d1 mol % catalyst A5 was used.
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properties (26−30). Ketone substrates bearing bis-benzofuran,
bis-benzo[b]thiophene, and bis-furan rings were efficiently
transformed to chiral alcohols 26 (80% ee, 70% yield), 27
(93% ee, 96% yield) and 28 (71% ee, 72% yield) respectively.
When benzo[b]thiophen-3-yl(benzofuran-2-yl)methanone and
furan-2-yl(thiophen-3-yl)methanone were used as substrates in
this developed catalytic system, excellent enantiomeric excesses
(29, 96% ee; 30, 91% ee) were obtained. These results again
proved the powerful ability of the catalyst to differentiate
similar enantiotopic faces of the substrates.
Diaryl ketones also represent a large class of challenging

substrates for catalytic asymmetric reduction due to the
difficulty for catalysts to discern the two structurally and
electronically similar substituents.12−15 Thus, to further
exemplify the utilities of this Ru-catalyst system, we addition-
ally surveyed asymmetric transfer hydrogenation of diaryl
ketones, and the results were summarized in Table 2. Initially,
various ortho-substituted diaryl ketones were investigated (31−
41). The ortho-substitutents could range from electron-
withdrawing groups (Br, I, CF3, and NO2) to electron-
donating group (Me), and good enantioselectivities (84−90%
ee’s) were consistently obtained. Diaryl ketones bearing 1-
naphthyl group could also be transfer hydrogenated to
corresponding alcohol product (42−48) in good enantiose-
lectivities (85−89% ee’s). Interestingly, the ketone substrate
bearing two exactly the same naphthyl groups but with
different substitution positions (1-naphthyl and 2-naphthyl
groups) could be reduced to 48 in 85% ee and 95% yield. The
absolute configuration of 48 was verified by X-ray diffraction.
Finally, a ketone substrate bearing larger aromatic ring, such as
1-anthracenyl group, was transfer hydrogenated to 49 in 93%
ee and 92% yield.
To further demonstrate the synthetic utility of the present

catalyst system, a potential anticancer agent 53 with IC50 value
less than 1.0 μM (against MDA-MB 231)2b was prepared
(Scheme 2). To our delight, diheteroaryl ketone 50 could be

asymmetrically transfer hydrogenated to 51 in gram scale with
excellent enantioselectivity and yield (93% ee, 99% yield).
After two steps according to ref 16 chiral compound 53 was
obtained successfully without loss of optical purity.
In summary, we have described a highly robust asymmetric

transfer hydrogenation protocol of densely functionalized
diheteroaryl ketones and diaryl ketones using Ru-catalysts of
minimal stereogenicity, leading to a wide range of chiral
diheteroarylmethanols and benzhydrols in good to excellent
ee’s and yields. The catalyst demonstrates unusual capability in

differentiating structurally and electronically similar heteroaryl
groups, which have long proved to be difficult by many other
literature-known chiral catalysts. No currently available steric
or stereoelectronic theories seem to be capable of providing a
self-consistent as well as predictive rationale that could
comfortably account for the observed high levels of ee’s and
origin of asymmetric inductions, and a detailed investigation
on the topic is forthcoming.
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