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KOAc-Catalyzed one-pot three-component 1,3-dipolar cycloaddition 

of α-diazo compounds, nitrosoarenes, and alkenes: an approach to 

functionalized isoxazolidines

Xing Li,* Tao Feng, Dongjun Li, Honghong Chang, Wenchao Gao and Wenlong Wei

College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, 

Taiyuan 030024, People’s Republic of China.

ABSTRACT: A direct, highly efficient KOAc-catalyzed one-pot three-component approach for 

the preparation of various functionalized isoxazolidines via the 1,3-dipolar cycloaddition reactions 

of readily accessible diazo compounds, nitrosoarenes and alkenes has been reported. The cheap 

and readily available catalyst and starting materials, excellent functional group compatibility, wide 

substrate scope, high yields, and excellent chemo-, region- and diastereo-selectivities make this 

protocol an attractive alternative.
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■ INTRODUCTION

Environmentally benign transformations and cost-effective strategies have become the target in modern 

synthetic organic chemistry. Catalysis plays a crucial role for this purpose, and the development of one-pot 

multicomponent routes becomes of great interest and importance. Therefore, the developing an efficient 

transition-metal-free one-pot multicomponent approach that allows for using a cheap and readily available 

catalyst for the synthesis of target products is highly desirable.
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Isoxazolidines represent a class of important and powerful heterocyclic skeletons frequently found in 

many biologically active natural products and medicinal molecules.1 In addition, a number of molecules 

containing isoxazolidine ring have attracted much attention as nucleoside analogues.2 Isoxazolidines are also 

vital and versatile intermediates3 due to the ease of N−O bond cleavage, which could be further converted to 

β-amino acids,4 β-lactams1a and 3-amino alcohols5 via the reductive cleavage of N−O bonds. Therefore, it is 

not surprising that great effort has been devoted to the development of novel, efficient and practical methods 

for the construction of isoxazolidines,6, 1a including cycloadditions of hydroxylamines with alkenes,7 

cycloadditions of oxaziridines with olefins or arynes,8 cycloadditions of O-silyloxime with alkenes,9 

cycloaddition of cyclopropanes with nitrosoarenes,10 annulation of 2-nitrosopyridine with allylstannanes,11 

cascade reaction of N-alkoxyazomethine ylides,12 reaction of oxime ethers and cyclopropane diesters,13 

nitrone cycloadditions of 1,2-cyclohexadiene,14 and others.15 Although these approaches have proven to be of 

importance, the most popular and conventional methods are the [3+2] cycloadditions of nitrones with 

alkenes (Scheme 1A).16-18 However, these methods generally involve the use of transition-metals and 

complex nitrones which require a separate preparation step. In the past decades, more atom-economical 

one-pot multi-component reactions have been observed for the synthesis of various compounds, which play 

an increasingly important role in organic synthesis. Bhattacharya, Liu, Zhong and Córdova developed 

asymmetric three-component methods of aldehydes, aryl hydroxylamine (complex substrates) and olefins to 

access diverse chiral isoxazolidines, respectively.19 Additionally, one-pot strategies of diazo compounds, 

nitrosoarenes and olefins were also well documented to construct this scaffold by Tan and Molander, 

respectively, and the former is an example of asymmetric catalysis.20 Liu and Huang independently 

demonstrated three-component processes of arylenes, functionalized olefins (complicated substrates) and 

nitrosoarenes for the construction of isoxazolidines, too.21 Despite the success of these important and 

valuable multi-component methods, more efficient methods with better results making use of easily 

accessible and cheap starting materials is still highly appealing. In this context, Che,22 Liu23 and their 

co-workers reported the 1,3-dipolar cycloaddition to synthesize various functionalized isoxazolidines via the 

ruthenium porphyrin and [IPrAuCl]/AgNTf2 catalyzed three-component reactions of diazo compounds, 

nitrosoarenes and alkenes, respectively (Scheme 1B). Typically, these two strategies also require the 

utilization of transition-metal catalysts which still suffer from high cost and complicated purifying 

procedures. It is notable that developing transition-metal-free multicomponent approaches have attracted 

intense interest and increasing attention. Recently, trifluoromethanesulfonic acid catalyzed three-component 
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cycloaddition of diazo compounds, nitrosoarenes and alkenes for access to isoxazolidines has been described 

by Zhong24 and co-workers (Scheme 1C). Nevertheless, the use of a strong acid greatly lowered the 

functional group tolerance, reduced the substrate scope and significantly limited its application, and the 

reaction yields were not high enough for some substrates. On the other hand, to the best of our knowledge, 

the examples that sterically hindered 1,1-disubstituted olefins are used as substrates in three-component 

routes are not observed. Therefore, the development of a more efficient transition-metal-free 

three-component strategy to isoxazolidines which allows for employing readily available, inexpensive and 

environmentally benign catalysts with broader substrate scope and high functional group compatibility is 

highly desirable. Potassium acetate (KOAc) is an abundant, cheap and nontoxic reagent. To the best of our 

knowledge, however, the utilization of KOAc as a catalyst in organic synthesis has received less attention. 

Herein, we will report a KOAc-catalyzed, atom- and step-economic one-pot three-component cycloaddition 

of diazo compounds, nitrosoarenes and alkenes for the synthesis of functionalized isoxazolidines without the 

need of any transition metal as a catalyst, in which broader substrate scope and better results were observed.
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Scheme 1. Different Strategies to Construct Functionalized Isoxazolidines
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■ RESULTS AND DISCUSSION

Initially, the cycloaddition of ethyl diazoacetate (EDA, 1a), nitrosobenzene 2a and styrene 3a was selected 

as the model reaction to evaluate catalysts. Gratifyingly, 75% yield could be obtained when 10 mol% KOAc 

was employed as a catalyst (Table 1, entry 1). Encouraged by this preliminary result, we screened the effect 

of different bases such as t-BuOK, KOH, K2CO3, K3PO4 and DBU. However, no better results were 

observed. Strong bases (t-BuOK, KOH) indicated inferior catalytic activities with trace amount of product 

4a (Table 1, entries 2−3), and K2CO3, K3PO4 and DBU catalyzed the reaction to give slightly lower yields 

compared to KOAc (Table 1, entries 4−6). Notably, only 8% yield was attained in the absence of a base, 

which suggested that the existence of a suitable base was crucial for this transformation (Table 1, entry 7). A 

series of solvents were then examined and DCE proved to be the best choice (Table 1, entry 1). The use of 

CH3CN, toluene and 1,4-dioxane provided the product 4a in somewhat lower yields (Table 1, entries 8−10). 

Other solvents such as CH3OH, THF and CH3NO2 were less effective and gave obviously lower yields 

(Table 1, entries 11−13). To our delight, reducing the amount of KOAc to 5 mol% did not affect the yield 

(Table 1, entry 14). However, the adjustment of reaction temperature resulted in no further improvement in 

yields (Table 1, entries 15 and 16 vs. 14). Moreover, the reaction proceeded more smoothly and gave the best 

yield when the 1a/2a/3a molar ratios were 1.2:1.2:1 (99%, Table 1, entry 17).

Table 1. Optimization of Reaction Conditionsa

N O

EtOOC

O

O
N2 +

NO

+
catalyst
solvent

1a 2a 3a 4a

entry catalyst solvent T (oC) yield of 4a (%)

1 KOAc DCE 50 75
2 t-BuOK DCE 50 trace
3 KOH DCE 50 trace
4 K2CO3 DCE 50 61
5 K3PO4 DCE 50 68
6 DBU DCE 50 62
7 --- DCE 50 8
8 KOAc CH3CN 50 74
9 KOAc MePh 50 73
10 KOAc 1,4-dioxane 50 70
11 KOAc CH3OH 50 53
12 KOAc THF 50 30
13 KOAc CH3NO2 50 28
14b KOAc DCE 50 75
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15b KOAc DCE 30 65
16b KOAc DCE 60 76
17c KOAc DCE 50 99
a Unless noted, all reactions were performed with 1a (0.1 
mmol), 2a (0.1 mmol), 3a (0.1 mmol) and 10 mol% of catalyst in 
1.0 mL of solvent for 24 h. b 5 mol% of KOAc was used and 48% 
yield was obtained when 2.5 mol% KOAc was utilized. c 
1a:2a:3a:KOAc = 1.2:1.2:1:0.05.

With the established optimal reaction conditions using KOAc as a catalyst in hand, we next evaluated the 

substrate scope of this transformation using a variety of different olefins 3, and the results are summarized in 

Scheme 2. Various styrenes bearing electron-donating groups such as methyl or electron-withdrawing 

groups such as fluoro, chloro, and bromo at any position, reacted well with 1a and 2a to afford the desired 

products 4a−4j in 83−99% yields with a single isomer or high diastereoselectivities, which demonstrated 

that the electronic and steric properties of substituents had little influence on the transformation. It should be 

noted that dimethyl substituted product 4e was obtained in 98% yield. Moreover, ethylenes substituted with 

a heteroaryl group such as 2-vinylpyridine and 4-vinylpyridine also worked well, giving the desired products 

4k and 4l in 90% yields with excellent diastereoselectivities, respectively. It was found that the sterically 

hindered 1-vinylnaphthalene and 2-vinylnaphthalene reacted smoothly to furnish the products 4m and 4n in 

82% and 83% yields with high diastereoselectivities, respectively. Gratifyingly, 1,2-disubstituted aryl 

alkenes such as (E)-chalcone and ethyl cinnamate could be converted successfully into the desired products 

4o and 4p with good yields and diastereoselectivities. Then, this process was extended to alkyl alkenes. 

