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ABSTRACT: Rare-earth-catalyzed regioselective hydrosilylation of internal alkenes with an ene-diamido samarium alkyl as 
precatalyst has been described. The samarium alkyl complex LSmCH2SiMe3(THF)2 (2, L = DipNC(Me)C(Me)NDip, Dip = 2,6-
iPr2C6H3) enabled highly regioselective hydrosilylation of aryl-substituted internal alkenes with primary silanes, leading to the se-
lective formation of a series of secondary silanes in high yields.  
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Catalytic hydrosilylation of alkenes represents the most 
powerful and selective protocol for the synthesis of orga-
nosilanes, which have wide applications in synthetic chemistry 
and for the production of various silicon materials both in in-
dustry and academia.1,2 Although metal-catalyzed hydrosilyla-
tion of terminal alkenes have been extensively studied,3 selec-
tive hydrosilylation of internal alkenes is still a challenge and 
has been rarely reported because of their slow coordination-
insertion process and poor regioselectivity in the case of un-
symmetric alkenes (Scheme 1).4,5 On the other hand, transition 
metal catalysts may suffer from serious side reactions such as 
isomerization,4d-f,6 and dehydrogenative silylation due to the 
steric effects of internal alkenes.7 

Hydrosilylation of terminal alkenes, extensively studied

Hydrosilylation of internal alkenes, very limited reports
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Scheme 1. Hydrosilylation of Terminal and Internal Al-

kenes 

So far, only a few transition metal complexes and main 
group metal complexes have been reported to catalyze hydros-
ilylation of a few of internal alkenes, but they exhibited poor 
regioselectivity and required harsh conditions, and sometimes 
led to isomerization products. It has been reported that palla-
dium complexes could catalyze hydrosilylation of β-
alkylstyrenes with trichlorosilane only.4a,b Several catalysts 
based on Fe, Co and Ni are only viable for the hydrosilylation 
of cyclic alkenes such as norbornene, cyclopentene, and cy-
clohexene.4c-f The catalysts based on main group metals were 
reported to be less reactive and selective.4g-i Very recently, 
iron-catalyzed regioselective hydrosilylation of trans-β-
substituted styrenes was reported by Zhu, et al.5 Since internal 
alkenes widely exist in natural products and are versatile start-

ing materials in synthetic chemistry, their selective hydrosi-
lylation is of considerable interest for their further conversions.  

Rare-earth-catalyzed hydrofunctionalization of alkenes has  
emerged as a powerful strategy for the creation of carbon-
heteroatom bonds.8,9 The reaction could offer distinctive cata-
lytic sequences and reaction patterns from other catalysts be-
cause of the large electropositivity and inaccessibility of oxi-
dative-addition process of rare-earth ions.10 Besides their 
unique regioselectivity, the hydrosilylation of alkenes with 
primary silanes could selectively yield secondary silanes, 
which are key intermediates for cyclosiloxane materials, 
silanediols and polysilanes.11 Although a number of rare-earth 
complexes have been reported to catalyze hydrosilylation of 
alkenes,12-14 rare-earth-catalyzed hydrosilylation of internal 
alkenes has been virtually unexplored. We report here the syn-
thesis and characterization of the ene-diamido samarium alkyl 
(2, Scheme 2) and hydride (3), which enabled highly regiose-
lective hydrosilylation of a range of aryl-substituted internal 
alkenes even in the presence of bulky groups.  

Samarium-catalyzed hydrosilylation of terminal alkenes 
have been extensively investigated with well-defined samari-
um complexes supported by cyclopentadienyl (Cp) ligands.12l-q 
A couple of samarium catalysts with multiple dentate ligands 
based on N, O and S donors have also been reported.12r,14e Our 
group reported earlier that a dimeric ene-diamido samarium 
methoxide exhibited high regioselectivity in the hydrosilyla-
tion of terminal alkenes.14f The detailed mechanistic studies by 
DFT calculations disclosed the initial formation of a samarium 
hydride intermediate. However, the hydride could not be di-
rectly isolated and detected by the reaction of the samarium 
methoxide with silanes. It is envisioned that the ene-diamido 
samarium halides could be suitable precursors for the corre-
sponding alkyls and hydrides via substitution reaction with an 
alkylpotassium and the subsequent σ-bond metathesis. It is 
expected that the highly reactive alkyls and hydride may offer 
increased activity and broad substrate scopes by taking ad-
vantage of the unique properties of the bulky ene-diamido 
ligand. Thus, the preparation of the samarium halides and al-
kyls has been explored. 

