

Organic Preparations and Procedures International

The New Journal for Organic Synthesis

Taylor & Francis Materiations

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uopp20

One-Pot Expeditious Synthesis of 2-Amino-4,6-(disubstituted)nicotinonitriles Using Activated Fuller's Earth as Catalyst

Deelip S. Rekunge, Anil S. Mali & Ganesh U. Chaturbhuj

To cite this article: Deelip S. Rekunge, Anil S. Mali & Ganesh U. Chaturbhuj (2021) One-Pot Expeditious Synthesis of 2-Amino-4,6-(disubstituted)nicotinonitriles Using Activated Fuller's Earth as Catalyst, Organic Preparations and Procedures International, 53:2, 112-119, DOI: 10.1080/00304948.2020.1858693

To link to this article: <u>https://doi.org/10.1080/00304948.2020.1858693</u>

View supplementary material

4	0

Published online: 05 Mar 2021.

C	
	071
~	_

Submit your article to this journal 🕝

View related articles 🗹

View Crossmark data 🕑

EXPERIMENTAL PAPER

Check for updates

One-Pot Expeditious Synthesis of 2-Amino-4,6-(disubstituted)nicotinonitriles Using Activated Fuller's Earth as Catalyst

Deelip S. Rekunge^a (), Anil S. Mali^b (), and Ganesh U. Chaturbhuj^a ()

^aDepartment of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India; ^bDKSS's Institute of Pharmaceutical Science and Research Swami Chincholi, Pune, India

ARTICLE HISTORY Received 6 April 2020; Accepted 3 August 2020

Pyridine is a ubiquitous privileged heteroaromatic found in numerous natural products, including vitamins B3 and B6, nicotine, and nicotinamide adenine dinucleotide phosphate (NADP).¹⁻⁴ The pyridine ring is a key structural motif present in numerous drugs with important biological activities such as anti-HIV,⁵ antimicrobial,⁶ and anti-inflammatory⁷ properties. Pyridine-containing molecules are potent phosphodiesterase 4 (PDE4) inhibitors that are beneficial for treating asthma and chronic obstructive pulmonary disease (COPD).^{8,9} In addition, pyridines are applied in coordination chemistry,¹⁰ materials science,¹¹ supramolecular structures,¹² organocatalysis,¹³ polymers, nonlinear optical materials, electrical materials and agrochemicals.¹ Among the pyridine substructures, 2-amino-4,6-(disubstituted)nicotinonitriles (5, Scheme 1) are known for their remarkable pharmacological activities, including anti-tumor,¹⁴ cardiotonic,¹⁵ and anti-inflammatory¹⁶ characteristics.

2-Amino-4,6-(disubstituted)nicotinonitriles have conventionally been synthesized by the four-component reactions of aldehydes, acetophenone, malononitrile, and ammonium acetate¹⁷ in the presence of such promoters as diphenyl ammonium triflate,¹⁸ montmorillonite K-10,⁹ [EtNH₃]NO₃,¹⁹ microwave irradiation,^{20,21} Yb(PFO)₃,²² FePO₄,²³ urease,²⁴ Ti(dpm)(NMe₂)₂,²⁵ [Bmim][BF₄],²⁶ cellulose-SO₃H,²⁷ ultrasonic irradiation,^{28,29} SBTETASA,³⁰ and trifluoroethanol.³¹

In keeping with our previous experiments in catalysis,³²⁻⁵¹ we structured the present work to investigate the suitability of activated Fuller's earth³⁴ as a catalyst for the synthesis of 2-amino-4,6-(disubstituted)nicotinonitriles. For our initial model reaction, we chose benzaldehyde (2 mmol), acetophenone (2 mmol), malononitrile (2 mmol), and ammonium acetate (2.4 mmol) as reactants, and investigated solvent-free conditions in the production of compound **5a** (Tables 1 and 2).

The significance of catalyst loading on yields and time of the reaction was assessed (Table 1, entries 2-6). In the absence of a catalyst at 90 °C, the reaction occurred with only traces of the product, even after 120 minutes (Table 1, entry 1). An increase of the catalyst loading increased the product yield with a reduction in reaction time (Table 1,

© 2021 Taylor & Francis Group, LLC

CONTACT Ganesh U. Chaturbhuj gu.chaturbhuj@gmail.com Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India

Supplemental data for this article can be accessed here.

