Svn thesis

Paper

Direct Access to N-Alkylsulfoximines from Sulfides by a Sequential Imidation/Oxidation Procedure

Carl Albrecht Dannenberg Vincent Bizet* Carsten Bolm*

Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany carsten.bolm@oc.rwth-aachen.de

20 examples, broad scope, up to 71% yield

Received: 09.03.2015 Accepted: 14.03.2015 Published online: 16.04.2015 DOI: 10.1055/s-0034-1380536; Art ID: ss-2015-z0151-op

Abstract Synthetically relevant *N*-alkyl-substituted sulfoximines are directly prepared from sulfides by an unprecedented one-pot imidation/oxidation sequence. In situ generated *N*-bromoalkylamines serve as readily accessible imidating agents leading to *N*-alkylsulfiliminium bromides that are subsequently oxidized providing the corresponding *N*-alkylsulfoximines. In this manner, gram quantities of the products can be obtained in a short period of time avoiding the use of toxic and cumbersome to handle alkylating reagents.

Key words sulfoximine, imidation, oxidation, synthetic method, sulfide

Since their discovery, sulfoximines have been widely studied and applied in asymmetric synthesis and catalysis,^{1,2} medicinal chemistry,³⁻⁵ and crop protection.⁶ An important structural feature of these sulfur reagents is the sulfoximine nitrogen because its functionalization allows fine-tuning of the molecular properties of the target compounds related to, for example, LADME,⁷ bioactivity, and/or solubility. For a number of recent applications, NH- and *N*-cyanosulfoximines proved to be the structures of choice. For instance, BAY 1000394 (1)^{3,4a-c} and AZD6738 (2)^{4d} are potent kinase inhibitors, currently in phase 1 clinical trials, and sulfoxaflor (**3**) is a commercial insecticide (Figure 1).⁶ Recently, Goldberg and co-workers (AstraZeneca) emphasized the improved solubility of N-methylsulfoximines in water compared to NH-sulfoximines and their sulfone analogues.8 In their study, the N-methylsulfoximines proved superior to the others combining a higher solubility with equivalent isolipophilicity of the corresponding sulfone. Noteworthy is also that sulfoximines can be chiral adding an extra point of diversity compared to isosteric sulfones.

Figure 1 Relevant bioactive sulfoximines

With respect to *N*-methylsulfoximines this attribute proved to be important in a recent work by Walker and coworkers (Pfizer), who found that the *N*-methylsulfoximine **4** (with *S*-configuration at sulfur) had equipotent inhibitory activity on proline-rich tyrosine kinase 2 as its sulfone analogue showing a significantly reduced hERG liability.^{5a}

Motivated by the synthetic relevance of N-alkylated sulfoximines **6** and **7**, various approaches for their preparation have been developed (Scheme 1, a-c). Most of them, however, have severe synthetic drawbacks as they require preformed NH-sulfoximines **5**, multi-step synthetic sequences, and highly reactive reagents such as strong bases and toxic alkylating agents. For example, N-alkylated derivatives **6** have been prepared by a two-step protocol involving an initial N-acylation of **5** with an acyl halide followed

(a)

(b)

(c)

Br₂

Svn thesis

C. A. Dannenberg et al.

by reduction of the resulting N-acylated intermediate with borane.9 Although the latter transformation is well established, it can be problematic in reactions performed on larger scale due to the instability of the reducing agent. A direct introduction of the N-alkyl substituent requires the use of a (toxic) alkyl halide in combination with a strong base such as butyllithium or an alkali metal hydride and a phase-transfer catalyst under strictly anhydrous conditions,¹⁰ or, alternatively, a super-basic system consisting of KOH in DMSO.¹¹ As long as the substrates are base-tolerant and the alkyl halides can be handled, these direct alkylations might be the methods of choice. Generally, N-methyl derivatives 7 are accessed differently (Scheme 1, b). Most common for the preparation of these compounds are reductive amidations of NH-sulfoximines 5 with a mixture of formaldehvde and formic acid under Eschweiler-Clark conditions. After reflux for several days, many N-methylated products can be obtained in good yields.¹² The use of methyl transfer agents such as methyl iodide, 10b trimethyloxonium tetrafluoroborate^{12d,13} or 'magic methyl' (methyl fluorosulfate)¹⁴ allows the reduction of the reaction time and the temperature. Although appealing at first glance, it is noteworthy that these conditions are unsuitable for acid-sensitive substrates, and furthermore, the pronounced toxicities of the latter mentioned alkylating agents render such methylations unattractive in scaled-up processes.