Page 1 of 7

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Scheme 2. Synthesis of Ene-Diamido Samarium Complexes 

The samarium iodide 1 could prepared in good yield (94%) 
by the three-component reaction of the corresponding diimine, 
samarium and iodine in THF.15 The samarium alkyl complex 
LSmCH2SiMe3(THF)2 (2,  L = DipNC(Me)C(Me)NDip, Dip = 
2,6-iPr2C6H3] was obtained as brown crystals in 62% yield by 
the reaction of 1 with KCH2SiMe3 in n-hexane.  Reactions of 2 
with PhSiH3 and RSiH3 (R = n-C6H13) have been investigated 
for the preparation of the hydride. The reaction with PhSiH3 
led to a mixture arising from the cleavage of both the Si−C 
and Si−H bonds, whereas reaction with RSiH3 at room tem-
perature resulted in the clean formation of the hydride bridged 
dimer L(THF)Sm(µ-H)2(µ-THF)Sm(THF)L (3) in high yield 
(87%) in 5 minutes. The excess of RSiH3 also led to the clean 
reaction, and the other possible side-products such as metal 
silyl complex could not be detected, indicating the rapid and 
selective σ-bond metathesis of the Sm−C bond with the 
silane.16 The selective and rapid formation of the hydride 3 in 
this case demonstrated the potentials of this class of com-
pounds for hydrosilylation reactions. Complexes 1−3 are par-
amagnetic and display broad NMR signals. Their structures 
have been determined by X-ray single crystal analysis. 

Figure 1. Molecular structure of complexes 2 (left) and 3 (right) 
with 30 % ellipsoid probability. Hydrogen atoms except the ones 
on the samarium atoms and the iPr groups on the phenyl rings 
have been omitted for clarity. Selected bond lengths (Å) and an-
gles (deg) for 2: Sm1−C27 2.508(3), Sm1−N1 2.241(2), Sm1−N2 
2.236(2), Sm1−C1 2.682(3), Sm1−C2 2.681(2), Sm1−O1 
2.682(3), Sm1−O2 2.5447(19), N1−C1 1.425(3), N2−C2 
1.419(3), C1−C2 1.380(4). 3: Sm1−N1 2.241(3), Sm1−N2 
2.226(3), Sm1−C2 2.695(3), Sm1−C3 2.703(4), Sm1−H1 2.29(4), 
Sm1−H2 2.26(4), Sm1−O1 2.651(2), Sm1−O2 2.439(2), 
Sm1−Sm2 3.6296(3), N1−C2 1.419(4), N2−C3 1.413(5), C2−C3 
1.375(5); N1−Sm1−N2 79.74(11), Sm1−O1−Sm2 87.23(7), 
H1−Sm1−H2 64.2(13). 

The molecular structures of 2 and 3 are shown in Figure 1, 
and that of 1 is given in Figure S1 in the Supporting Infor-

mation. The alkyl complex 2 is monomeric in the solid state, 
whereas the hydride 3 features a dimeric structure with two 
bridging hydride ligands and one bridging THF molecule. The 
Sm−N bond lengths (2.226−2.241(3) Å) in 2 and 3 are similar 
to those reported,14f while the distances between the samarium 
atoms to the carbon atoms in the ligand backbone in 2 and 3 
(2.681(2)−2.704(4) Å) are much shorter than those found in 
the previously reported dimeric samarium methoxide (av. 
2.821 Å),  indicating the strong η4 bonding of the ligand to the 
samarium atom. The dihedral angles between the N−Sm−N 
and N−C−C−N planes are 124.1° in 2 and av. 126.6° in 3, 
which are smaller than that in dimeric samarium methoxide 
(132.2°). The bridged Sm−H bond distances of 2.23−2.29(4) Å 
are shorter than those in {[(Me3Si)2NC(NiPr)2]2Sm(µ-H)}2 (av. 
2.36(2) Å).17 The Sm−Sm distance of 3.6296(3) Å in 3 is 
shorter than those found in {[(Me3Si)2NC(NiPr)2]2Sm(µ-H)}2 
(3.8102(2) Å) and [(C5Me5)2Sm(µ-H)]2 (3.905(3) Å).18  