Scheme 1. Schematic representation of activated Fuller's earth catalyzed synthesis of 2-amino-4,6-diphenylnicotinonitrile.

Entry	Catalyst (wt %)	Temperature (°C)	Time (min.)	Yield ^b (%)	
1	-	90	120	Traces	
2	5	90	15	35	
3	10	90	15	58	
4	15	90	15	78	
5	20	90	15	93	
6	30	90	15	93	
7	20	rt	120	Traces	
8	20	50	15	60	
9	20	70	15	68	
10	20	110	15	94	

Table 1. Effect of catalyst loading.^a

^aReaction conditions: benzaldehyde (2 mmol), acetophenone (2 mmol), malononitrile (2 mmol), and ammonium acetate (2.4 mmol).

^blsolated yield.

Table 2. Effect of the solvents for the synthesis of 2-amino-4,6-diphenylnicotinonitrile.^a

Entry	Solvent	Temperature (°C)	Time (min.)	Yield ^b (%)
1	Solvent-free	90	15	93
2	H ₂ O	90	120	29
3	EtOH	reflux	120	68
4	THF	reflux	120	53
5	MeCN	reflux	120	61
5	Toluene	90	120	25
7	DMF	90	120	78

^aReaction conditions: benzaldehyde (2 mmol), acetophenone (2 mmol), malononitrile (2 mmol), ammonium acetate (2.4 mmol), and activated Fuller's earth (20 wt. %). ^bIsolated yield.

entries 2-5). However, catalyst loading beyond 20 wt. % was not advantageous (Table 1, entries 5 and 6), so 20 wt. % catalyst loading was chosen for further work. Temperature also played an important role in our model reaction. The best results were obtained at 90 °C (Table 1, entry 5).

The effect of several solvents on time and yield of the reaction was ascertained (Table 2). None of the solvents had an advantage of time and yield over the solvent-free conditions. Hence, the solvent-free protocol was regarded as the best for cost and environmental acceptability.

Table 3 shows a comparison of catalysts reported in the literature for the preparation of the title compounds. The present method ranks among the best in terms of reaction conditions, workup procedure, time and yields.

Entry	Catalyst	Reaction conditions	Time	Yield ^a (%)	Ref.
1	Activated Fuller's earth	Solvent free/90 °C	15 min.	93	This work
2	Fe ₃ O ₄ @Niacin) microwave	H ₂ O/70 °C	10 min.	86	52
3	Fe ₃ O ₄ @TiO ₂ @O ₂ PO ₂ (CH ₂)NHSO ₃ H	Solvent free/90 °C	20 min.	90	53
4	Perchlorated Al-MCM-41 nanoparticles	Solvent free/100 °C	20 min.	73	54
5	Ultrasound irradiation	CH ₃ COONH₄	25 min.	91	28, 29
6	${Fe_3O_4@SiO_2@(CH_2)_3Im}C(CN_3)$	Solvent free/100 °C	40 min.	86	55
7	Nano-Cu ₂ O–MFR	EtOH/ H ₂ O/reflux	1 h	92	56
8	TBAB	H ₂ O/reflux	2 h	92	57
9	Cellulose–SO ₃ H	H ₂ O/60 °C	2.5 h	95	27
10	FePO ₄	EtOH/reflux	4 h	93	23
11	SnO ₂ /SiO ₂ nanocomposite	EtOH/reflux	4 h	91	58
12	[Yb(PFO) ₃]	EtOH/reflux	4 h	90	22
13	Graphene oxide	H ₂ O/80 °C	5 h	96	59
14	Copper nanoparticles on charcoal (Cu/C)	MeCN/80 °C	6 h	91	60
alsolated	vield.				

Table 3. Comparison of the efficiency of activated Fuller's earth with literature catalysts.

Table 4. Substrate scope.

