

0040-4039(95)00310-X

Solvent Tuning of Diastereoselectivity in Dimethyldioxirane Epoxidation Reactions¹

Robert W. Murray*, Megh Singh, Brian L. Williams, and Hazel M. Moncrieff

Department of Chemistry, University of Missouri-St. Louis, St. Louis, Missouri, 63121, USA

Abstract: Diastereoselectivity in the epoxidation of cyclohex-2-en-1-ol shows a remarkable solvent dependence. In some solvent systems the substrate OH group apparently can provide a *cis* selectivity through H-bonding.

Dioxiranes are remarkably versatile oxidation reagents. Their use as epoxidation reagents has reached particular prominence. The reaction is rapid, requires simple workup, and, with the appropriate substrates, is stereospecific². There are a number of reports describing diastereoselectivity in dioxirane epoxidations³⁻⁸. In some cases this stereoselectivity is attributed to steric factors in the substrates^{3,7}. Where several different dioxiranes have been used for the epoxidations, preferential *trans* epoxidation is attributed to steric factors in the dioxirane⁵. In one study of allylic alcohol epoxidations⁴ it was found that only low diastereoselectivity could be observed in dimethyldioxirane epoxidations. Furthermore, the diasteroselectivity showed no temperature dependence. The authors concluded⁴ that the hydroxyl group does not exert the type of hydrogen bonding influence in these epoxidations that it does in peracid reactions⁹. When the allylic alcohol is located in a larger ring system high *trans* diastereoselectivity is obtained, as in the case of (Z)-cyclooct-2-en-1-ol⁶. Danishefsky and coworkers have made great use of the pronounced diastereoselectivity of dimethyldioxirane epoxidation of glycals in the synthesis of 1,2-anhydro sugars⁸. In a particularly revealing observation⁸ they have noted that use of a solvent system consisting of acetone/methylene chloride (6:1) gives a far higher *cis* diastereoselectivity than use of acetone alone. The mixed solvent system was used in the hope that it would provide greater opportunity for the hydroxyl group to exert the desired *cis* stereoselectivity.

We have been studying the effect of solvent on dimethyldioxirane epoxidation and insertion reactions^{10,11}. The epoxidation of cyclohex-2-en-1-ol 1 has been studied in a variety of solvents at room temperature. The reaction gives the *cis* 2c and *trans* 2t epoxides as well as cyclohex-2-en-1-one 3 (Eq. 1, **R=OH**). The latter product arises from the insertion of an O atom into the C-1 methine C-H bond^{2,4}. The ratio of diastereomers, as well as the distribution between epoxide and enone products, is dependent on the solvent used (Table 1). The epoxide diastereoselectivity shows a pronounced dependence on solvent. The epoxide distribution obtained is essentially tunable depending on solvent choice. Use of a solvent consisting of methanol/acetone (90:10) gives an epoxide distribution of 2:1 in favor of the *trans* isomer, while use of CCl_4 /acetone (95:5) solvent gives almost exclusively *cis* epoxide¹². The epoxide/enone ratio is also solvent dependent¹³.

When derivatives of 1 are exposed to a similar change of epoxidation solvent the effect on epoxide diastereoselectivity is only slight (Table 1). These results suggest that the OH group in 1 is able to exert an H-bonding effect favoring *cis* selectivity. We interpret the solvent influence on this selectivity as arising from the relative ease of achieving this directing effect. Thus in the solvent system giving the highest *cis* selectivity (CCl_4 /acetone, 95:5), the presence of the CCl_4 must dilute the association between the dioxirane and acetone such that the intramolecular H-bonding effect is more competitive. The other solvent effects shown in Table 1

R	Solvent System	(%)	Epoxides (%) trans/cis	Epoxides/Enone (%)	Conversion (%)
-OH	Acetone	(100)	54/46	46/54	94
	CH ₂ Cl ₂ /Acetone	(50:50)	43/57	65/35	94
	CH ₂ Cl ₂ /Acetone	(90:10)	22/78	84/16	89
	$CH_2Cl_2/Acetone$	(97: 3)	18/82	89/11	77
	MeOH/Acetone	(90:10)	66/34	75/25	100
	CHCl ₃ /Acetone	(90:10)	88/12	88/12	100
	CCl ₄ /Acetone	(90:10)	15/85	52/48	87
	CCl ₄ /Acetone	(95: 5)	6/94	59/41	86
-OSi(CH ₃) ₃	Acetone	(100)	87/13	95/5	100
	CH ₂ Cl ₂ /Acetone	(50:50)	89/11	94/6	95
	CCl ₄ /Acetone	(90:10)	99/1	90/10	60
Q	Acetone	(100)	66/34		86
-O-Ċ-CH3	Actione	(100)	00/54		80
	CH ₂ Cl ₂ /Acetone	(50:50)	64/36		84
	CCl ₄ /Acetone	(90:10)	65/35		25
0 -C-0CH₃	Acetone	(100)	55/45		97
	CH ₂ Cl ₂ /Acetone	(50:50)	58/42		95
	CCl ₄ /Acetone	(90:10)	68/32		56

a) Reactions performed at RT; substrate/DMD ratio (1:1); conversion was determined by GLC analysis at 60 min.