With the alkyl and hydride 2 and 3 in hand, we are interest-
ed in the investigation of their catalytic hydrosilylation reac-
tions with the aim to broaden their applications. It is envi-
sioned that the highly reactive alkyl and hydride could be via-
ble for more challenging substrates. In the first place, the hy-
drosilylation of styrene and 1-hexene with complex 2 as 
precatalyst were examined (Table S1, entry 17 and 18 in SI) 
for comparison. As expected, 3 mol% of 2 exhibited high re-
gioselectivity for the two substrates with primary silanes, simi-
lar to the previously reported methoxide catalyst.14f The cata-
lytic behaviors of the hydride 3 are comparable to those of 2, 
indicating the similar mechanism (Table S1, entry 19 and 20 
in SI). As catalytic hydrosilylation of terminal alkenes has 
been extensively studied, we turned our attention to hydrosi-
lylation of internal alkenes, which are much less studied. 

Table 1. Optimization Reaction Conditions
a
  

 

entry solvent T (°C) time (h) yield (%)b regiosel. (%)b 

1 THF 25 1 10 >99 

2 toluene 25 1 85 >99 

 3c toluene 25 1 43 >99 

4 toluene 25 4 93 >99 

5 toluene 60 3 90 >99 

  6d toluene 60 3 99 >99 
aReaction conditions: n-C6H13SiH3 (0.5 mmol), alkene (0.5 mmol), 
2 (0.015 mmol, 3 mol%) and 0.1 mL solvent. bDetermined by GC-
MS with the crude mixture. cPhSiH3 was used. d0.55 mmol of 
silane. 

At the outset, we probed the catalytic hydrosilylation of β-
methylstyrene PhCH=CHMe with 3 mol% of 2 as catalyst and 
commercially available PhSiH3 and n-C6H13SiH3 (RSiH3) as 
silylation reagents.  As shown in Table 1, the reaction in THF 
with one equivalent of RSiH3 at room temperature only led to 
10% yield in 1 h (entry 1), whereas the same reaction in tolu-
ene yielded the hydrosilylation product in 85% yield in 1 h 
(entry 2), indicating the significant solvent effects and con-
sistent with the coordination-insertion mechanism. However, 
the hydrosilylation with PhSiH3 in toluene only afforded the 
desired product in 43% yield under the same conditions (entry 
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3), because of the complicated σ-bond metathesis of 2 with 
PhSiH3 that involves both of the Si−H and Si−C bond cleav-
age as noted above. Prolonged reaction time with RSiH3 re-
sulted in the improved yield to 93% (entry 4). It was found 
that the reaction with one equivalent of RSiH3 at 60 °C only 
gave the desired secondary silane in 90% yield in 3 h, along 
with the formation of a small amount of the tertiary silane due 
to the double addition of the silane to two equivalents of the 
alkene (entry 5). However, the yield was increased to 99% 
under the similar conditions with slightly excess of RSiH3 
(entry 6). Although these reaction parameters have noticeable 
effects on the reaction rate and yields, the regioselectivity 
maintained excellent (>99%) in all of the cases. It has been 
observed that efficient hydrosilylation of β-methylstyrene with 
other silanes such as Ph2SiH2 and PhMeSiH2 did not occur 
under our catalytic conditions. 