Entry	Aldehydes (R1)	Ketones (R ₂)	Product	Time (min)	Yield ^a (%)
1	C ₆ H ₅	C ₆ H ₅	5a	15	93
2	4-CH ₃ O-C ₆ H ₄	C_6H_5	5b	15	87
3	4-HO-C ₆ H ₄	C_6H_5	5c	20	85
4	4-Br-C ₆ H ₄	C_6H_5	5d	15	92
5	4-CI-C ₆ H ₄	C ₆ H ₅	5e	15	91
6	$4-CH_3-C_6H_4$	C ₆ H ₅	5f	15	90
7	$4-NO_2-C_6H_4$	C_6H_5	5g	15	89
8	3-Br-C ₆ H ₄	C_6H_5	5ĥ	20	87
9	3-NO ₂ -C ₆ H ₄	C ₆ H ₅	5i	25	86
10	$2-CI-C_6H_4$	C ₆ H ₅	5j	30	82
11	$2-NO_2-C_6H_4$	C ₆ H ₅	5k	30	80
12	Thien-2-yl	C ₆ H ₅	51	40	85
13	C ₆ H ₅	4-CH ₃ O-C ₆ H ₄	5m	20	86
14	C ₆ H ₅	4-HO-C ₆ H ₄	5n	20	84
15	C ₆ H ₅	4-Br-C ₆ H ₄	50	15	92
16	C ₆ H ₅	4-CI-C ₆ H ₄	5p	15	90
17	C ₆ H ₅	3-Br-C ₆ H ₄	5q	20	88
18	C ₆ H ₅	3-NO ₂ -C ₆ H ₄	5r	25	86
19	$4-CH_3O-C_6H_4$	4-Br-C ₆ H ₄	5s	20	91
20	4-CI-C ₆ H ₄	4-Br-C ₆ H ₄	5t	15	92
21	$4-CH_3-C_6H_4$	4-Br-C ₆ H ₄	5u	15	89
22	$4-CH_3O-C_6H_4$	3-Br-C ₆ H ₄	5v	20	90
23	$4-CH_3-C_6H_4$	3-Br-C ₆ H ₄	5w	20	92
24	3-Br-C ₆ H ₄	3-Br-C ₆ H ₄	5x	25	86

^alsolated yield.

Table 4 shows the results of applying our procedure more broadly. We prepared numerous 2-amino-4,6-(disubstituted)nicotinonitriles in very good to excellent yields (82-93%) in short reaction times. The nature of substitution has no significant effect on reaction time and yields. This protocol tolerates a variety of substituents on substituted aldehydes and substituted acetophenones. Table 5 provides melting points and literature references.

The reusability of the catalyst in the model reaction under solvent-free conditions at $90 \,^{\circ}\text{C}$ was evaluated. We found that the recovered catalyst could be recycled as many as four times with no significant loss in catalytic activity (fourth run 89% yield).

In summary, the present work describes the scope of activated Fuller's earth as a catalyst for the formation of 2-amino-4,6-(disubstituted)nicotinonitriles in the reaction of

Entry	Observed M. P. (°C)	Literature M. P. (°C)	Entry	Observed M. P. (°C)	Literature M. P. (°C)
5a	183-185	184-186 ⁵³	5m	168-170	167-169 ⁵⁹
5b	178-180	177-178 ⁵³	5n	231-233	233-235 ⁵⁵
5c	219-221	221 ⁶¹	5o	172-174	174-176 ⁶³
5d	197-198	195-197 ⁵⁵	5p	248-250	247-249 ⁵³
5e	228-229	228-230 ⁵⁹	5q	145-147	NA
5f	168-170	170-172 ⁵⁹	5r	190-192	190-193 ⁵³
5g	231-233	230-232 ⁵³	5s	181-183	180-182 ²⁷
5ĥ	166-168	165-167 ⁵³	5t	112-114	112 ⁵⁸
5i	190-192	190-193 ⁵³	5u	235-237	236-237 ⁵⁶
5j	193-195	194-197 ⁵⁵	5v	180-182	NA
5k	140-142	NA	5w	178-180	NA
51	189-191	190-192 ⁶²	5x	170-172	NA

Table 5. Physical constants of 2-amino-4,6-(disubstituted)nicotinonitriles, 5a-x.

NA = not available in the literature.

aldehydes, acetophenones, malononitrile, and ammonium acetate products in very good to excellent yields under solvent-free conditions.