can be explained in a similar fashion. When the solvent system leads to greater association with the OH group in 1, such as in the CH₃OH/acetone system, then there is less opportunity for the OH to influence *cis* selectivity and the *trans* isomer predominates. The distribution in the absence of this directing influence is apparently determined largely by steric effects¹⁴. These results indicate that dioxirane epoxidations can be influenced by intramolecular H-bonding from OH groups in the same manner as are peracid epoxidations¹⁵. In the dioxirane case choice of a suitable solvent discloses this influence.

Equation 1

Acknowledgment. We gratefully acknowledge support of this work by the National Institute of Environmental Health Sciences (Grant No. ES01984).

References and Notes

- 1. Chemistry of Dioxiranes Part 27. Part 26 is Murray, R.W.; Singh, M. Chem. Res. Toxicol., in press.
- (a) Murray, R.W. Chem. Rev. 1989, 89, 1187-1201. (b) Adam, W.; Curci, R.; Edwards, J.O. Acc. Chem. Res. 1989, 22, 205-211. (c) Curci, R. in Advances in Oxygenated Processes; Baumstark, A.L., Ed.; JAI: Greenwich, CT, 1990; Vol 2, Chapter 1. (d) Adam, W.; Hadjiarapoglou, L.P.; Curci, R.; Mello, R. in Organic Peroxides; Ando, W., Ed.; Wiley, New York, 1992; Chapter 4, pp 195-219. (e) Adam, W.; Hadjiarapoglou, L.P. Top. Curr. Chem. 1993, 164, 45-62.
- 3. Schultz, A.G.; Harrington, R.E.; Tham, F.S. Tetrahedron Lett. 1992, 33, 6097-6100.
- 4. Adam, W.; Prechtl, F.; Richter, M.J.; Smerz, A.K. Tetrahedron Lett. 1993, 34, 8427-8430.
- 5. Kurihara, M.; Ito, S.; Tsutsumi, N.; Miyata, N. Tetrahedron Lett. 1994, 35, 1577-1580.
- 6. Cicala, G.; Curci, R.; Fiorentino, M.; Laricchiuta, O. J. Org. Chem. 1982, 47, 2670-2673.
- 7. Marples, B.A.; Muxworthy, J.P.; Baggaley, K.H. Tetrahedron Lett. 1991, 32, 533-536.
- (a) Chow, K.; Danishefsky, S. J. Org. Chem. 1990, 55, 4211-4214. (b) Berkowitz, D.B.; Danishefsky,
 S. J.; Schulte, G.K. J. Am. Chem. Soc. 1992, 114, 4518-4529. (c) Dushin, R.G.; Danishefsky, S.J. J.
 Am. Chem. Soc. 1992, 114, 3471-3475. (d) Halcomb, R.L.; Danishefsky, S.J. J. Am. Chem. Soc. 1989,

- 9. Hoveyda, A.H.; Evans, D.A.; Fu, G.C. Chem. Rev. 1993, 93, 1307-1370.
- 10. Murray, R.W.; Gu, D. J. Chem. Soc., Perkin Trans. 2 1993, 2203-2208.
- 11. Murray, R.W.; Gu, D. J. Chem. Soc., Perkin Trans. 2 1994, 451-453.
- 12. We have shown that continued dilution of the acetone solution of the dioxirane with CCl₄ beyond that shown in the table leads to increasing amounts of the *cis* isomer. However the solutions become so dilute that measurement of the isomer distribution by GLC becomes imprecise.
- 13. We are presently carrying out studies on the dependence of the rate of the insertion reaction on the nature of the α substituent. The results will be reported separately.
- Results of work on the influence of steric effects on the epoxide distribution will be published separately.
- We have observed a similar, but less pronounced, solvent effect in the dimethyldioxirane epoxidation of 3-methylcyclohex-2-en-1-ol. This work will be published separately.

(Received in USA 16 November 1994; revised 4 January 1995; accepted 10 February 1995)