When a variety of aliphatic terminal alkenes containing various functional groups were subjected to the 

transformation, high yields and diastereoselectivities were provided (4q−4v). Notably, the greater the 

distance between the functional group and C=C double bond of olefin is, the slightly lower the yield (4q vs. 

4r, and 4s vs. 4t). For 1,2-disubstituted aliphatic alkenes, not only (Z)-isomer but also (E)-isomer substrates 

were suitable for the reaction, affording the corresponding single isomer products 4w−4y in excellent yields. 

This catalytic method was well applicable to cyclic olefinic bond, too (4z).

Scheme 2. Scope of Various Dipolarophilesa,b
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4a, R6 = H, 99%
4b, R6 = 2-Me, 98%
4c, R6 = 3-Me, 98%
4d, R6 = 4-Me, 99%c

4e, R6 = 2,5-diMe, 98%
4f, R6 = 2-F, 89%, 91:9d

4g, R6 = 3-F, 88%, 89:11d

4h, R6 = 4-F, 84%, 86:14d

4i, R6 = 4-Cl, 84%, 87:13d

4j, R6 = 4-Br, 83%, 87:13d

4k, 90%, 95:5d 4l, 90% 4m, 82%, 90:10d 4n, 83%, 87:13d

4o, 88%, 89:11d 4p, 84%, 93:7d 4q, 99%

a Unless noted, all reactions were carried out with 1a (0.12 mmol), 2a (0.12 mmol), 3 (0.1 mmol) and 5 mol% of KOAc
as a catalyst in 1.0 mL of DCE at 50 oC for 24 h. b Isolated yield. c 60 oC was adopted. d The dr values were
determined by molar mass of isolated diastereomers. e cis-alkene was used. f trans-alkene was used.
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Subsequently, the scope of various nitrosoarenes 2 was investigated. As shown in Scheme 3, the electronic 

and steric effects of the substituents on the nitrosobenzene had little influence on the reaction yields. Both 

electron-rich (4aa−4ac) and electron-deficient (4ad−4af) groups on the phenyl ring of the nitrosobenzene 

were equally well tolerated, giving the corresponding products in good to high yields. With respect to 

diastereoselectivity, better results were observed for both meta- and para-substituted substrates compared to 

ortho-substituted substrates, which might be due to the steric hindrance. It was noteworthy that the 

heteroaryl nitroso compounds, such as 2-nitrosopyridine and 2-methyl-6-nitrosopyridine, were found to be 

compatible with these conditions, offering the corresponding single isomer products 4ag and 4ah in high 

yields, respectively. To our delight, single isomer products 4ai and 4aj could be obtained with good yields 

when dimethyl and dichloro substituted nitrosobenzenes were employed as substrates. Next, the examination 

of alkyl diazoacetate 1 revealed that the steric hindrance of ester groups did not obviously affect the 

transformation. The methyl diazoacetate and bulky t-butyl diazoacetate could provide the products 4ak and 

4al in excellent yields with high diastereoselectivities, respectively. Additionally, the diazoketone was 

suitable for this reaction with 67% yield and good diastereoselectivity, too (4am).

Scheme 3. Scope of Various Nitrosoarenes and α-Diazo Compoundsa,b
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4aa, R7 = 2-Me, 67%, 71:29c

4ab, R7 = 3-Me, 79%, 81:19c

4ac, R7 = 4-Me, 84%, 87:13c

4ad, R7 = 2-Cl, 74%, 75:25c

4ae, R7 = 3-Cl, 91%
4af, R7 = 4-Cl, 99%

4ag, 86% 4ah, 90% 4ai, 82%

4aj, 87%, 30 h 4ak, 95%, 97:3c 4al, 94% 4am, 67%, 89:11c

a Unless noted, all reactions were performed with 1 (0.12 mmol), 2 (0.12 mmol), 3a (0.1 mmol) and 5 mol%
of KOAc as a catalyst in 1.0 mL of DCE at 50 oC for 24 h. b Isolated yield. c The d.r. was determined by
molar mass of isolated diastereomers.
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To further demonstrate the utility of this method, more challenging 1,1-disubstituted olefins were 

examined as substrates which have never been explored in three-component system. As listed in Scheme 4, 

all examined substrates afforded the desired products 4an−4ar in 84−90% yields. 87%, 90% and 88% yields 

were obtained when methacrylaldehyde, methyl methacrylate and ethyl methacrylate were employed as 

substrates, respectively (4an−4ap). Interestingly, the presence of a or even two large phenyl groups did not 

impede this reaction affording the corresponding products 4aq and 4ar in 86% and 84% yields, respectively. 

These results demonstrated that electronic effect of functional groups played a more important role than 

steric effect for 1,1-disubstituted olefins and the stronger the electron-withdrawing ability of substituents 

was, the higher the yield.

Scheme 4. Investigation of Various 1,1-Disubstituted Olefinsa,b
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a all reactions were performed with 1a (0.12 mmol), 2a (0.12 mmol), 3 (0.1 mmol) and 5 mol% of
KOAc as a catalyst in 1.0 mL of DCE at 50 oC for 24 h. b Isolated yield. c The d.r. value was
determined by molar mass of isolated diastereomers.
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Lactones, lactams and their derivatives have received considerable attention because of their presence in 

numerous compounds of biological interest and their importance as drugs and biological agents. Bicyclic 

isoxazolidines containing lactone or lactam belong to this type of useful molecular scaffolds. Subsequently, 

this newly developed method was investigated and applied in the synthesis of these two kinds of 

isoxazolo-bicycles. The reaction of allyl α-diazoacetate 6 with 2a proceeded smoothly under the standard 

conditions, giving the targeted bicyclic isoxazolidine 7 in 83% yield (Scheme 5, eq 1). Compared with 6, 
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allylamine α-diazoacetate 8 was more reactive as a substrate and offered the desired product 9 in 81% yield 

(Scheme 5, eq 2).

N2

O

O
+

N
Ph

O KOAc (5 mol%)
DCE, 50 oC, 48 h

O
N

Ph

N2

O

N +
N
Ph

O KOAc (5 mol%)

DCE, 50 oC, 8 h
O

N

N

Ph O
yield: 81%

O

O
yield: 83%6 2a 7

8 2a 9

(1)

(2)

Scheme 5.  Synthetic Applications of This Approach

To demonstrate the synthetic potential of this present approach, two selected reactions were performed on 

a 1.0 mmol scale of starting materials. As shown in Scheme 6, in the presence of 5 mol% KOAc, 4a was 

obtained in 97% yield via the reaction of 1.0 mmol of styrene 3a with 1.2 equiv. of 1a and 2a (Scheme 6, eq 

1). Additionally, the reaction of 1.0 mmol of styrene 3a with 1.2 equiv. of 1a and 2c could provide 4ab as 

the major isomer product with 76% yield and 4:1 dr (Scheme 6, eq 2).

N
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O
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5 mol% KOAc
DCE (5 mL)
50 oC

1a 2a 3a 4a, 97% yield

Ph
N O
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DCE (5 mL)
50 oC

1a 2c 3a 4ab, 76% yield, dr = 4:1

Ph

Ph
N O

H3C

H3C

(1)

(2)

Scheme 6. 1.0 mmol-Scale Version

To probe the importance of the hydrogen on the α-carbon atom of α-diazocarbonyl compounds 1 in this 

reaction, the three-component cycloaddition of 2-diazo-1-phenyl-1,3-butanedione 1f which lacks the 

hydrogen on the α-carbon atom, nitrosobenzene 2a and styrene 3a was carried out under the standard 

reaction conditions. The fact that no corresponding isoxazolidine was detected strongly suggested the 

existence of the hydrogen on the α-carbon atom was crucial for this process (Scheme 7, eq 1). In addition, as 

shown in Table 1, weak bases as catalysts proved to be more efficient, and out of those weak bases examined, 

KOAc showed better catalytic activity. To gain an insight into the role of KOAc, several control experiments 

were next carried out. The nitrone intermediate 10a was successfully obtained when the reaction of EDA 1a 

with nitrosobenzene 2a was performed using KOAc or KOH as a catalyst (Scheme 7, eq 2, entries 1 and 2).25 

However, only 18% yield of 10a was attained in the absence of any catalyst (Scheme 7, eq 2, entry 3). So the 
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first role of the base such as KOAc or KOH might promote the deprotonation of EDA 1a and facilitate the 

followed generation of intermediate 10a. Subsequently, when the styrene 3a was added to these three 

reaction systems and stirred for another 3 h, the desired product 4a was obtained in 74% yield for KOAc 

system (Scheme 7, eq 2, entry 1). However, KOH catalytic system gave trace amount of 4a and only 5% 

yield was offered in the absence of any catalyst (Scheme 7, eq 2, entries 2 and 3). These three results 

indicated the high importance of KOAc during the course of the cyclization. Additionally, only 14% yield of 

4a was obtained if KOAc was removed before styrene 3a was added (Scheme 7, eq 2, entry 4), and the 

reaction of the prepared intermediate 10a with styrene 3a also offered only 11% yield in the absence of 

KOAc (Scheme 7, eq 4), which further demonstrated the essential role of KOAc in this step. For justifying 

the exact role of K+ and AcO−, NaOAc, CsOAc and Ca(OAc)2 were utilized as catalysts to realize the 

reaction, and 72%, 77% and 68% yields were provided (Scheme 7, eq 2, entries 5−7), respectively, which 

demonstrated that AcO− really play an important role in this reaction. In contrast, it was observed that the 

reaction of 1f and 2a failed to result in the desired nitrone intermediate in the presence of 5 mol% KOAc 

(Scheme 7, eq 3), which may be the reason why no final cycloaddition product was detected after the styrene 

was added. At the same time, the reaction of the intermediate 10a with styrene 3a could proceed very 

smoothly in the presence of KOAc and up to 98% yield of the desired product 4a was obtained (Scheme 7, 

eq 5), suggesting that intermediate 10a is key active intermediate of this multicomponent reaction. All these 

experiments clearly revealed that AcO− was indispensable, and the in situ formation of the active nitrone 

intermediate is crucial.