Experimental section

All the chemicals and solvents used were of LR grade and purchased from SD Fine, Avra Synthesis, and Spectrochem and used as received. The purity determination of the starting materials and the reaction monitoring was accomplished by thin-layer chromatography (TLC) on Merck silica gel G F_{254} plates, with ethyl acetate:hexane as the eluting solvent. Melting points of all the compounds were recorded on an Analab ThermoCal melting point apparatus in open capillary tubes and are uncorrected. ¹H NMR spectra were recorded on an MR400 Agilent Technology NMR spectrometer using tetramethylsilane as an internal standard and DMSO-d6 or CDCl₃ as a solvent. HRMS was recorded on a Shimadzu LCMS-QTOF-9030 instrument by the direct infusion method. All compounds were characterized by melting points, ¹H NMR and HRMS spectroscopy. Characterization data are provided below for the novel compounds. For the novel compounds, complete copies of the original spectra were submitted for review and are available in the supplementary material in the online version of this article or from the corresponding author upon request. Covid-19 restrictions precluded reliance on the customary elemental analysis. Known compounds were identified by matching their melting points with the values in the literature references cited in Table 5.

Preparation of activated Fuller's earth catalyst

Commercial grade Fuller's earth (10 g) was stirred with 100 ml of distilled water to separate any water-soluble material. The suspended solid was filtered, washed with distilled water, and dried in an oven at 100 °C for 1h. To a 250 ml round bottom flask containing 50 ml of 5% HCl solution was added 5 g of solid obtained from the above treatment. The mixture was heated at 100 °C for 4h, cooled to room temperature, and filtered; the residue was washed with distilled water to neutrality. The resultant activated Fuller's earth was dried at 100 °C to constant weight.

116 👄 D. S. REKUNGE ET AL.

General procedure for the synthesis of 2-Amino-4,6-(disubstituted)nicotinonitriles (5a-x)

A mixture of substituted aldehyde (2 mmol), substituted acetophenone (2 mmol), malononitrile (2 mmol), ammonium acetate (2.4 mmol), and activated Fuller's earth (20 wt. %) was heated at 90 °C in an oil bath. The reaction was monitored by thin-layer chromatography. After completion of the reaction, the reaction mass was treated with hot ethanol (5 mL) dissolving the organic product and leaving the Fuller's earth insoluble. The Fuller's earth was removed by hot filtration. The filtrate was evaporated to get the product. The product was purified by recrystallization from ethanol.

2-Amino-4-(2-nitrophenyl)-6-phenylnicotinonitrile (5k)

¹H NMR (400 MHz, DMSO-d6) δ 8.23 (d, J = 8.2 Hz, 1H), 8.12 – 8.02 (m, 2H), 7.94 – 7.85 (m, 1H), 7.79 (dd, J = 17.7, 9.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 3.1 Hz, 3H), 7.24 (s, 1H), 7.10 (s, 2H). HRMS calculated for C₁₈H₁₂N₄O₂: 316.09602; found: (MH⁺) 317.10234 *m/z*.

2-Amino-6-(3-bromophenyl)-4-phenylnicotinonitrile (5q)

¹H NMR (400 MHz, DMSO-d₆) δ 8.33 (s, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.65 (m, 3H), 7.52 (d, J = 6.8 Hz, 3H), 7.41 (t, J = 7.6 Hz, 1H), 7.32 (s, 1H), 7.04 (s, 2H). HRMS calculated for C₁₈H₁₂BrN₃: 349.02145; found: (MH⁺) 350.02764 *m/z*.

2-Amino-6-(3-bromophenyl)-4-(4-methoxyphenyl)nicotinonitrile (5v)

¹H NMR (400 MHz, DMSO-d₆) δ 8.32 (m, 1H), 8.10 (s, 1H), 7.65-7.63 (m, 2H), 7.43-7.41 (m, 1H), 7.08-6.98 (m, 4H), 3.81 (s, 3H). HRMS calculated for C₁₉H₁₄BrN₃O: 379.03202; found: (MH⁺) 382.03616 *m/z*.

2-Amino-6-(3-bromophenyl)-4-(p-tolyl)nicotinonitrile (5w)

¹H NMR (400 MHz, DMSO-d₆) δ 8.35 (s, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 7.9 Hz, 2H), 7.45 (t, J = 7.9 Hz, 1H), 7.36 (d, J = 7.9 Hz, 2H), 7.32 (s, 1H), 7.06 (s, 2H), 2.40 (s, 3H). HRMS calculated for C₁₉H₁₄BrN₃: 363.03710; found: (MH⁺) 364.04324 *m/z*.

