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ABSTRACT: Transient Receptor Potential Vanilloid 4 (TRPV4) is a member of the Transient Receptor Potential (TRP) 
superfamily of cation channels.  TRPV4 is expressed in the vascular endothelium in the lung and regulates the integrity of 
the alveolar septal barrier.  Increased pulmonary vascular pressure evokes TRPV4-dependent pulmonary edema, and 
therefore, inhibition of TRPV4 represents a novel approach for the treatment of pulmonary edema associated with condi-
tions such as congestive heart failure.  Herein we report the discovery of an orally active, potent and selective TRPV4 
blocker, 3-(1,4'-bipiperidin-1'-ylmethyl)-7-bromo-N-(1-phenylcyclopropyl)-2-[3-(trifluoromethyl)phenyl]-4-
quinolinecarboxamide (GSK2193874, 28) after addressing an unexpected off-target cardiovascular liability observed from 
in vivo studies.  GSK2193874 is a selective tool for elucidating TRPV4 biology both in vitro and in vivo. 

TRPV4 is a member of the Transient Receptor Potential 
(TRP) superfamily of cation channels and is activated by 
heat, hypotonicity and physical stress.1-3  TRPV4 is ex-
pressed in numerous cell types, including endothelial 
cells of the lung where it can mediate Ca2+ entry.4  TRPV4 
regulates the integrity of the alveolar barrier in the lung 
and increases barrier permeability when activated, as 
demonstrated in response to the increased vascular 
and/or airway pressure.5  Pharmacological activation of 
TRPV4 with a small molecule TRPV4 agonist results in 
contraction of cultured endothelial cells and pulmonary 
edema associated with cardiovascular collapse in vivo.6,7    

Congestive heart failure patients have a decreased abil-
ity of the left ventricle to pump blood into the peripheral 
circulatory system. This results in left ventricular dilation 
and a concomitant increase in pulmonary vascular pres-
sure that drives development of pulmonary edema.  
Therefore, TRPV4 inhibition represents a potential novel 
approach for the treatment of pulmonary edema associat-
ed with congestive heart failure.8 TRPV4 also has been 
implicated in many other disease conditions, including 
neurogenic pulmonary edema, chronic obstructive pul-
monary disorder (COPD), acute lung injury,9 acute res-
piratory distress syndrome (ARDS), overactive urinary 
bladder, pain, genetic motor neuron disorders, cardiovas-
cular disease, and bone related disorders.8  

At the onset of our lead optimization efforts, few small 
molecule TRPV4 blockers had been reported, and none 
were suitable for oral dosing.  Hydra Biosciences had re-
ported a TRPV4 antagonist HC-067047 with human, rat 

and mouse in vitro TRPV4 IC50s of 48, 133 and 17 nM, re-
spectively (Figure 1).10  Renovis (Evotec) had reported RN-
1734 as a TRPV4 antagonist with modest potency (human, 

rat and mouse TRPV4 IC50s of 2.3, 3.2 and 5.9 µM, respec-
tively) (Figure 1).11  Therefore, discovery of a potent and 
selective TRPV4  blocker of utility for in vivo studies was 
highly desirable to further understand the complexity of 
TRPV4 biology. 12 

Herein we report the discovery of an orally active, po-
tent and selective TRPV4 blocker, 3-(1,4'-bipiperidin-1'-
ylmethyl)-7-bromo-N-(1-phenylcyclopropyl)-2-[3-
(trifluoromethyl)phenyl]-4-quinolinecarboxamide 
(GSK2193874, 28).  GSK2193874 is an excellent tool for 
further understanding the biology of TRPV4 both in vitro 
and in vivo.8 It is worth noting that after our discovery of 
GSK2193874, several orally bioavailable TRPV4 tools have 
been reported (Figure 1).  These included Pfizer’s azet-
idine-linked compound,13  GSK’s piperidinyl-
benzimidazole compound,14  Renovis’ RN-1665 and RN-
9893,15  and Shionogi’s aminothiazole compound.16,17 
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Figure 1. Structures of TRPV4 antagonists 