N2

O O

Ph N
Ph

O

Ph
+ +

KOAc (5 mol%)
DCE, 50 oC

no desired product

N2
COOEt

+ N
Ph

O Catalyst (5 mol%)
DCE, 50 oC, 12 h N

O

Ph
EtOOC

Ph N
OPh

EtOOC

Ph

3 h

1a 2a intermiderate 10a 4a

H

1f 2a 3a

(3a)

(1)

(2)

N2

O O

Ph N
Ph

O
+

KOAc (5 mol%)
DCE, 50 oC

no nitrone intermediate

1f 2a

Ph
3 h

(3a)
no product (3)

entry catalyst yield of 10a yield of 4a
1 KOAc 72% 74%
2 KOH 69% trace
3 --- 18% 5%
4 KOAc 72% 14%
5 NaOAc 69% 72%
6 CsOAc 74% 77%
7 Ca(OAc)2 63% 68%
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N
O
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EtOOC

Ph

N
OPh

EtOOC

PhDCE, 50 oC, 20 h

10a (1.1 equiv) 3a (0.1 mol) 4a, 11% yield

+ (4)

N
O

Ph
EtOOC

Ph

N
OPh

EtOOC

Ph

DCE, 50 oC, 20 h

10a (1.1 equiv) 3a (0.1 mol) 4a, 98% yield

+
KOAc (5 mol%)

(5)

KOAc

Scheme 7. Control Experiments

On the basis of the aforementioned experimental results and corresponding literatures26, a plausible 

mechanism is proposed in Scheme 8. Initially, the intermediate A is provided from the starting material 1 via 

a deprotonation reaction process in the presence of 5 mol% of KOAc. Then, the intermediate A reacts with 

nitrosobenzen 2a to form the intermediate B which further was protonated with H+ to generate the 

intermediate C that might be transformed to D. Subsequently, active nitrone intermediate E is smoothly 

formed through D with the releasion of N2.25 At last, this in situ generated nitrone E undergoes 1,3- dipolar 

cycloaddition reaction with the alkene 3 to afford the final product isoxazolidine 4. So KOAc first might 

activate diazo ester to react with nitrosobenzene and promote subsequent cleavage of diazo group to generate 

the nitrone intermediate. At the same time, it also facilitated the 1,3-dipolar cycloaddition to afford the 

corresponding isoxazolidines.

R
O

O
N2

KOAc

R
O

O

N
N PhNO

- N2
R

O

O
N

O

Ph

A

B

N O
Ph

ROOC B

A

1 A B

3

2a
H

H

- H+
R

O

O
N

O

Ph

N
N

R
O

O
N

O

Ph

N
NH

R
O

O
N

O

Ph

N
N

H

+ H+

C D E 4

Scheme 8. Proposed Mechanism

■ CONCLUSION

In summary, we have developed a low-cost, highly atom-economical KOAc-catalyzed one-pot 

three-component strategy to synthesize functionalized isoxazolidine derivatives via the cycloaddition of 

readily accessible diazo compounds, nitrosoarenes and alkenes as starting materials. The transformation 

showed broad substrate scope and good functional group tolerance, and was very suitable for 
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sterically-hindered 1,1-disubstituted olefines. More importantly, with only 5 mol% KOAc, most products 

were provided in high yields and excellent diastereoselectivities under mild reaction conditions.

■ EXPERIMENTAL SECTION

General Information. 1H NMR spectra were taken on a Bruker AVANCE III 600 MHz NMR 

spectrometers. The chemical shifts are reported in ppm downfield to the CDCl3 resonance (δ = 

7.27). Spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, 

t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration, and assignment. 13C 

NMR data were collected at 150 MHz with complete proton decoupling. The chemical shifts are 

reported in ppm downfield to the central CDCl3 resonance (δ = 77.0). High-resolution mass 

spectra were performed on a micrOTOF-Q II instrument with an ESI source. Melting points were 

measured with a RD-II melting point apparatus and are uncorrected. Unless otherwise noted, all 

reagents and solvents obtained from commercial sources were used without further purification. 

Deuterated solvents were purchased from Sigma–Aldrich. Column chromatography was 

performed on silica gel (200-300 mesh). All yields were referred to isolated yields (average of two 

runs) of compounds.

General procedure for KOAc-catalyzed three-component cycloaddition of α-diazo 

compounds, nitrosoarenes and alkenes. To a reaction system of nitrosoarene 2 (0.12 mmol), 

α-diazo compound 1 (0.12 mmol) and KOAc (0.5 mg, 0.005 mmol, 5 mol%) in DCE (1.0 mL) 

was added alkene 3 (0.1 mmol). Subsequently, the resultant solution was stirred at 50 oC (oil bath) 

and monitored by TLC. Upon completion of consumption of alkene, the reaction mixture was 

purified by silica gel column chromatography to give the corresponding cycloaddition product.

1.0 mmol-Scale preparation of 4a. To a reaction system of nitrosobenzene 2a (129.0 mg, 1.2 

mmol), EDA 1a (136.8 mg, 1.2 mmol) and KOAc (5.0 mg, 0.05 mmol, 5 mol%) in DCE (3.0 mL) 

was added styrene 3a (115.8 μL, 1.0 mmol). The resultant solution was then stirred at 50 oC (oil 

bath) for 24 h. At last, the reaction mixture was purified by silica gel column chromatography to 

give the product 4a (288.3 mg, 97% isolated yield).

1.0 mmol-Scale preparation of 4ab. To a reaction system of 1-methyl-3-nitrosobenzene (145.3 

mg, 1.2 mmol), EDA 1a (136.8 mg, 1.2 mmol) and KOAc (5.0 mg, 0.05 mmol, 5 mol%) in DCE 

(3.0 mL) was added styrene 3a (115.8 μL, 1.0 mmol). The resultant solution was then stirred at 50 
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oC (oil bath) for 24 h. At last, the reaction mixture was purified by silica gel column 

chromatography to give the product 4ab (236.5 mg, 76% isolated yield, dr = 4:1).

The KOAc-catalyzed reaction of EDA 1a with nitrosobenzene 2a. To the mixture system of 

nitrosobenzene 2a (21.5 mg, 0.2 mmol) and 5 mol% KOAc (1.0 mg, 0.01 mmol) in DCE (1.0 mL) 

was added EDA 1a (22.8 mg, 0.2 mmol). Subsequently, the resultant solution was stirred at 50 oC 

(oil bath) for 24 h and the reaction mixture was purified by silica gel column chromatography to 

give the corresponding nitrone intermediate 10a. 1H NMR of the intermediate indicated that the 

nitrone 10a had been formed (See Supporting Information).

Characterization Data of All Products.

Ethyl 2,5-diphenylisoxazolidine-3-carboxylate (4a). Yellow oil (99% yield, 29.5 mg), 1H NMR 

(CDCl3, 400 MHz), δ 1.34 (t, J = 7.1 Hz, 3H), 2.72-2.79 (m, 1H), 2.88-2.95 (m, 1H), 4.28 (q, J = 

7.1 Hz, 2H), 4.50 (dd, J = 8.9, 5.8 Hz, 1H), 5.04 (dd, J = 9.4, 6.8 Hz, 1H), 7.00 (t, J = 7.3 Hz, 1H), 

7.14 (d, J = 7.8 Hz, 2H), 7.29-7.35 (m, 2H), 7.36-7.41 (m, 3H), 7.48-7.51 (m, 2H) ppm; 13C{1H} 

NMR (CDCl3, 100 MHz), δ 13.2, 40.2, 60.8, 67.6, 79.1, 113.1, 121.1, 126.1, 127.6, 127.6, 128.1, 

136.3, 150.2, 170.5 ppm; HRMS (ESI) m/z: [M + Na]+ Calcd for C18H19NNaO3 320.1257; found 

320.1261.