2-Amino-4,6-bis(3-bromophenyl)nicotinonitrile (5x)

¹H NMR (400 MHz, DMSO-d₆) δ 8.34 (s, 1H), 8.13 (d, J = 8.8 Hz, 1H), 7.86 (s, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.65 (t, J = 7.2 Hz, 2H), 7.50-7.42 (m, 2H), 7.35 (s, 1H), 7.09 (s, 2H). HRMS calculated for C₁₈H₁₁Br₂N₃: 426.93196; found: (MH⁺) 429.3570 *m/z*.

Acknowledgment

The authors are grateful to the University Grant Commission, New Delhi, for their financial support.

ORCID

Deelip S. Rekunge () http://orcid.org/0000-0003-4629-1483 Anil S. Mali () http://orcid.org/0000-0001-9568-385X Ganesh U. Chaturbhuj () http://orcid.org/0000-0002-6263-8777

References

- 1. C. Allais, J. M. Grassot, J. Rodriguez, and T. Constantieux, *Chem. Rev.*, 114, 10829 (2014). doi:10.1021/cr500099b
- 2. A. Katritzky and C. W. Rees, "Comprehensive Heterocyclic Chemistry," Vol. 2, p. 1, New York, Pergamon Press, 1984.
- 3. G. D. Henry Tetrahedron, 60, 6043 (2004). doi:10.1016/j.tet.2004.04.043
- 4. P. M. Joseph, Nat. Prod. Rep., 24, 223 (2007).
- 5. M. D. Hill, Chem. A. Eur. J., 16, 12052 (2010). doi:10.1002/chem.201001100
- 6. N. Patel and F. M. Shaikh, J. Sci. I. R. Iran, 21, 121 (2010).
- 7. H. Hosni and M. Abdulla Acta Pharmaceutica, 58, 175 (2008). doi:10.2478/v10007-008-0005-4
- 8. A. Kodimuthali, S. S. Jabaris, and M. Pal, J. Med. Chem., 51, 5471 (2008). doi:10.1021/jm800582j
- 9. T. R. Reddy, G. R. Reddy, L. S. Reddy, S. Jammula, Y. Lingappa, R. Kapavarapu, C. L. Meda, K. V. Parsa, and M. Pal, *Eur. J. Med. Chem.*, 48, 265 (2012). doi:10.1016/j.ejmech.2011.12.024
- 10. D. Bora, B. Deb, A. L. Fuller, A. M. Slawin, J. D. Woollins, and D. K. Dutta, *Inorg. Chim. Acta.*, 363, 1539 (2010). doi:10.1016/j.ica.2010.01.015
- 11. R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata, and H. Kitagawa, *Nat. Mater.*, 9, 565 (2010). doi:10.1038/nmat2769
- 12. T. Šmejkal, and B. Breit, Angew. Chem. Int. Ed., 47, 311 (2008). doi:10.1002/anie.200703192
- 13. N. D. Rycke, F. Couty, and O. R. David, Chem. A Eur. J., 17, 12852 (2011). doi:10.1002/ chem.201101755
- 14. F. Zhang, Y. Zhao, Sun L, Ding L, Y. Gu, and P. Gong, *Eur. J. Med. Chem.*, 46, 3149 (2011). doi:10.1016/j.ejmech.2011.03.055
- 15. A. A. Bekhit, and A. M. Baraka, *Eur. J. Med. Chem.*, 40, 1405 (2005). doi:10.1016/j.ejmech. 2005.06.005
- T. Murata, M. Shimada, S. Sakakibara, T. Yoshino, H. Kadono, T. Masuda, M. Shimazaki, T. Shintani, K. Fuchikami, K. Sakai, and H. Inbe, *Bioorg. Med. Chem. Lett.*, 13, 913 (2003) doi: 10.1016/S0960-894X(02)01046-6
- 17. H. Sheibani, K. Saidi, M. Abbasnejad, A. Derakhshani, and I. Mohammadzadeh, Arab. J. Chem., 9, 901 (2016).
- 18. J. Li, P. He and C. Yu, Tetrahedron, 68, 4138 (2012). doi:10.1016/j.tet.2012.03.104
- S. R. Sarda, J. D. Kale, S. K. Wasmatkar, V. S. Kadam, P. G. Ingole, W. N. Jadhav, and R. P. Pawar, *Mol. Divers.*, 13, 545 (2009). doi:10.1007/s11030-009-9132-1
- M. A. Gouda, M. A. Berghot, G. E. A. E. Ghani, and A. E. Khalil, Synth. Commun., 44, 297 (2014). doi:10.1080/00397911.2013.823549
- 21. F. Shi, S. Tu, F. Fang, and T. Li, Arkivoc., (i), 137 (2005) doi:10.3998/ark.5550190.0006.114
- 22. J. Tang, L. Wang, Y. Yao, L. Zhang, and W. Wang, *Tetrahedron Lett.*, 52, 509 (2011). doi:10. 1016/j.tetlet.2010.11.102
- 23. M. Zadpour and F. K. Behbahani *Monatsh. Chem.*, 146, 1865 (2015). doi:10.1007/s00706-015-1456-1
- 24. F. Tamaddon, S. Ghazi, and M. R. Noorbala, J. Mol. Catal. B Enzym., 127, 89 (2016). doi:10. 1016/j.molcatb.2016.02.015
- 25. A. A. Dissanayake, R. J. Staples, and A. L. Odom, *Adv. Synth. Catal.*, 356, 1811 (2014). doi: 10.1002/adsc.201301046
- G. M. Ziarani, Z. Kheilkordi, and F. Mohajer, J. Iran. Chem. Soc., 17, 247 (2020). doi:10. 1007/s13738-019-01774-4