Quinoline hit 1a was identified as a TRPV4 blocker 
from high throughput screening (Figure 2). Compound 1a 
has modest TRPV4 potency with human and rat TRPV4 

IC50 of 2 and 0.3 µM, respectively, in a FLIPR assay in 
HEK293 cells.  However, it is a potent neurokinin NK2 
and NK3 dual inhibitor with IC50 of 100 and 8 nM, respec-
tively, in FLIPR binding assays. Moreover, 1a has poor 
pharmacokinetic properties with high clearance (CL = 52 
mL/min/kg) in rats.  As our primary goal was to validate 
TRPV4 as a pharmacologically relevant target with a po-
tent and selective TRPV4 inhibitor that could be dosed 
orally and chronically in rodents, our lead optimization 
effort was focused on improving TRPV4 potency, remov-
ing NK2/3 activity, reducing in vivo clearance and improv-
ing oral exposure in rats. 

 

Figure 2. Quinoline hit 1a and chemistry strategies focused 
on R1-R4 optimization. 

We divided quinoline 1a into four regions for structure 
activity relationship (SAR) exploration (Figure 2): 2-aryl 
substitution (R1), amine modification (R2), benzyl amide 
modification (R3, R3a) and quinoline substitution (R4). 
Quinoline derivatives were synthesized using standard 
conditions as described in Scheme 1.18,19  3-Methyl-2-
phenyl-4-quinolinecarboxylic acid 2 was prepared by 
treatment of the appropriately substituted 1H-indole-2,3-
dione and ethyl aryl ketone with KOH in refluxing etha-
nol.  Alternatively, compound 2 was prepared by treat-
ment of the appropriately substituted aniline with the 

appropriately substituted benzaldehyde and 2-
oxobutanoic acid.  Esterification of acid 2 resulted in the 
substituted methyl 3-methyl-2-phenyl-4-
quinolinecarboxylate which was then treated with N-
bromosuccinimide and benzoyl peroxide to form an ap-
propriately substituted bromomethyl quinoline.  Subse-
quent displacement of the bromomethyl quinoline with 
an appropriately substituted piperidine in acetonitrile 
afforded the corresponding tertiary amine 3.  The methyl 
ester was then hydrolyzed to acid by treatment with KOH 
in methanol/water. Coupling of the acid with an appro-
priately substituted benzylamine under standard condi-
tions, for example, EDC/HOBT or T3P, provided quino-
line derivatives.  

 

Scheme 1. General synthesis of quinoline derivatives. a) 
KOH, H2O/EtOH; b) 2-oxobutanoic acid, EtOH; c) 
(COCl)2, DMF, CH2Cl2, then MeOH; d) benzoyl peroxide, 
NBS, CCl4; e) R2-substituted piperidine, CH3CN; f) KOH, 
MeOH/H2O; g) R3, R3a-substituted benzylamine, T3P, i-
Pr2NEt, CH2Cl2.  

Table 1. Biochemical activities of substituted phenyl ana-
logs in human and rat TRPV4 FLIPR assay  

 