Ethyl 2-phenyl-5-(o-tolyl)isoxazolidine-3-carboxylate (4b). Yellow oil (98% yield, 30.5 mg), 

1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 3H), 2.32 (s, 3H), 2.62-2.69 (m, 1H), 2.91-2.98 

(m, 1H), 4.27 (q, J = 7.2 Hz, 2H), 4.52 (dd, J = 9.0, 5.8 Hz, 1H), 5.24 (dd, J = 9.4, 6.8 Hz, 1H), 

7.00 (t, J = 7.3 Hz, 1H), 7.14-7.18 (m, 3H), 7.21-7.27 (m, 2H), 7.30-7.34 (m, 2H), 7.68-7.70 (m, 

1H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 19.5, 40.7, 61.9, 68.6, 80.3, 114.1, 122.1, 

125.9, 126.5, 128.1, 129.2, 130.4, 135.8, 151.2, 171.5 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for 

C19H22NO3 312.1594; found 312.1599.

Ethyl 2-phenyl-5-(m-tolyl)isoxazolidine-3-carboxylate (4c). Yellow oil (98% yield, 30.6 mg), 

1H NMR (CDCl3, 400 MHz), δ 1.35 (t, J = 6.8 Hz, 3H), 2.38 (s, 3H), 2.71-2.79 (m, 1H), 2.84-2.94 

(m, 1H), 4.29 (q, J = 7.0 Hz, 2H), 4.51 (t, J = 7.5 Hz, 1H), 5.03 (t, J = 8.3 Hz, 1H), 7.00 (t, J = 7.3 

Hz, 1H), 7.14 (d, J = 8.0 Hz, 3H), 7.25-7.34 (m, 5H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 

14.2, 21.5, 41.3, 61.9, 68.7, 80.3, 114.2, 122.1, 124.2, 127.7, 128.6, 129.2, 137.2, 138.4, 151.3, 

171.6 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C19H22NO3 312.1594; found 312.1599.

Ethyl 2-phenyl-5-(p-tolyl)isoxazolidine-3-carboxylate (4d). Yellow oil (99% yield, 30.9 mg), 

Page 12 of 27

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1H NMR (CDCl3, 400 MHz), δ 1.34 (t, J = 7.2 Hz, 3H), 2.36 (s, 3H), 2.70-2.77 (m, 1H), 2.85-2.92 

(m, 1H), 4.29 (q, J = 7.1 Hz, 2H), 4.49 (dd, J = 8.9, 6.0 Hz, 1H), 5.00 (dd, J = 9.6, 6.7 Hz, 1H), 

7.00 (t, J = 7.3 Hz, 1H), 7.14 (d, J = 7.8 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.29 (dd, J = 8.7, 7.4 

Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 21.3, 41.2, 61.9, 

68.7, 80.2, 114.2, 122.0, 127.2, 129.2, 129.3, 134.2, 138.5, 151.3, 171.6 ppm; HRMS (ESI) m/z: 

[M + H]+ Calcd for C19H22NO3 312.1594; found 312.1598.

Ethyl 5-(2,5-dimethylphenyl)-2-phenylisoxazolidine-3-carboxylate (4e). Yellow oil (98% yield, 

32.0 mg), 1H NMR (CDCl3, 400 MHz), δ 1.34 (t, J = 7.1 Hz, 3H), 2.27 (s, 3H), 2.35 (s, 3H), 

2.60-2.68 (m, 1H), 2.89-2.97 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.51 (dd, J = 8.9, 6.0 Hz, 1H), 

5.20 (dd, J = 9.6, 6.6 Hz, 1H), 6.98 (t, J = 7.3 Hz, 1H), 7.02-7.09 (m, 2H), 7.14 (dd, J = 8.7, 1.0 

Hz, 2H), 7.29-7.35 (m, 2H), 7.51 (s, 1H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 19.0, 

21.2, 40.3, 61.9, 68.7, 76.9, 114.1, 122.0, 126.4, 128.8, 129.2, 130.3, 132.3, 135.4, 136.0, 151.4, 

171.6 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C20H24NO3 326.1751; found 326.1753.

Ethyl 5-(2-fluorophenyl)-2-phenylisoxazolidine-3-carboxylate (4f). Yellow oil (89% isolated 

yield, 28.2 mg, dr = 91:9), 1H NMR (CDCl3, 400 MHz), δ 1.32 (t, J = 7.2 Hz, 3H), 2.67-2.75 (m, 

1H), 2.93-3.01 (m, 1H), 4.26 (q, J = 7.2 Hz, 2H), 4.52 (dd, J = 9.9, 5.4 Hz, 1H), 5.37 (dd, J = 8.8, 

7.4 Hz, 1H), 6.99-7.02 (m, 1H), 7.03-7.09 (m, 1H), 7.14 (dd, J = 8.6, 0.9 Hz, 2H), 7.18 (td, J = 7.7, 

1.1 Hz, 1H), 7.28-7.35 (m, 3H) , 7.68 (td, J = 7.5, 1.7 Hz, 1H) ppm; 13C{1H} NMR (CDCl3, 100 

MHz), δ 14.2, 39.8, 61.9, 68.6, 73.3, 73.4, 114.2, 115.2 (d, J = 21.2 Hz), 122.3, 124.4 (d, J = 3.5 

Hz), 127.7 (d, J = 3.7 Hz), 129.2, 129.8 (d, J = 8.1 Hz), 150.9, 159.1 (d, J = 245.1 Hz), 171.3 ppm; 

HRMS (ESI) m/z: [M + H]+ Calcd for C18H19FNO3 316.1343; found 316.1348.

Ethyl 5-(3-fluorophenyl)-2-phenylisoxazolidine-3-carboxylate (4g). Yellow oil (88% isolated 

yield, 27.7 mg, dr = 89:11), 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 3H), 2.67-2.75 (m, 

1H), 2.88-2.96 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.50 (dd, J = 8.9, 5.5 Hz, 1H), 5.06 (dd, J = 9.0, 

7.1 Hz, 1H), 6.99-7.06 (m, 2H), 7.13 (dd, J = 8.6, 0.9 Hz, 2H), 7.22-7.26 (m, 2H), 7.29-7.38 (m, 

3H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 41.0, 61.9, 68.5, 79.3, 79.4, 113.8 (d, J = 

22.1 Hz), 114.2, 115.3 (d, J = 21.0 Hz), 122.3, 122.6 (d, J = 2.9 Hz), 129.2, 130.1 (d, J = 8.1 Hz), 

140.1 (d, J = 7.3 Hz), 150.9, 161.7 (d, J = 244.8 Hz), 171.3 ppm; HRMS (ESI) m/z: [M + H]+ 

Calcd for C18H19FNO3 316.1343; found 316.1348.

Ethyl 5-(4-fluorophenyl)-2-phenylisoxazolidine-3-carboxylate (4h). Yellow oil (84% isolated 
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yield, 26.5 mg, dr = 86:14), 1H NMR (CDCl3, 400 MHz), δ 1.34 (t, J = 7.1 Hz, 3H), 2.68-2.76 (m, 

1H), 2.85-2.93 (m, 1H), 4.28 (qd, J = 7.1, 0.7 Hz, 2H), 4.50 (dd, J = 8.9, 5.6 Hz, 1H), 5.03 (dd, J = 

9.2, 7.0 Hz, 1H), 7.0 (t, J = 7.3 Hz, 1H), 7.05 (t, J = 8.7 Hz, 2H), 7.12-7.16 (m, 2H), 7.29-7.35 (m, 

2H), 7.45-7.51 (m, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 41.1, 61.9, 79.6, 114.2, 

115.4 (d, J = 21.6 Hz), 122.2, 128.9 (d, J = 8.4 Hz), 129.2, 133.1 (d, J = 3.2 Hz), 151.0, 161.6 (d, J 

= 245.7 Hz), 171.5 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C18H19FNO3 316.1343; found 

316.1356.

Ethyl 5-(4-chlorophenyl)-2-phenylisoxazolidine-3-carboxylate (4i). Yellow oil (84% isolated 

yield, 27.9 mg, dr = 87:13), {lit.22c: Oil, 77% yield, dr = 80:20}, 1H NMR (CDCl3, 600 MHz), δ 

1.34 (t, J = 7.1 Hz, 3H), 2.68-2.73 (m, 1H), 2.87-2.93 (m, 1H), 4.29 (qd, J = 7.1, 1.5 Hz, 2H), 4.51 

(dd, J = 9.0, 5.5 Hz, 1H), 5.04 (dd, J = 9.2, 7.0 Hz, 1H), 7.01 (t, J = 7.3 Hz, 1H), 7.13-7.15 (m, 

2H), 7.31 (dd, J = 8.7, 7.4 Hz, 2H), 7.35-7.38 (m, 2H), 7.43 (dt, J = 8.9, 2.3 Hz, 2H) ppm.