To the best of our knowledge, there is only a single report on the direct sulfide-to-N-methylsulfoximine conversion.¹⁵ It involves sulfide imidation with N-methyl-O-mesitylsulfonylhydroxylamine (9)^{16,17} leading to sulfonium arylsulfonates 10 and subsequent oxidation of 10 with *m*-CPBA to N-methylsulfoximines 7 (Scheme 1, c). Unfortunately, only four products with a rather specific substitution pattern [derived from 2-(alkylthio)pyridines] have been prepared in this manner, and the yields were unsatisfying (38% over two steps at best).

Considering the importance of N-alkylated sulfoximines **6** and **7** in the aforementioned biomedical applications and their general relevance in synthesis we wondered about a direct access of such compounds starting from sulfides 8 utilizing straightforward reagents under easy to perform experimental conditions. A particular need was recognized in the synthesis of *N*-methylsulfoximines **7**. Primary alkylamines 11 were identified as ideal sources for the envisaged imidation process. Hence, for the preparation of 7, simple methylamine (11a) was regarded as the reagent of choice. In the light of the mass spectrometry work by Cook and co-workers,¹⁸ we hypothesized that the activation of the amine could be achieved by treatment with bromine leading to N-bromoalkylamines 13. Reaction of 13 with the sulfide 8 would then lead to the alkylsulfiliminium bromides 14.19 Oxidations of 14 should then lead to the desired N-alkylated sulfoximines 6. Starting from methylamine, Nmethylsulfoximines 7 could easily be accessed. To our dePaper

and conditions: A) 1. RCOCI, DMAP (cat.), pyridine or Et₃N, CH₂Cl₂, 2. HBX₂, CH₂Cl₂; B) BuLi, MH (+ PTC) or KOH in DMSO, alkyl halide; C) H₂CO, HCO₂H, H₂O, reflux; D) NaH, MeI, DMF; E) Me₃O⁺BF₄⁻, CH₂Cl₂; F) FSO₂OMe, MeCN.

light, this hypothesized pathway proved applicable (Scheme 1, bottom). Using a combination of $MeNH_2$ (**11a**, 2.8 equiv) and Br_2 (1.4 equiv) in methanol at room temperature led to full conversion of thioanisole (8a) in only 15 minutes with N-methylsulfiliminium bromide (14a) and sulfoxide 15a being the only products (formed in a 92:8 ratio as determined by ¹H NMR spectroscopy; Table 1, entry 1).²⁰ Attempts to avoid the formation of **15a** by lowering the temperature to 0 °C (entry 2), modifying the substrate/reagent ratios (entries 3 and 4), or changing the solvent (entries 5-9) remained unsuccessful. In all cases, sulfoxide 15a was observed as a by-product in considerable amounts. An important observation was made during the solvent screening. While MeOH could be replaced by EtOH or H₂O without significantly affecting the product formation and the 14a/15a ratio (entries 5 and 6), use of 2,2,2-trifluoroethanol led to a selectivity change providing sulfoxide **15a** as the main product (entry 7). In CH₂Cl₂ the ratio of 14a/15a was 54:46, and in acetone neither of the two products was observed (entries 8 and 9, respectively). Noticeably, in the latter two solvents a precipitate formed upon mixing of MeNH₂ and Br₂, and this solid was identified as

Paper

methylammonium bromide (12a). In the subsequent optimization of the process, the low solubility of **12a** in acetone proved beneficial because it allowed the separation of the products 14 from the ammonium salts 12. Thus, for solubility reasons the initial sulfur imidation (with MeNH₂ and Br₂) was performed in MeOH, where all reagents and intermediates dissolved. Then, the polar, protic solvent was removed under vacuum and acetone was added leading to a solution of 14a and crystals of 12a, which could be removed by filtration. The obtained N-methylsulfiliminium salt 14a was stable for a few days at -20 °C, but decomposed readily at room temperature.²¹ As a final note, bromine could not be replaced by iodine.

Table 1	Screening of the Reaction	Parameters ^a
2 MeNH (11a) + Br ₂	$ \begin{array}{c} H_2 \\ \xrightarrow{\text{solvent}} & H \\ \hline Me - N - Br \\ MeNH_2 \cdot HBr \\ 13a \\ (12a) \end{array} $	$ \begin{array}{ccc} h & S & Me & HN & Me & O \\ \hline 8a & & Br & HN & H$
Entry	Solvent	Ratio of 14a/15a ^b
1	MeOH	92:8
2 ^c	MeOH	85:15
3 ^d	MeOH	80:20
4 ^e	MeOH	85:15
5	EtOH	90:10
6	H ₂ O	80:20
7	2,2,2-trifluoroethar	nol 25:75
8	CH ₂ Cl ₂	54:46
9	acetone	n.r. ^f

^a The reactions were carried out on a 0.5 mmol scale with 2.8 equiv of MeNH₂ (11a) and 1.4 equiv of Br₂ at r.t. ^b Determined by ¹H NMR spectroscopy.