Table 2. Samarium-Catalyzed Hydrosilylation of Internal 

Alkenes
a 

 
 

 
SiH2R SiH2R SiH2R

SiH2R

SiH2R

SiH2R

MeO

SiH2R

Me2N

SiH2R SiH2R

SiH2R

SiH2R

SiH2R SiH2R

4a, 3 h, 60 oC

86% (> 99%)

4b, 8 h, 60 oC

89% (> 99%)

4c,b,c 24 h, 80 oC

41% (97%)

4d, 3 h, 60 oC

91% (> 99%)

4e, 3 h, 60 oC

88% (> 99%)

4f,b 12 h, 60 oC

89% (> 99%)

4g,b 12 h, 60 oC

85% (> 99%)

4h, 10 h, 60 oC

86% (> 99%)

4i, 10 h, 60 oC

88% (> 99%)

4j,b 12 h, 60 oC

82% (> 99%)

4k,b,c,d 12 h, 80 oC

87%

4l,c 12 h, 80 oC

84% (> 99%)

4m,c 12 h, 80 oC

91% (> 99%)

4n,b,c 24 h, 80 oC

33% (93%)

4o,b,c 24 h, 80 oC

41% (> 99%)

MeO

RSiH2

n-C7H1

iPr tBu

MeO

SiH2R

S

SiH2R

4p,c 10 h, 60 oC

75%

 
aReaction conditions: 0.015 mmol of 2 (3 mol%), 0.5 mmol of 
alkenes and 0.55 mmol of RSiH3 (R = n-C6H13) in 0.1 mL of tolu-
ene; The yield (%) referred to the isolated yields and the percent 
in parentheses referred the regioselectivity determined by GC-MS 
measurement of the crude products. b1 mmol silane. c0.025 mmol 
of 2 (5 mol%). d0.3 mL toluene. 

Under the optimized conditions with slightly excess of 
RSiH3 as silylation reagent, a range of β-substituted styrene 
derivatives were examined with 3−5 mol% of 2 in toluene. As 
shown in Table 2 (for details see Table S1 in SI), the β-
substituted styrenes with Me, OMe and NMe2 substitutents on 
the phenyl rings can be hydrosilylated smoothly to give the 
corresponding regioselective products (4b and 4d−g) in good 

yields. The bulky 2,4,6-trimethylphenyl-substituted internal 
alkene required 5 mol% loading of 2 and 80 °C to give the 
hydrosilylation product 4c in 41% yield, a relatively low yield 
due to the steric effects. The hydrosilylation of β-substituted 
styrenes with a long chain alkyl, bulky iPr and tBu groups 
proceeded at 60 °C to give highly regioselective (>99%) prod-
ucts (4h−j) in good yields. Notably, the catalytic reaction is 
also effective for trisubstituted alkenes with 5 mol% loading 
of 2 at 80 °C, leading to the formation of the hydrosilylation 
products (4l and 4m) in good yields. Even more interesting, 
the regioselective hydrosilylation also took place at the disub-
stituted alkene carbon atom to give the product 4n in 33% 
yield. The 1,2-diphenyl was smoothly hydrosilylated to yield 
the product 4k in high yield. In addition, thiophene substituted 
and cyclic internal alkenes also yielded the hydrosilylation 
products (4o and 4p) in modest to good yields. For compari-
son, the hydrosilylation of two terminal alkenes, styrene and 
1-hexene, was also studied under the similar conditions: sty-
rene was exclusively converted to the corresponding Markov-
nikov product 4q in 89% yield in 1 h (Table S1, entry 17 in SI) 
while 1-hexene yielded anti-Markovnikov product 4r in 78% 
yield in 2 h (Table S1, entry 18 in SI). The regioselectivity 
observed for 4q and 4r is well correlated with that catalyzed 
by the ene-diamido samarium methoxide reported previously, 
indicating the similar mechanistic pathway. However, the sa-
marium methoxide is almost inactive for hydrosilylation of β-
methylstyrene, very likely due to the high energy barrier for 
the formation of the active hydride from the methoxide plus 
high barrier for the coordination-insertion of the internal al-
kene. 