Ethyl 5-(4-bromophenyl)-2-phenylisoxazolidine-3-carboxylate (4j). Yellow oil (83% isolated 

yield, 31.2 mg, dr = 87:13), {lit.22c: Oil, 63% yield, dr = 82:18}, 1H NMR (CDCl3, 400 MHz), δ 

1.33 (t, J = 7.2 Hz, 3H), 2.66-2.73 (m, 1H), 2.86-2.94 (m, 1H), 4.28 (q, J = 7.2 Hz, 2H), 4.50 (dd, 

J = 8.9, 5.5 Hz, 1H), 5.02 (dd, J = 9.0, 7.2 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 7.8, 2H), 

7.30 (dd, J = 8.5, 7.5 Hz, 2H), 7.36 (d, J = 8.4, 2H), 7.51 (d, J = 8.4 Hz, 2H) ppm.

Ethyl 2-phenyl-5-(pyridin-2-yl)isoxazolidine-3-carboxylate (4k). Yellow oil (90% isolated 

yield, 26.9 mg, dr = 95:5), 1H NMR (CDCl3, 400 MHz), δ 1.27 (t, J = 7.0 Hz, 3H), 2.84-2.92 (m, 

1H), 2.93-3.06 (m, 1H), 4.22 (q, J = 7.0 Hz, 2H), 4.49 (dd, J = 8.8, 4.8 Hz, 1H), 5.31 (t, J = 7.1 Hz, 

1H), 7.02 (t, J = 7.3 Hz, 1H), 7.16 (d, J = 8.1 Hz, 2H), 7.22-7.28 (m, 1H), 7.32 (t, J = 7.6 Hz, 2H), 

7.66-7.77 (m, 2H), 8.55 (d, J = 4.7, 1H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.1, 39.5, 

61.7, 80.4, 114.5, 121.0, 122.4, 123.1, 129.1, 136.9, 149.0, 150.8, 158.3, 171.3 ppm; HRMS (ESI) 

m/z: [M + H]+ Calcd for C17H19N2O3 299.1390; found 299.1395.

Ethyl 2-phenyl-5-(pyridin-4-yl)isoxazolidine-3-carboxylate (4l). Yellow oil (90% yield, 26.9 

mg), 1H NMR (CDCl3, 400 MHz), δ 1.31 (t, J = 7.1 Hz, 3H), 2.66-2.73 (m, 1H), 2.91-2.99 (m, 

1H), 4.25 (q, J = 7.1 Hz, 2H), 4.52 (dd, J = 8.7, 5.0 Hz, 1H), 5.11 (t, J = 8.0 Hz, 1H), 7.03 (t, J = 

7.3 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.40 (d, J = 4.9 Hz, 2H), 8.62 (d, J 

= 4.8 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.1, 40.5, 62.0, 68.2, 78.2, 114.3, 121.5, 

122.6, 129.3, 147.1, 150.2, 150.6, 171.0 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C17H19N2O3 
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299.1390; found 299.1399.

Ethyl 5-(naphthalen-1-yl)-2-phenylisoxazolidine-3-carboxylate (4m). Yellow oil (82% isolated 

yield, 28.5 mg, dr = 90:10), 1H NMR (CDCl3, 400 MHz), δ 1.30 (t, J = 7.2 Hz, 3H), 2.77-2.84 (m, 

1H), 3.10-3.18 (m, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.61 (dd, J = 8.9, 5.4 Hz, 1H), 5.79 (dd, J = 8.0, 

7.4 Hz, 1H), 7.03 (t, J = 7.2 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 7.32 (dd, J = 8.6, 7.4 Hz, 2H), 

7.48-7.54 (m, 3H), 7.82 (d, J = 8.2 Hz, 1H), 7.87-7.91 (m, 2H), 7.95-7.98 (m, 1H) ppm; 13C{1H} 

NMR (CDCl3, 100 MHz), δ 14.2, 29.7, 40.6, 61.8, 68.6, 77.0, 114.3, 122.2, 123.0, 123.4, 125.6, 

125.7, 126.3, 128.6, 128.8, 129.0, 129.3, 130.6, 133.6, 133.7, 151.2, 171.4 ppm; HRMS (ESI) m/z: 

[M + H]+ Calcd for C22H22NO3 348.1594; found 348.1592.

Ethyl 5-(naphthalen-2-yl)-2-phenylisoxazolidine-3-carboxylate (4n). White solid (83% isolated 

yield, 29.0 mg, dr = 87:13); mp 96-98 oC; 1H NMR (CDCl3, 400 MHz), δ 1.35 (t, J = 7.1 Hz, 3H), 

2.80-2.88 (m, 1H), 2.94-3.02 (m, 1H), 4.30 (q, J = 6.9 Hz, 2H), 4.57 (t, J = 7.2 Hz, 1H), 5.24 (t, J 

= 8.0 Hz, 1H), 7.02 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 7.9 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.50 (t, J 

= 3.3 Hz, 2H), 7.62 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 3.3 Hz, 2H), 7.87 (d, J = 8.7 Hz, 1H), 7.92 (s, 

1H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 41.2, 61.9, 68.7, 80.4, 114.2, 122.2, 124.5, 

126.5, 127.8, 128.0, 128.6, 129.2, 133.1, 133.4, 151.2, 171.6 ppm; HRMS (ESI) m/z: [M + H]+ 

Calcd for C22H22NO3 348.1594; found 348.1583.

Ethyl 4-benzoyl-2,5-diphenylisoxazolidine-3-carboxylate (4o). Yellow oil (88% isolated yield, 

35.3 mg, dr = 89:11), {lit.24: 82% yield, dr = 8:1}, 1H NMR (CDCl3, 600 MHz), δ 1.33 (t, J = 7.1 

Hz, 3H), 4.31-4.39 (m, 2H), 5.00 (d, J = 5.2 Hz, 1H), 5.04 (dd, J = 8.7, 5.2 Hz, 1H), 5.31 (d, J = 

8.8 Hz, 1H), 7.04 (t, J = 7.3 Hz, 1H), 7.18 (dd, J = 8.6, 1.0 Hz, 2H), 7.30-7.35 (m, 4H), 7.35-7.37 

(m, 3H), 7.45-7.49 (m, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.65 (dd, J = 8.5, 1.3 Hz, 2H) ppm.

Diethyl 2,5-diphenylisoxazolidine-3,4-dicarboxylate (4p). Yellow oil (84% isolated yield, 31.0 

mg, dr = 93:7), {lit.24: 75% yield, dr = 30:1}, 1H NMR (CDCl3, 400 MHz), δ 1.12 (t, J = 7.1 Hz, 

3H), 1.35 (t, J = 7.1 Hz, 3H), 4.04-4.09 (m, 3H), 4.33 (t, J = 6.8 Hz, 2H), 4.96 (d, J = 4.8 Hz, 1H), 

5.23 (d, J = 8.6 Hz, 1H), 7.01 (t, J = 7.3 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 7.32 (t, J = 7.9 Hz, 2H), 

7.37-7.43 (m, 3H), 7.52 (d, J = 6.8 Hz, 2H) ppm.

Ethyl-5-(hydroxymethyl)-2-phenylisoxazolidine-3-carboxylat (4q). Yellow oil (99% yield, 

24.9 mg), {lit.22c: 94% yield, dr = 95:5}, 1H NMR (CDCl3, 400 MHz), δ 1.32 (t, J = 7.0 Hz, 3H), 

2.43 (dd, J = 7.4, 5.3 Hz, 1H), 2.48-2.55 (m, 1H), 2.56-2.63 (m, 1H), 3.70-3.77 (m, 1H), 3.95 (d, J 
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= 12.4 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.38-4.43 (m, 1H), 4.43 (dd, J = 9.3, 4.1 Hz, 1H), 7.00 (t, 

J = 7.2 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.5 Hz, 2H) ppm.

Ethyl 5-(2-hydroxyethyl)-2-phenylisoxazolidine-3-carboxylate (4r). Yellow oil (95% yield, 

25.2 mg), {lit.22c: Oil, 88% yield, dr = 95:5}, 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 

3H), 2.00 (d, J = 6.0 Hz, 2H), 2.07 (s, 1H), 2.38-2.46 (m, 1H), 2.60-2.68 (m, 1H), 3.85 (s, 2H), 

4.25-4.31 (m, 3H), 4.35 (dd, J = 8.7, 7.2 Hz, 1H), 6.97 (t, J = 7.3 Hz, 1H), 7.05 (d, J = 8.1 Hz, 2H), 

7.29 (t, J = 7.7 Hz, 2H) ppm.

Ethyl 5-(bromomethyl)-2-phenylisoxazolidine-3-carboxylate (4s). Yellow oil (81% isolated 

yield, 25.4 mg, dr = 82:18), {lit.22c: Oil, 82% yield, dr = 95:5}, 1H NMR (CDCl3, 400 MHz), δ 

1.33 (t, J = 7.1 Hz, 3H), 2.53-2.69 (m, 2H), 3.53-3.65 (m, 2H), 4.26 (qd, J = 7.1, 2.2 Hz, 2H), 4.39 

(dd, J = 8.8, 4.4 Hz, 1H), 4.45-4.52 (m, 1H), 7.01 (t, J = 7.3 Hz, 1H), 7.07 (dd, J = 8.6, 0.9 Hz, 

2H), 7.27-7.33 (m, 2H) ppm.