Compound R1 
hTRPV4 

IC50 (µM)a 

rTRPV4 

IC50 (µM)a 

1a H 2 0.32 

4 4-Cl 0.32 0.016 

5 4-CF3 0.4 0.016 

6 4-Me 1.58 0.1 

7 4-OMe 5.01 0.32 

8 3-Cl 0.2 0.008 

9a 3-CF3 0.08 0.0025 

10 3-Me 0.5 0.013 

11 3-OMe 3.98 0.63 

aIC50 values are the mean of at least two independent 
experiments. 
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First we focused on the aryl substitution on the 2-
position of the quinoline, as this position was known to 
be sensitive to NK2 and NK3 activity.  Substitution of 
electron-donating groups such as Me and OMe at 4-
position (6, 7) or OMe at 3-position (11) of the phenyl ring 
maintained TRPV4 potency (Table 1).  Methyl at 3-
position (10) of the phenyl ring improved human and rat 
TRPV4 potency over compound 1a by 4x and 24x, respec-
tively. Interestingly substitution of electron-withdrawing 
groups such as Cl and CF3 in both positions (4, 5, 8, 9a) 
improved human and rat TRPV4 potency by up to 25 and 
128 fold, respectively, over unsubstituted quinoline hit 1a.  
3-CF3 compound (9a) is the most potent analog with rat 
TRPV4 IC50 of 2.5 nM. Compound 9a was evaluated for 
NK2 and NK3 selectivity, and as expected, 9a has reduced 

NK2 and NK3 activity with IC50s of 1.3 and 2.5 µM, respec-
tively, representing ≥520 fold selectivity over rat TRPV4 
potency. 

Next we evaluated whether there was a stereochemistry 
preference for binding to TRPV4. Both R- and S- enanti-
omers for compounds 1 and 9 were synthesized using en-
antiomerically pure benzyl amines.  As shown in Table 2, 
there was no significant stereo preference when R1 is H 
(1a vs. 1b).  Surprisingly, when R1 is 3-CF3, the (S)-
enantiomer (9a) was 25 and 160 fold more potent than the 
corresponding (R)-enantiomer (9b) in human and rat 
TRPV4 respectively, demonstrating a stereo preference 
for (S)-enantiomer. 

Table 2. Stereoselectivity of quinoline analogs  

 

Compound R1 Stereochemistry 
hTRPV4 

IC50 (µM)a 

rTRPV4 

IC50 (µM)a 

1a H S 2 0.32 

1b H R 2 0.63 

9a 3-CF3 S 0.08 0.0025 

9b 3-CF3 R 2 0.4 

aIC50 values are the mean of at least two independent 
experiments. 

 

We then evaluated the SAR around piperidine substitu-
tion while keeping R1 as 3-CF3, and R3 as S-Me.  Piperi-
dine-piperidine analog (9a) and piperidine-morpholine 
derivative (14) had optimal TRPV4 potency (Table 3).  The 
terminal piperidine or morpholine was important for 
TRPV4 activity as compounds without those moieties 
have reduced TRPV4 activities (12, 13, 15 and 16). 

Since chirality at the alpha position of benzyl amide 
(R3) played an important role in TRPV4 potency (Table 2), 
we explored additional SAR at that region.  As shown in 
Table 4, increasing size of the R3 group from methyl to 
ethyl and isopropyl decreased TRPV4 potency (9a, 18, 19).  

Interestingly when R3 or R3a is CF3, the potency difference 
for these two analogs (20 and 21) was not as significant as 
the methyl analogs (9a and 9b).  Non chiral benzyl am-
ides were synthesized to understand stereochemistry 
preference (17, 22, and 23).  The unsubstituted benzyl am-
ide (17) and dimethyl benzyl amide (22) maintained mod-
est TRPV4 potency.  Interestingly the cyclopropyl benzyl 
amide (23) possessed superior TRPV4 potency as 9a and 
20 analogs. 

Table 3. Biochemical activities of substituted piperidine 
analogs in human and rat TRPV4 FLIPR assays 

 

Compound R2 
hTRPV4 

IC50 (µM)a 

rTRPV4 

IC50 (µM)a 

9a piperidine 0.08 0.0025 

12 H >25 >25 

13 NMe2 2.51 0.32 

14 morpholine 0.05 0.004 

15 piperazine 3.16 0.79 

16 cyclohexane >25 >25 

aIC50 values are the mean of at least two independent 
experiments. 