- 118 👄 D. S. REKUNGE ET AL.
- 27. S. S. Mansoor, K. Aswin, K. Logaiya, P. N. Sudhan, and S. Malik, *Res. Chem. Intermed.*, 40, 871 (2014) doi:10.1007/s11164-012-1008-9
- J. Safari, S. H. Banitaba, and S. D. Khalili, Ultrason. Sonochem., 19, 1061 (2012). doi:10.1016/ j.ultsonch.2012.01.005
- 29. R. Gupta, A. Jain, M. Jain, and R. Joshi, *Bull. Korean Chem. Soc.*, 31, 3180 (2010). doi:10. 5012/bkcs.2010.31.11.3180
- 30. K. Niknam, A. Jamali, M. Tajaddod, and A. Deris, *Chin. J. Catal.*, 33, 1312 (2012). doi:10. 1016/S1872-2067(11)60421-X
- 31. S. Khaksar and M. Yaghoobi, J. Fluorine Chem., 142, 44 (2012).
- 32. C. K. Khatri, D. S. Rekunge, and G. U. Chaturbhuj, New J. Chem., 40, 10412 (2016). doi:10. 1039/C6NJ03120J
- 33. A. S. Mali, C. S. Potnis, and G. U. Chaturbhuj, J. Iran. Chem. Soc., 15, 1399 (2018). doi:10. 1007/s13738-018-1340-0
- 34. D. S. Rekunge, K. S. Indalkar, and G. U. Chaturbhuj, *Tetrahedron Lett.*, 57, 5815 (2016). doi: 10.1016/j.tetlet.2016.11.049
- 35. C. K. Khatri, V. B. Satalkar, and G. U. Chaturbhuj, *Tetrahedron Lett.*, 58, 694 (2017). doi:10. 1016/j.tetlet.2017.01.022
- 36. D. S. Rekunge, C. K. Khatri, and G. U. Chaturbhuj, *Tetrahedron Lett.*, 58, 1240 (2017). doi: 10.1016/j.tetlet.2017.02.038
- 37. K. S. Indalkar, C. K. Khatri, and G. U. Chaturbhuj, J. Chem. Sci., 129, 141 (2017). doi:10. 1007/s12039-017-1235-0
- 38. K. S. Indalkar, C. K. Khatri, and G. U. Chaturbhuj, J. Chem. Sci., 129, 415 (2017). doi:10. 1007/s12039-017-1257-7
- 39. C. K. Khatri, M. S. Patil, and G. U. Chaturbhuj, J. Iran. Chem. Soc., 14, 1683 (2017). doi:10. 1007/s13738-017-1109-x
- 40. C. K. Khatri, A. S. Mali, and G. U. Chaturbhuj, *Monatsh. Chem.*, 148, 1463 (2017). doi:10. 1007/s00706-017-1944-6
- 41. K. S. Indalkar, C. K. Khatri, and G. U. Chaturbhuj, *Tetrahedron Lett.*, 58, 2144 (2017). doi: 10.1016/j.tetlet.2017.04.058
- 42. D. S. Rekunge, C. K. Khatri, and G. U. Chaturbhuj, *Monatsh. Chem.*, 148, 2091 (2017). doi: 10.1007/s00706-017-2013-x
- 43. M. S. Patil, A.V. Palav, C. K. Khatri, and G. U. Chaturbhuj, *Tetrahedron Lett.*, 58, 2859 (2017). doi:10.1016/j.tetlet.2017.06.027
- 44. M. S. Patil, C. Mudaliar, and G. U. Chaturbhuj, *Tetrahedron Lett.*, 58, 3256 (2017). doi:10. 1016/j.tetlet.2017.07.019
- 45. C. K. Khatri and G. U. Chaturbhuj, J. Iran. Chem. Soc., 14, 2513 (2017). doi:10.1007/s13738-017-1186-x
- 46. K. S. Indalkar, M. S. Patil, and G. U. Chaturbhuj, *Tetrahedron Lett.*, 58, 4496 (2017). doi:10. 1016/j.tetlet.2017.10.030
- 47. D. S. Rekunge, C. K. Khatri, and G. U. Chaturbhuj, *Tetrahedron Lett.*, 58, 4304 (2017). doi: 10.1016/j.tetlet.2017.10.001
- 48. V. P. Jejurkar, C. K. Khatri, G. U. Chaturbhuj, and S. Saha, *ChemistrySelect.*, 2, 11693 (2017). doi:10.1002/slct.201702610
- 49. M. S. Patil, C. K. Khatri, and G. U. Chaturbhuj, *Monatsh. Chem.*, 149, 1453 (2018). doi:10. 1007/s00706-018-2169-z
- 50. D. S. Rekunge, H. S. Bendale, and G. U. Chaturbhuj, *Monatsh. Chem.*, 149, 1991 (2018). doi: 10.1007/s00706-018-2247-2
- 51. A. S. Mali, A. S. Sharma, and G. U. Chaturbhuj, Org. Prep. Proced. Inter., 2020, doi:10.1080/ 00304948.2020.1762457
- 52. A. Mojgan, S. A. Pour, M. Dolat, and A. Y. E. Abadi. Appl. Organomet. Chem. 32, 4103 (2018).
- 53. M. A. Zolfigol and M. Yarie Appl. Organomet. Chem., 31, 3598 (2017).
- 54. A. M. Abdollahi, V. N. Sadeghi, A. Moaddeli, and A. A. Rezaeipoor, *Res. Chem. Intermed.*, 42, 2867 (2016). doi:10.1007/s11164-015-2183-2