Ethyl 5-(3-bromopropyl)-2-phenylisoxazolidine-3-carboxylate (4t). Brown oil (87% yield, 29.8 

mg), 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 3H), 1.87-1.95 (m, 2H), 1.96-2.05 (m, 

1H), 2.10-2.22 (m, 1H), 2.33-2.41 (m, 1H), 2.57-2.65 (m, 1H), 3.43-3.55 (m, 2H), 4.07-4.15 (m, 

1H), 4.26 (q, J = 7.1 Hz, 2H), 4.35 (dd, J = 8.9, 5.7 Hz, 1H), 6.97 (t, J = 7.2 Hz, 1H), 7.03 (d, J = 

8.3 Hz, 2H), 7.29 (t, J = 7.8 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 29.7, 31.3, 

33.4, 38.5, 61.8, 68.0, 77.6, 114.1, 121.9, 129.1, 151.1, 171.5 ppm; HRMS (ESI) m/z: [M + H]+ 

Calcd for C15H21BrNO3 342.0699; found 342.0698.

Ethyl 5-((methylthio)methyl)-2-phenylisoxazolidine-3-carboxylate (4u). Yellow oil (94% 

isolated yield, 26.4 mg, dr = 95:5), 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 3H), 2.24 (s, 

3H), 2.48-2.53 (m, 1H), 2.26-2.68 (m, 1H), 2.78 (dd, J = 13.9, 5.9 Hz, 1H), 2.88 (dd, J = 13.9, 6.4 

Hz, 1H), 4.25-4.32 (m, 2H), 4.34-4.37 (m, 1H), 4.37 (dd, J = 9.0, 5.2 Hz, 1H), 6.97 (td, J = 8.2, 

0.9 Hz, 1H), 7.07 (dd, J = 8.6, 1.0 Hz, 2H), 7.27-7.32 (m, 2H) ppm; 13C{1H} NMR (CDCl3, 150 

MHz), δ 17.1, 19.6, 39.2, 40.8, 64.7, 70.9, 81.6, 117.2, 125.1, 131.9, 153.8, 174.2 ppm; HRMS 

(ESI) m/z: [M + H]+ Calcd for C14H20NO3S 282.1158; found 282.1160.

Ethyl 2-phenyl-5-(propionyloxy)isoxazolidine-3-carboxylate (4v). Yellow oil (96% isolated 

yield, 28.2 mg, dr = 97:3), 1H NMR (CDCl3, 400 MHz), δ 1.14 (t, J = 7.5 Hz, 3H), 1.35 (t, J = 7.2 

Hz, 3H), 2.33-2.41 (m, 2H), 2.73-2.85 (m, 2H), 4.20 (dd, J = 8.9, 3.7 Hz, 1H), 4. 27-4.38 (m, 2H), 

6.63 (d, J = 5.0 Hz, 1H), 7.04 (t, J = 7.0 Hz, 1H), 7.09 (d, J = 8.2 Hz, 2H), 7.27-7.32 (m, 2H) ppm; 
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13C{1H} NMR (CDCl3, 100 MHz), δ 8.7, 14.2, 27.6, 38.4, 62.0, 66.7, 94.4, 116.0, 123.4, 128.8, 

150.1, 170.3, 173.5 ppm; HRMS (ESI) m/z: [M + Na]+ Calcd for C15H19NNaO5 316.1155; found 

316.1168.

3-ethyl 4,5-dimethyl 2-phenylisoxazolidine-3,4,5-tricarboxylate (4w). Yellow oil (99% isolated 

yield, 33.4 mg), {lit.24: 98% yield}, 1H NMR (CDCl3, 400 MHz), δ 1.31 (t, J = 7.1 Hz, 3H), 3.52 

(s, 3H), 3.68 (s, 3H), 4.26-4.33 (m, 2H), 4.33 (d, J = 7.1 Hz, 1H), 4.79 (d, J = 6.9 Hz, 1H), 5.01 (d, 

J = 7.4 Hz, 1H), 6.98 (t, J = 7.3 Hz, 1H), 7.13 (d, J = 8.2 Hz, 2H), 7.27 (t, J = 7.6 Hz, 2H) ppm.

3-ethyl 4,5-dimethyl 2-phenylisoxazolidine-3,4,5-tricarboxylate (4x). Yellow oil (96% isolated 

yield, 32.5 mg), {lit.24: 90% yield, dr = 20:1}, 1H NMR (CDCl3, 400 MHz), δ 1.32 (t, J = 7.1 Hz, 

3H), 3.61 (s, 3H), 3.86 (s, 3H), 4.28 (td, J = 7.2, 2.7 Hz, 2H), 4.34 (dd, J = 5.0, 3.9 Hz, 1H), 4.82 

(d, J = 3.4 Hz, 1H), 5.13 (d, J = 5.4 Hz, 1H), 7.04 (t, J = 7.3 Hz, 1H), 7.11 (d, J = 8.2 Hz, 2H), 

7.30 (t, J = 7.8 Hz, 2H) ppm.

Triethyl 2-phenylisoxazolidine-3,4,5-tricarboxylate (4y). Yellow oil (99% isolated yield, 36.2 

mg), {lit.24: 77% yield, dr = 20:1}, 1H NMR (CDCl3, 400 MHz), δ 1.03 (t, J = 7.1 Hz, 3H), 1.18 (t, 

J = 7.1 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H), 3.80-3.99 (m, 2H), 4.10 (dd, J = 7.1, 2.5 Hz, 2H), 

4.26-4.37 (m, 3H), 4.78 (d, J = 7.2 Hz, 1H), 4.97 (d, J = 7.4 Hz, 1H), 6.97 (t, J = 7.3 Hz, 1H), 7.14 

(d, J = 7.8 Hz, 2H), 7.24-7.29 (m, 2H) ppm.

Ethyl 4,6-dioxo-2,5-diphenylhexahydro-2H-pyrrolo[3,4-d]isoxazole-3-carboxylate (4z). 

Colourless oil (81% isolated yield, 29.7 mg), {lit.22c: 91% yield, dr = 95:5}, 1H NMR (CDCl3, 400 

MHz), δ 1.30 (t, J = 7.1 Hz, 3H), 4.23-4.35 (m, 2H), 4.40 (dd, J = 7.6, 0.6 Hz, 1H), 5.16 (d, J = 

7.7 Hz, 1H), 5.25 (s, 1H), 6.52-6.54 (m, 1H), 6.54 (d, J = 2.2 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 

7.13 (dd, J = 8.6, 0.8 Hz, 2H), 7.25 (d, J = 2.6 Hz, 1H), 7.27 (d, J =1.3 Hz, 1H), 7.29-7.30 (m, 1H), 

7.31 (d, J = 2.2 Hz, 2H) ppm.

Ethyl 5-phenyl-2-(o-tolyl)isoxazolidine-3-carboxylate (4aa). Yellow oil (67% yield, 20.1 mg, dr 

= 71:29), 1H NMR (CDCl3, 400 MHz), δ 1.18 (t, J = 7.1 Hz, 3H), 2.35 (s, 3H), 2.64-2.71 (m, 1H), 

3.01-3.09 (m, 1H), 4.12 (q, J = 7.1 Hz, 2H), 4.38 (dd, J = 9.0, 4.3 Hz, 1H), 5.35 (t, J = 7.8 Hz, 1H), 

7.00-7.05 (m, 1H), 7.14-7.19 (m, 2H), 7.30-7.40 (m, 4H), 7.52 (d, J = 7.2 Hz, 2H) ppm; 13C{1H} 

NMR (CDCl3, 100 MHz), δ 14.0, 18.4, 40.3, 61.4, 67.3, 79.3, 119.2, 125.2, 126.3, 126.7, 126.97, 

128.2, 128.5, 128.6, 130.8, 131.2, 138.9, 148.1, 170.8 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for 

C19H22NO3 312.1594; found 312.1607.
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Ethyl 5-phenyl-2-(m-tolyl)isoxazolidine-3-carboxylate (4ab). Yellow oil (79% yield, 24.6 mg, 

dr = 81:19), 1H NMR (CDCl3, 600 MHz), δ 1.34 (t, J = 7.1 Hz, 3H), 2.35 (s, 3H), 2.71-2.76 (m, 

1H), 2.88-2.94 (m, 1H), 4.29-4.34 (m, 2H), 4.51 (dd, J = 8.9, 5.8 Hz, 1H), 5.05 (dd, J = 9.5, 6.8 

Hz, 1H), 6.81 (d, J = 7.5 Hz, 1H), 6.94-6.98 (m, 2H), 7.20 (t, J = 7.7 Hz, 1H), 7.33-7.37 (m, 1H), 

7.38-7.41 (m, 2H), 7.49 (d, J = 7.1 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 150 MHz), δ 17.1, 24.6, 

44.2, 64.7, 71.4, 83.0, 114.2, 117.7, 125.8, 129.9, 131.4, 131.5, 131.9, 140.4, 141.9, 154.1, 174.5 

ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C19H22NO3 312.1594; found 312.1596.