^c The reaction was carried out at 0 °C.

^d Use of 2.0 equiv of $MeNH_2$ (**11a**) and 1.0 equiv of Br_2 .

^e Use of 4.0 equiv of MeNH₂ (**11a**) and 2.0 equiv of Br₂.

^f n r = no reaction.

Next, we focused on the oxidation step to convert N-alkylsulfiliminium salts 14 to their corresponding sulfoximine derivatives 6 and 7. Following the initial work described above, 14a was selected as a representative substrate. While attempts to use sodium hypochlorite or hydrogen peroxide as oxidants remained unsuccessful, 7a was obtained by oxidation of 14a with *m*-CPBA. However, knowing about the potential hazards of this peracid we were delighted to find that KMnO₄ could also be applied. In combination with K₂CO₃, it provided **7a** in 71% yield after 16 hours at room temperature (for additional information, see Supporting Information). Noteworthy is also that this transformation proceeded in acetone, which allowed a direct use of the aforementioned sulfiliminium salt solution after removal of 12a representing an operational advantage

over the alternative oxidation procedures. Reducing the reaction time from 16 hours to just 2 hours led to a decrease in the yield of 7a (64%). Presumably due to the instability of 14a the product yield could not be further increased. As main by-products sulfide 8a and sulfoxide 15a were detected.

For the investigation of the substrate scope, diversely substituted sulfides 8a-r were subjected to the optimized reaction conditions for both steps (sulfide imidation with MeNH₂/Br₂ and subsequent sulfiliminium salt oxidation with $KMnO_4/K_2CO_3$; Scheme 2). In general, para- and metasubstituted arvl methyl sulfides **8b**-i with both electrondonating and -withdrawing groups on the arene reacted well providing the corresponding N-methylsulfoximines **7b**-i in moderate to good yields (up to 68%). The only exception was sulfoximine 7g, which was obtained in only 21% yield due to the low solubility of the starting material (sulfide 8g) in methanol. Electronic effects of the arvl substituents had no apparent influence on the substrate reactivities and product yields. Presumably, steric hindrance led to the slightly lower yields in the conversions of ortho-substituted aryl methyl sulfides 8j and 8k affording sulfoximines 7j and 7k in 31 and 25% yield, respectively. Applying the reaction sequence on methyl 2-pyridinyl sulfide (81) gave sulfoximine 71 in 46% yield illustrating that the process was superior to the existing technology providing the same product.¹⁵ Further variations of sulfide structure revealed that also other substituent combinations were tolerated. The results, however, varied. For example, whereas S-ethyl phenyl sulfide led to 7m in good yield (53%), preparation of the analogous S-cyclopropyl derivative 7n and N,S-dimethyl-S-benzylsulfoximine (70) proved more difficult (12% and 15% yield, respectively). Dialkyl-substituted sulfides 8p and **8q** reacted well leading to **7p** and **7q** in 44 and 46% yield, respectively. The latter product is of particular interest because it is a protected NMe analogue of methionine sulfoximine (MSO), which is a potent inhibitor of the γ -glutamylcysteine synthetase, an essential enzyme in the glutathione biosynthesis.2d

Diphenyl sulfide (8r) did not react, which was in line with earlier observations.²² The scalability of the process was demonstrated in a conversion of sulfide 8a on a 10 mmol scale, which gave *N*-methylsulfoximine **7a** in 52% vield.

Encouraged by these results we wondered about using other amines in direct conversions of sulfides into N-substituted sulfoximines 6. In order to allow a comparison to the data obtained in reactions with methylamine, methyl phenyl sulfide (8a) was used as the substrate. Pleasingly, such transformations proved possible, but unfortunately, the substrate range was rather limited, and the yields remained comparably low. For example, using ethylamine instead of methylamine afforded N-ethylsulfoximine 6a in 35% yield (Scheme 3) as compared to 72% yield in the preparation of

Scheme 2 Scope of the NMe sulfoximine synthesis (performed on a 1.0 mmol scale). The yield of **7a** shown in parentheses resulted from a reaction on a 10 mmol scale.

