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Abstract: Iron tetracarbonyl complexes of y-benzyloxy-a$-unsaturated ketones react with several 
nucleophiles in the presence of Lewis acids to give 7-substitution products. The allyltetracarbonyliron 
cation intermediates generated allow retention of configuration of the double bond. 

We have been interested in the novel synthetic applications of cationic tetracarbonyliron ally1 

complexes.’ We recently reported the reactions of ester substituted members of this family (1) with 

masked enolates as routes to 1.6dicarbonyl compounds. Is Application of these homologous Michael 

reactions to ketone-substituted tetracarbonyliron ally1 cations (2) is much mom problematic. Foremost 

among these problems is the fact that ketone carbonyl attack is the dominant mode of reaction for the 

precursor q2-enone-Fe(CO)4 complexes (i.e., 3) with Lewis acid-nucleophile combinations.* Furthermore, 

the facile conversion of these q*-tetracarbonylalkene complexes to n4-heterodiine complexes (i.e., 4)3 

renders as a distinct possibility the formation of r$oxapentadienyl complexes (5). q5-Oxapentadienyl 

complexes are unknown in iron chemistry and have a limited precedent in genemk4J and present at least 

two different rearrangement problems.6 

We chose y-benxyloxy. a,B_unsaturated ketones (6) as a starting point for the investigation of these 

questions,’ the benxyloxy function being chosen in part on the basis of its expected reluctance to undergo 

oxidative addition to Fe(O). Subjeoting an ethereal solution of 6 to Fe2(CO)9 under CO atmosphere led to 

prompt complex formation. The 13C NMR spectra (CDCl,) of these complexes showed ketone carbonyls 

(3f, 195.8 and 195.5 ppm; 3b, 206.1 ppm). indicative of q*-iron tetracarbonyl complexes (3). and displayed 

no evidence of q4-heterodiene complexes (4).* 

Complexes 3 reacted rapidly with silyl enol ethers, silyl ketene acetals. allyltributyltin. and electron 

rich amnes in the presence of Lewis acids, through the intermediacy of allyltetmcarbonyliion cation 2, to 

give 7, following trimethylamine N-oxide induced decomplexation. Performing this sequence without 

isolation of any of the intermediates, except for removal of insoluble iron residue from 3 by f&ration (and 

replacement of CH2C12 for EtsO as solvent), led good yields of 7 (see Scheme 1 and Table 1).9 

The reactions feature exclusive attack at the y-carbon of the alkenone (C-3 of the iron allyl) for all 
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Table 1. Trapping of Ketone-Substituted Iron Ally1 Cations 
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b) Lewis acid = ZrCl4 (-30 OC, lh). z/E = 97/3, based on integration of ‘H NMR resonances of crude product 
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BnO Fe(CO)4 

R+Rt 

6 0 

F;;) ;tRt l)s3aFR&Rt 

3 0 ’ 0 

nucleophiles studied, including allyltributyltin. which has been reported to give C-l attack in a related 

CaSe. lo Furthem~oxe, essentially total retention of double bond coniiguration is realized with the proper 

choice of Lewis acid. Boron trifluoride, which was successful for the E disubstituted cases, caused 

significant amounts of isometixation for the Z isomers @JI=72/28). This problem was rectifiid by 

switching to ZXl,,, which effected the transformation with negligible isomerixation (?Ym/3). The 

retention of double bond contiguration is consistent with the known geometric stability of 

$-allyltetracarbonyliron cations. l1 In none of the cases did we observe the products from competitive 

attack at the ketone carbonyl, from nucleophile induced deprotonation of the ally1 cation,‘O or from CO 

insertion with the nucleophile.*2 In low temperature NMR studies of a mixture of 3b (the q2-k(CO), 

complex of 6b) and ZrC14. we did not detect any evidence a complex of either the ether or ketone oxygen 

to Zr, but rather a spectrum consistent with the ally1 cation (u&2, R=H, R&H&t3 

Comparison of the reactivity of 2 wlth analogous ketone substituted allylpalladium complexes 

reveals some noteworthy distinctions. t4 Although the regiochemistty of nucleophilic attack is identical in 

both cases, the allyliton complexes am more electrophiic species, as the nucleophiles employed here do 

not generally couple with allylpalladiums. Moreover, palladium allyls are not geometrically stable, which 

precludes their use in the preparation of (Z)-7. 

The 1.6~dioxygenated functions generated by these transformations are of increasing synthetic 

imp~rtance.~~ Further work on the applications of thii chemistry are in progress and will be reported in 

due course.t6 
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