Table 4. Biochemical activities of substituted amine ana-
logs in human and rat TRPV4 FLIPR assays  

 

Compound R3 R3a 
hTRPV4 

IC50 (µM)a 

rTRPV4 

IC50 (µM)a 

9a Me H 0.08 0.0025 

17 H H 0.5 0.05 

18 Et H 0.16 0.006 

19 iPr H 0.13 0.025 

20 CF3 H 0.04 0.0025 

21 H CF3 0.1 0.008 

22 Me Me 1 0.04 

23 cyclopropyl 0.05 0.0025 

aIC50 values are the mean of at least two independent 
experiments. 

 

Quinoline substitution (R4) was then examined.  A vari-
ety of substitutions were generally tolerated.   Exemplar 
data for substitutions at the 6- or 7- position are shown in 
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Table 5.  In general, compounds with 7-ethoxy substitu-
tion (27 and 30) are more potent in the human TRPV4 
assay than the corresponding 7-methoxy analogs (26 and 
29).  Electron-withdrawing groups such as bromo are tol-
erated at both 6- and 7- positions (24, 25, 28).  Interest-
ingly all substitutions maintained similar rat TRPV4 po-
tency. 

Table 5. Biochemical activities of substituted quinolines 
in human and rat TRPV4 FLIPR assays 

 

Compound R3 R3a R4 

hTRPV4 

IC50 

(µM)a 

rTRPV4 

IC50 

(µM)a 

9a Me H H 0.08 0.0025 

20 CF3 H H 0.04 0.0025 

24 CF3 H 6-Br 0.06 0.0025 

25 CF3 H 7-Br 0.06 0.0032 

26 CF3 H 7-OMe 0.05 0.004 

27 CF3 H 7-OEt 0.01 0.0032 

23 cyclopropyl H 0.05 0.0025 

28 cyclopropyl 7-Br 0.04 0.002 

29 cyclopropyl 7-OMe 0.25 0.0025 

30 cyclopropyl 7-OEt 0.08 0.0016 

aIC50 values are the mean of at least two independent 
experiments. 

 

Among all the analogs that were synthesized and evalu-
ated, 9a represented an exemplar tool compound with 
excellent rodent TRPV4 activity.  Compound 9a was eval-
uated in a PK study in rat and found to have reduced 
clearance [CL = 25 mL/min/kg) and significantly im-
proved oral bioavailability (~100% F) and exposure 

(DNAUC = 0.8 µg*h/mL/(mg/kg)] in Sprague-Dawley 
(SD) rats.  Next we assessed selectivity of 9a against a 
panel of cardiac ion channels.  Compound 9a was evalu-
ated against hERG (PatchXpress), CaV1.2 (PatchXpress) 
and NaV1.5 (IonWorks) and found to have IC50s of 1.2, 4.5 

and 40 µM, respectively, representing ≥480 fold selectivi-
ty over rat TRPV4 potency.  Based on the potency, selec-
tivity and PK, 9a was progressed as the first TRPV4 inhib-
itor for in vivo evaluation. 

Compound 9a was evaluated in an anesthetized dog CV 
study monitoring blood pressure (BP), heart rate (HR), 
cardiac output and left ventricular (LV) function.  Dogs 
were pretreated with 1 and 3 mg/kg of 9a dosed intrave-
nously (n=4).    QTc prolongation was observed with 
compound treatment, consistent with hERG inhibition 

measured in vitro (IC50 = 1.2 µM).  However, 9a reduced 
BP, HR, cardiac output and LV function unexpectedly at 3 

mg/kg with Cmax of ~20 µM (free fraction of 0.94 µM).  

No effect was observed at 1 mg/kg with Cmax of ~7 µM 

(free fraction of ~0.3 µM). 

To understand if the depressor effect of 9a observed in 
dog was a TRPV4 mechanism-based or an off-target ef-
fect, 9a was administered to TRPV4 KO and WT mice 
while monitoring BP and HR.  Compound 9a was dosed 
at 30 mg/kg via an iv infusion reaching a terminal plasma 

concentration of 10-11 µM. As observed in dog, BP and HR 
were reduced with 9a administration. The responses were 
similar in KO and WT mice, suggesting 9a possesses off-
target activity that contributes to the reduction in BP and 
HR. 