Ethyl 5-phenyl-2-(p-tolyl)isoxazolidine-3-carboxylate (4ac). Yellow oil (84% yield, 26.2 mg, dr 

= 87:13), 1H NMR (CDCl3, 600 MHz), δ 1.34 (t, J = 7.1 Hz, 3H), 2.31 (s, 3H), 2.70-2.76 (m, 1H), 

2.87-2.93 (m, 1H), 4.29 (qd, J = 7.1, 0.5 Hz, 2H), 4.48 (dd, J = 8.9, 5.7 Hz, 1H), 5.05 (dd, J = 9.4, 

6.9 Hz, 1H), 7.05 (d, J = 8.6 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.37-7.41 

(m, 2H), 7.48 (d, J = 7.1 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 150 MHz), δ 17.1, 23.5, 44.1, 64.7, 

71.7, 82.9, 117.2, 130.0, 131.4, 131.5, 132.6, 134.5, 140.4, 151.8, 174.5 ppm; HRMS (ESI) m/z: 

[M + H]+ Calcd for C19H22NO3 312.1594; found 312.1600.

Ethyl 2-(2-chlorophenyl)-5-phenylisoxazolidine-3-carboxylate (4ad). Yellow oil (74% yield, 

24.6 mg, dr = 75:25), 1H NMR (CDCl3, 600 MHz), δ 1.21 (t, J = 7.1 Hz, 3H), 2.62-2.68 (m, 1H), 

2.85 (qd, J = 6.0, 1.4 Hz, 1H), 4.16-4.24 (m, 2H), 4.63 (dd, J = 8.6, 1.3 Hz, 1H), 5.44 (dd, J = 10.0, 

5.9 Hz, 1H), 7.01 (td, J = 7.7, 1.6 Hz, 2H), 7.33-7.37 (m, 2H), 7.39-7.42 (m, 2H), 7.47-7.50 (m, 

2H), 7.54 (dd, J = 8.2, 1.6 Hz, 1H) ppm; 13C{1H} NMR (CDCl3, 150 MHz), δ 16.9, 43.1, 64.3, 

70.3, 82.3, 122.8, 127.0, 127.9, 129.7, 130.1, 131.4, 132.9, 141.4, 149.9, 173.7 ppm; HRMS (ESI) 

m/z: [M + H]+ Calcd for C18H19ClNO3 332.1048; found 332.1053.

Ethyl 2-(3-chlorophenyl)-5-phenylisoxazolidine-3-carboxylate (4ae). Yellow oil (91% yield, 

30.1 mg), 1H NMR (CDCl3, 400 MHz), δ 1.34 (t, J = 7.1 Hz, 3H), 2.72-2.80 (m, 1H), 2.87-2.97 

(m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.45 (dd, J = 8.7, 6.1 Hz, 1H), 5.02 (dd, J = 9.5, 6.7 Hz, 1H), 

6.95-7.01 (m, 2H), 7.14-7.19 (m, 1H), 7.22 (t, J = 8.1 Hz, 1H), 7.34-7.42 (m, 3H), 7.48 (d, J = 7.2 

Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 41.2, 62.0, 68.4, 80.5, 112.3, 114.2, 

122.0, 127.1, 128.7, 130.3, 135.0, 136.9, 152.5, 171.1 ppm; HRMS (ESI) m/z: [M + Na]+ Calcd 

for C18H18ClNNaO3 354.0867; found 354.0865.

Ethyl 2-(4-chlorophenyl)-5-phenylisoxazolidine-3-carboxylate (4af). Yellow oil (99% yield, 

32.8 mg), 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 3H), 2.71-2.79 (m, 1H), 2.87-2.97 
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(m, 1H), 4.28 (q, J = 7.0 Hz, 2H), 4.43 (dd, J = 8.7, 6.1 Hz, 1H), 5.01 (dd, J = 9.4, 6.8 Hz, 1H), 

7.07 (d, J = 8.9 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.35-7.42 (m, 3H), 7.47 (d, J = 7.4 Hz, 2H) ppm; 

13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 41.3, 62.0, 68.6, 80.3, 115.5, 127.1, 128.7, 128.7, 128.7, 

129.1, 137.0, 149.8, 171.1 ppm; HRMS (ESI) m/z: [M + Na]+ Calcd for C18H18ClNNaO3 

354.0867; found 354.0868.

Ethyl 5-phenyl-2-(pyridin-2-yl)isoxazolidine-3-carboxylate (4ag). Yellow oil (86% yield, 25.7 

mg), 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 3H), 2.64-2.72 (m, 1H), 2.88-2.96 (m, 

1H), 4.28 (q, J = 7.1 Hz, 2H), 4.86 (dd, J = 9.0, 7.4 Hz, 1H), 5.57 (d, J = 5.2 Hz, 1H), 6.89 (ddd, J 

= 7.2, 4.9, 0.9 Hz, 1H), 7.31-7.36 (m, 2H), 7.36-7.41 (m, 2H), 7.44-7.48 (m, 2H), 7.60-7.64 (m, 

1H), 8.27 ( dq, J = 4.9, 0.8 Hz, 1H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 40.6, 61.7, 

63.0, 81.8, 109.9, 117.7, 127.1, 128.6, 128.7, 137.4, 138.2, 147.6, 161.4, 172.0 ppm; HRMS (ESI) 

m/z: [M + H]+ Calcd for C17H19N2O3 299.1390; found 299.1390.

Ethyl 2-(6-methylpyridin-2-yl)-5-phenylisoxazolidine-3-carboxylate (4ah). Yellow oil (90% 

yield, 28.1 mg), 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 3H), 2.45 (s, 3H), 2.60-2.67 

(m, 1H), 2.85-2.94 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.88 (t, J = 8.1 Hz, 1H), 5.65 (d, J = 5.0 Hz, 

1H), 6.74 (d, J = 7.4 Hz, 1H), 7.12 (d, J = 8.2 Hz, 1H), 7.30-7.40 (m, 3H), 7.42-7.48 (m, 2H), 7.50 

(t, J = 7.7 Hz, 1H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.2, 24.3, 40.7, 61.5, 62.9, 80.8, 

106.7, 117.1, 127.0, 128.5, 128.6, 137.7, 138.3, 156.6, 160.8, 172.3 ppm; HRMS (ESI) m/z: [M + 

H]+ Calcd for C18H21N2O3 313.1547; found 313.1547.

Ethyl 2-(3,4-dimethylphenyl)-5-phenylisoxazolidine-3-carboxylate (4ai). Yellow oil (82% 

yield, 26.7 mg), 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.2 Hz, 3H), 2.21 (s, 3H), 2.25 (s, 3H), 

2.68-2.76 (m, 1H), 2.85-2.93 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.48 (dd, J = 8.9, 5.7 Hz, 1H), 

5.05 (dd, J = 9.2, 7.0 Hz, 1H), 6.88 (dd, J = 8.2, 2.4 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 7.05 (d, J = 

8.2 Hz, 1H), 7.33-7.41 (m, 3H), 7.48 (d, J = 6.9 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), 

δ 14.2, 18.9, 20.1, 41.2, 61.7, 80.0, 111.7, 115.7, 127.1, 128.5, 128.6, 130.2, 130.3, 137.4, 137.6, 

149.2, 171.6 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C20H24NO3 326.1751; found 326.1753.

Ethyl 2-(3,5-dichlorophenyl)-5-phenylisoxazolidine-3-carboxylate (4aj). Yellow oil (87% yield, 

31.8 mg), 1H NMR (CDCl3, 400 MHz), δ 1.33 (t, J = 7.1 Hz, 3H), 2.73-2.81 (m, 1H), 2.91-2.99 

(m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.40 (dd, J = 8.8, 6.2 Hz, 1H), 4.99 (dd, J = 9.7, 6.5 Hz, 1H), 

6.95-6.98 (m, 1H), 7.02 (d, J = 1.8 Hz, 2H), 7.36-7.43 (m, 3H), 7.46-7.50 (m, 2H) ppm; 13C{1H} 
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NMR (CDCl3, 100 MHz), δ 14.1, 41.2, 62.1, 68.0, 80.7, 112.5, 113.4, 121.7, 127.0, 128.7, 135.6, 

136.4, 153.0, 170.5 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C18H18Cl2NO3 366.0658; found 

366.0669.

Methyl 2,5-diphenylisoxazolidine-3-carboxylate (4ak). Yellow oil (95% yield, 27.0 mg, dr = 

97:3), 1H NMR (CDCl3, 400 MHz), δ 2.73-2.81 (m, 1H), 2.88-2.96 (m, 1H), 3.86 (s, 3H), 4.53 (dd, 

J = 8.9, 5.9 Hz, 1H), 5.04 (dd, J = 9.5, 6.8 Hz, 1H), 7.00 (t, J = 7.4 Hz, 1H), 7.1 (d, J = 7.8 Hz, 

2H), 7.29-7.36 (m, 3H), 7.36-7.42 (m, 2H), 7.48 (d, J = 6.9 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 

100 MHz), δ 41.1, 52.9, 68.5, 80.2, 114.1, 122.2, 127.1, 128.7, 129.2, 137.1, 151.1, 172.1 ppm; 

HRMS (ESI) m/z: [M + H]+ Calcd for C17H18NO3 284.1281; found 284.1288.