Although the high regioselectivities were observed for β-
substituted styrenes, the catalytic hydrosilylation of aliphatic 
internal alkenes and halogen-substituted styrenes under the 
similar conditions proved to be sluggish, yielding a mixture 
containing several products which cannot be separated and 
identified definitely (Table S2 in SI). This indicated that the 
aryl group on alkenes plays significant roles for the directing 
regioselectivity. This feature can be attributed to the unique η3 
bonding of styrene derivatives to the rare-earth ion.14f Compar-
ison of the results for the different alkenes indicated that the 
substrate dependence of reaction rate roughly follows termi-
nal > 1,2-disubstituted > trisubstituted alkenes. Steric effects 
are noticeable as observed for the formation of 4c and 4l−n.  
We also observed that the catalytic hydrosilylation of diphe-
nylacetylene is faster than 1,2-diphenylethene as indicated by 
NMR and GC analysis in the hydrosilylation of their 1:1 mix-
ture with RSiH3.   

 

Scheme 3. Palladium-Catalyzed Hydrolytic Oxidation of 

Dihydrosilanes for the Synthesis of Silanediol 

Catalytic hydrolytic oxidation of hydrosilanes presents the 
most efficient and atom-economic protocol for synthesis of 
silanols.19 To demonstrate the synthetic potentials of the dihy-
drosilanes, palladium-catalyzed hydrolytic oxidation of 4a 
with Lindlar catalyst has been conducted (Scheme 3). The 
catalytic reaction gave the corresponding silanediol in 88% 
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yield. It can be expected that the resulting dihydrosilanes are 
useful for the preparation of a series of silanediols. It is noted 
that silanediols have been employed as hydrogen bond donor 
catalysts and for molecular sensing and drug discovery.20 

Kinetic studies (Table S4 and Figure S2 in SI) on the hy-
drosilylation of β-methylstyrene PhCH=CHMe with n-
C6H13SiH3 in toluene roughly disclosed the first order depend-
ence on 2, the alkene and the silane. The result is distinct from 
that reported for hydrosilylation of terminal alkenes by the 
ene-diamido samarium methoxide, which follows the first 
order dependence on the catalyst and an alkene but zero order 
on phenylsilane. This inconsistence is very likely due to the 
different rate-limiting step in the catalytic cycle arising from 
the different steric effects of internal and terminal alkenes. For 
terminal alkenes, the coordination-insertion of an alkene has 
been proposed as the rate-limiting step.14f Based on the coor-
dination-insertion of the alkene to the metal hydride interme-
diate followed by σ-bond metathesis mechanism disclosed by 
DFT calculations previously,14f the present kinetic studies sug-
gested that the σ-bond metathesis in the cycle is the rate-
limiting step. The relatively slow σ-bond metathesis in this 
case can be attributed to the steric effects of the bulky alkyl 
group attached to the samarium atom generated via the inser-
tion of the internal alkene.21 As shown in Scheme 4, the regi-
oselectivity of the internal alkene insertion into the Sm−H 
bond via TS1 to form B is controlled by the stabilizing η

3 
coordination mode of the styrene fragment. The subsequent 
rate-limiting σ-bond metathesis of B with RSiH3 via TS2 led 
to the formation of hydrosilylation products and regeneration 
of the active hydride A. 

 
Scheme 4. Proposed Mechanism for the Regioselective Hy-

drosilylation 

In summary, we have disclosed the first rare-earth catalytic 
system that enabled highly regioselective hydrosilylation of 
aryl-substituted internal alkenes. The high regioselectivity can 
be attributed to the unique stabilizing η3 coordination mode of 
the styrene fragment to the rare-earth ion in the four-
membered transition state. The kinetic studies suggested that 
the last step σ-bond metathesis is the rate-limiting step, indi-
cating the reaction is sensitive to the steric effects of alkene 
substrates. The results demonstrated the potentials of ene-
diamido rare-earth catalysts for the regioselective addition of 
element-hydrogen bond to unsaturated molecules. Further 

studies of the catalytic system for broad applications are cur-
rently in progress. 
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