To investigate what off-target activity might contribut-
ed to the reduction in BP and HR, we evaluated 9a in a 
number of assays including rabbit ventricular wedge, 
HCN4 (pace maker channel), CaV1.2 (L-type channel), 
CaV2.2 (N-type channel), CaV3.2 (T-type channel), and in 
vitro contractility in mouse isolated aorta and right atria 
assays.  Based on the overall results, we concluded that 
the off-target effect observed with 9a was likely due to 
frequency-dependent L-type channel inhibition with an 

IC30 of 1.7 µM at 0.1 Hz, and an IC30 of 0.12 µM at 2 Hz.  
Two Hz (i.e. 120 beats per minute) is considered to be 
more physiological relevant than the 0.1 Hz.20  Minimal or 
no activities were observed with 9a in all other assays 
evaluated. 

Table 6. L-type channel inhibition activity for TRPV4 
analogs 

 

Compound R3 R3a R4 

hTRPV4 

IC50 

(µM)a 

rTRPV4 

IC50 

(µM)a 

CaV1.2 

IC30 (µM)  

0.1 (2) Hz 

9a Me H H 0.08 0.0025 1.7 (0.12) 

27 CF3 H 
7-

OEt 
0.01 0.0032 10 (12) 

28 cyclopropyl 7-Br 0.04 0.002 10.5 (10.5) 

aIC50 values are the mean of at least two independent 
experiments. 

 

In order to further understand the SAR relating to fre-
quency dependent L-type channel inhibition, a set of 
structurally diverse quinolines with potent TRPV4 poten-
cy were evaluated for L-type channel inhibition using 
electrophysiology patch assay.  Interestingly substitution 
at the quinoline improves the L-type channel selectivity.  
A shown in Table 6, 27 and 28 showed significant im-
provement in L-type selectivity over 9a and a lack of fre-
quency dependence.  Upon further selectivity profiling, 
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we identified 27 as a PXR activator with EC50 of 1.3 µM 
while 28 is not.  

The pharmacokinetic (PK) properties for compound 28 
were evaluated in both rat and dog and found to have 
half-lives and oral exposure suitable for oral dosing in 
chronic animal models (Rat PK: iv CL = 7.3 mL/min/kg, 
po t1/2 = 10 h, % F = 31; Dog PK: iv CL = 6.9 mL/min/kg, 
po t1/2 = 31 h, %F = 53).  Compound 28 was profiled 
against TRP channels and was selective against TRPV1, 

TRPA1, TRPC3, TRPC6, TRPM8 (IC50 >25 µM). In addi-
tion, 28 showed no blood pressure or heart rate effect in 
rats when dose up to 30 mg/kg.8  GSK2193874 (28) is the 
first-in-class orally bioavailable TRPV4 inhibitor which 
demonstrated ability to improve pulmonary functions in a 
number of heart failure models.8 

In summary, starting from the quinoline screening hit 
1a, a lead optimization effort identified 9a as a potential 
in vivo tool compound. Unfortunately 9a exhibited unex-
pected hemodynamic effect in dogs.  By evaluating 9a in 
various in vitro cardiac channel assays and in vitro con-
tractility assays in mouse isolated aorta and right atria, we 
concluded that the off-target effect observed with 9a was 
likely due to frequency-dependent L-type channel inhibi-
tion.  Further lead optimization resulted in the discovery 
of GSK2193874 (28), a highly potent, selective and orally 
active inhibitor of the TRPV4 channel. GSK2193874 is an 
excellent in vitro and in vivo tool for target validation 
studies probing the biology of TRPV4. Additional phar-
macology data of GSK2193874 including TRPV4 potency 
across species, potency against different TRPV4 stimuli, 
selectivity data on CEREP panel and activities in pulmo-
nary edema and heart failure models had been disclosed 
by Thorneloe et al.8  Further SAR optimization leading to 
the identification of the pre-clinical candidates will be 
reported in due course.    
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