- 55. Z. M. Ali, M. Kiafar, M. Yarie, A. A. Taherpour, and M. S. Rad, RSC Adv., 55 50100 (2016).
- 56. S. Behrouz, J. Chem. Res., 40, 540 (2016). doi:10.3184/174751916X14709292404728
- 57. C. Kurumurthy, R. N. Kumar, T. Yakaiah, P. S. Rao, and B. Narsaiah, *Res. Chem. Intermed.*, 41, 3193 (2015). doi:10.1007/s11164-013-1424-5
- 58. A. A. Yelwande, M. E. Navgire, D. T. Tayde, B. R. Arbad, and M. K. Lande, S. Afr. J. Chem., 65, 131 (2012).
- 59. D. Khalili, Tetrahedron Lett., 57, 1721 (2016). doi:10.1016/j.tetlet.2016.03.020
- 60. R. Khalifeh and M. Ghamari, and J. Braz, Chem. Soc., 27, 759 (2016).
- M. Mantri, O. de Graaf, van J. Veldhoven, A. Göblyös, J. K. von Frijtag Drabbe Künzel, T. K. Mulder, R. Link, H. de Vries, M. W. Beukers, J. Brussee, and A. P. I. Jzerman, *J. Med. Chem.*, 51, 4449 (2008). doi:10.1021/jm701594y
- H. M. Faidallah, S. A. Rostom, and K. A. Khan, J. Chem., 2016, Article ID 2135893 (2016). doi:10.1155/2016/2135893
- 63. S. Khatoon and A. K. Yadav, *Phosphorus, Sulfur, Silicon Relat. Elem.*, 179, 345 (2004). doi:10. 1080/10426500490262342