Tert-butyl 2,5-diphenylisoxazolidine-3-carboxylate (4al). Yellow solid (94% yield, 30.6 mg); 

mp 77-78 oC; 1HNMR (CDCl3, 400 MHz), δ 1.51 (s, 9H), 2.66-2.74 (m, 1H), 2.83-2.91 (m, 1H), 

4.40 (t, J = 7.6 Hz, 1H), 5.04 (t, J = 8.2 Hz, 1H), 6.98 (t, J = 7.3 Hz, 1H), 7.14 (d, J = 7.6 Hz, 2H), 

7.24-7.33 (m, 2H), 7.34-7.45 (m, 3H), 7.50 (d, J = 7.4 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 

MHz), δ 28.0, 41.3, 69.3, 80.1, 82.1, 114.1, 121.8, 127.1, 128.6, 129.1, 137.6, 151.4, 170.5 ppm; 

HRMS (ESI) m/z: [M + H]+ Calcd for C20H24NO3 326.1751; found 326.1744.

(2,5-diphenylisoxazolidin-3-yl)(phenyl)methanone (4am). White solid (67% yield, 22.1 mg, dr 

= 89:11); mp 178-180 oC; 1H NMR (CDCl3, 400 MHz), δ 2.84-3.99 (m, 2H), 5.11 (t, J = 7.5 Hz, 

1H), 5.20 (dd, J = 8.5, 6.0 Hz, 1H), 7.01-7.05 (m, 1H), 7.16 (d, J = 8.6 Hz, 2H), 7.31-7.40 (m, 5H), 

7.45-7.50 (m, 4H), 7.55-7.60 (m, 1H), 8.17 (d, J = 8.4 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 

MHz), δ 40.6, 71.8, 80.3, 114.2, 122.2, 127.1, 128.6, 128.6, 129.2, 129.3, 133.4, 134.9, 137.2, 

150.8, 196.9 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C22H20NO2 330.1489; found 330.1478.

Ethyl 5-formyl-5-methyl-2-phenylisoxazolidine-3-carboxylate (4an). Yellow oil (87% yield, 

22.9 mg), 1H NMR (CDCl3, 400 MHz), δ 1.14 (t, J = 7.1 Hz, 3H), 1.51 (s, 3H), 2.39 (dd, J = 12.8, 

4.1 Hz, 1H), 3.05 (dd, J = 12.8, 9.0 Hz, 1H), 4.09 (qd, J = 7.1, 2.9 Hz, 2H), 4.47 (dd, J = 9.0, 4.2 

Hz, 1H), 6.98 (t, J = 7.3 Hz, 1H), 7.03 (d, J = 8.1 Hz, 2H), 7.25-7.30 (m, 2H), 9.56 (s, 1H) ppm; 

13C{1H} NMR (CDCl3, 100 MHz), δ 13.9, 18.2, 38.9, 61.4, 64.9, 86.6, 115.0, 122.4, 128.8, 148.1, 

170.4, 201.4 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C14H18NO4 264.1230; found 264.1233.

3-ethyl 5-methyl 5-methyl-2-phenylisoxazolidine-3,5-dicarboxylate (4ao). Yellow oil (90% 

yield, 26.4 mg), 1H NMR (CDCl3, 400 MHz), δ 1.24 (t, J = 7.1 Hz, 3H), 1.67 (s, 3H), 2.52 (dd, J = 

12.6, 6.2 Hz, 1H), 3.25 (dd, J = 12.7, 8.6 Hz, 1H), 3.52 (s, 3H), 4.18-4.24 (m, 2H), 4.49 (dd, J = 
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8.6, 6.2 Hz, 1H), 6.93 (t, J = 7.3 Hz, 1H), 7.02 (d, J = 7.8 Hz, 2H), 7.22 (dd, J = 8.6, 7.4 Hz, 2H) 

ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 14.1, 22.0, 42.0, 52.4, 61.7, 66.4, 83.4, 114.3, 122.0, 

128.6, 149.8, 171.0, 173.1 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C15H20NO5 294.1336; 

found 294.1334.

Diethyl 5-methyl-2-phenylisoxazolidine-3,5-dicarboxylate (4ap). Yellow oil (88% yield, 27.0 

mg), 1H NMR (CDCl3, 400 MHz), δ 1.07 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.66 (s, 3H), 

2.52 (dd, J = 12.6, 6.6 Hz, 1H), 3.23 (dd, J = 12.7, 8.5 Hz, 1H), 3.91 (q, J = 7.2 Hz, 2H), 4.20 (q, J 

= 7.2 Hz, 2H), 4.47 (dd, J = 8.3, 6.7 Hz, 1H), 6.92 (t, J = 7.3 Hz, 1H), 7.02 (d, J = 7.8 Hz, 2H), 

7.21 (dd, J = 8.4, 7.4 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 13.6, 14.1, 21.9, 42.1, 

61.5, 61.7, 66.5, 83.5, 114.2, 121.7, 128.5, 150.1, 171.0, 172.5 ppm; HRMS (ESI) m/z: [M + H]+ 

Calcd for C16H22NO5 308.1492; found 308.1497.

Diethyl 2,5-diphenylisoxazolidine-3,5-dicarboxylate (4aq). Yellow oil (86% yield, 31.8 mg, dr 

= 95:5), 1H NMR (CDCl3, 400 MHz), δ 1.00 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H), 2.75 (dd, 

J = 12.5, 6.3 Hz, 1H), 3.61 (dd, J = 12.5, 8.4 Hz, 1H), 3.88 (q, J = 7.1 Hz, 2H), 4.01 (q, J = 7.1 Hz, 

2H), 4.45 (dd, J = 8.4, 6.3 Hz, 1H), 6.89 (t, J = 7.3 Hz, 1H), 7.06 (d, J = 7.7 Hz, 2H), 7.18-7.22 (m, 

2H), 7.25-7.32 (m, 3H), 7.45-7.49 (m, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 13.7, 13.9, 

43.4, 61.6, 61.9, 66.2, 87.2, 114.7, 122.1, 125.3, 128.3, 128.4, 128.6, 137.8, 149.6, 170.5, 171.6 

ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C21H24NO5 370.1649; found 370.1645.

Ethyl 2,5,5-triphenylisoxazolidine-3-carboxylate (4ar). Yellow oil (84% yield, 31.4 mg), 1H 

NMR (CDCl3, 400 MHz):δ 1.07 (t, J = 7.2 Hz, 3H), 3.30-3.43 (m, 2H), 3.98 (q, J = 7.2 Hz, 2H), 

4.35 (dd, J = 8.8, 4.8 Hz, 1H), 6.92 (t, J = 7.2 Hz, 1H), 7.05 (d, J = 8.4 Hz, 2H), 7.19-7.32 (m, 8H), 

7.43 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 7.6 Hz, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz): δ 13.9, 

45.1, 61.5, 67.1, 87.4, 114.9, 121.7, 126.2, 126.4, 127.4, 127.6, 128.2, 128.3, 128.6, 143.0, 143.2, 

150.2, 170.9 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C24H24NO3 374.1751; found 374.1742.

1-phenyltetrahydro-3H,6H-furo[3,4-c]isoxazol-6-one (7). White solid (83% yield, 17.1 mg); mp 

162-164 oC; 1H NMR (C2D6OS(D-DMSO), 400 MHz), δ 3.46-3.54 (m, 1H), 3.91 (dd, J = 8.8, 7.5 

Hz, 1H), 4.08 (dd, J = 8.9, 2.2 Hz, 1H), 4.33 (dd, J = 9.4, 2.9 Hz, 1H), 4.47 (dd, J = 9.2, 7.7 Hz, 

1H), 5.00 (d, J = 8.5 Hz, 1H), 7.00 (t, J = 7.3 Hz, 1H), 7.06 (dd, J = 8.6, 0.9 Hz, 2H), 7.30 (dd, J = 

8.7, 7.2 Hz, 1H) ppm; 13C{1H} NMR (C2D6OS(D-DMSO), 100 MHz), δ 42.2, 67.1, 71.6, 72.5, 

114.4, 122.4, 129.1, 149.3, 174.6 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C11H12NO3 
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206.0812; found 206.0809.

5-methyl-1-phenylhexahydro-6H-pyrrolo[3,4-c]isoxazol-6-one (9). White solid (81% yield, 

17.7 mg); mp 114-116 oC; 1H NMR (CDCl3, 400 MHz), δ 2.91 (s, 3H), 3.25-3.31 (m, 1H), 3.31 

(dd, J = 10.2, 2.4 Hz, 1H), 3.62 (dd, J = 10.1, 8.3 Hz, 1H), 3.90 (dd, J = 8.6, 1.8 Hz, 1H), 4.05 (dd, 

J = 8.8, 6.6 Hz, 1H), 4.42 (d, J = 8.5 Hz, 1H), 6.98 (t, J = 7.3 Hz, 1H), 7.16 (dd, J = 8.5, 0.8 Hz, 

2H), 7.28-7.30 (m, 2H) ppm; 13C{1H} NMR (CDCl3, 100 MHz), δ 30.0, 39.4, 53.3, 70.7, 73.0, 

114.6, 122.3, 129.0, 150.3, 170.3 ppm; HRMS (ESI) m/z: [M + H]+ Calcd for C12H15N2O2 

219.1128; found 219.1132.
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