N-methyl analogue **7a** (Scheme 2). Applying *n*-butylamine and cyclohexylamine gave sulfoximines **6b** and **6c** in 32 and 19% yield, respectively. Although these yields were low, the overall synthetic value of the process was regarded high considering the multi-step alternative providing the same products. Attempts to prepare N-substituted sulfoximines **6d**, **6e**, and **16–18** were unsuccessful providing the products in only trace amounts at best (Scheme 3). Most likely, the more pronounced stereoelectronic effects of the R groups (as, for example, in *tert*-butylamine, aniline, or methyl carbamate) were responsible for the low reactivity of the intermediates. Finally, ammonia was tested as the amino component, but also in this case, no product (**5a**) was observed.

In conclusion, we have developed a new direct route to *N*-methyl- and other *N*-alkylsulfoximines by an unprecedented imidation/oxidation sequence starting from sulfides. In contrast to most other synthetic methods leading to the same products, the process avoids the intermediacy of NH-sulfoximines, which are often cumbersome to prepare. Using simple reagents under mild conditions at room temperature various products can be accessed within a

short period of time.

Unless otherwise stated, the starting materials were commercially available and used as received. ¹H, ¹³C and ¹⁹F NMR spectra were recorded either on Varian V-NMRS 600, Varian V-NMRS 400 or Varian Mercury 300 spectrometer, in CDCl₃. Chemical shifts (δ) are given in ppm relative to TMS and calibrated to residual CHCl₃. Coupling constants (J) are reported in Hz and standard coupling patterns are used. IR spectra were recorded on a PerkinElmer FT-IR Spectrum 100 as KBr pellets or neat liquids: wave numbers are given in cm⁻¹. Mass spectra were recorded on a Finnigan SSQ 7000 spectrometer [electron ionization (EI), 70 eV] and peaks are listed according to their m/z values. High-resolution mass spectra (HRMS) were recorded on a Thermo Scientific LTQ Orbitrap XL spectrometer with positive ion mode. Elemental analyses were performed on an ElementarVario EL instrument. Melting points were measured with a Büchi Melting Point B-540 apparatus. Flash column chromatography was performed with Merck silica gel 60 (35-70 mesh). Reactions were monitored by TLC on silica gel 60 F254 coated on aluminum sheets from Merck with detection by UV light and/or staining solutions (KMnO₄). Preparative HPLC was carried out on Varian, Kromasil-RP-18 250 × 30 mm, MeOH-H₂O; 12 mL/min, 51 bar, 254 nm, SD-1 PumpeProstar 320 UV-Detector for compounds 7g, 7k, and 7n after column chromatography.

N,S-Dimethyl-S-phenylsulfiliminium Bromide (14a)

A 100 mL round-bottomed flask, equipped with a magnetic stir bar, was charged with MeOH (50 mL) and MeNH₂ (**11a**, 33% in EtOH, 3.5 mL, 28.0 mmol, 2.8 equiv). Subsequently, Br₂ (0.72 mL, 14.0 mmol, 1.4 equiv) was added dropwise and the reaction mixture was stirred vigorously for 5 min. Afterwards, thioanisole (**8a**; 1.2 mL, 10 mmol,

1.0 equiv) was added and the mixture was stirred for another 10 min. After full consumption of **8a**, the solvent was removed under reduced pressure. The residue was taken up in acetone (30 mL) and filtered over filter paper. The filtrate was concentrated under reduced pressure until ca. 10 mL, which was then added dropwise to cold Et_2O (200 mL) under vigorous stirring to form a milky solution. After ca. 30 min, the solution became completely clear along with the formation of an oily off-white precipitate sticking all around the flask. The solvent was carefully removed keeping the precipitate in the flask. The oily residue was dried under high vacuum to give **14a**, which was used without further purification; yield: 2.0 g (85%); viscous yellow oil.

IR (ATR): 3860 (vw), 3741 (vw), 3428 (m), 3051 (vs), 2912 (m), 2822 (m), 2742 (vw), 2660 (vw), 2549 (vw), 2317 (s), 2110 (m), 1997 (w), 1924 (w), 1772 (vw), 1691 (w), 1580 (w), 1441 (vs), 1320 (m), 1152 (w), 1070 (vs), 974 (vs), 840 (w), 751 (vs), 684 (vs) cm⁻¹.

¹H NMR (600 MHz, CD₃OD): δ = 8.00–7.99 (m, 2 H), 7.84–7.81 (m, 1 H), 7.78–7.76 (m, 2 H), 4.85 (s, 1 H), 3.49 (s, 3 H), 2.68 (s, 3 H).

¹³C NMR (151 MHz, CD₃OD): δ = 135.4, 131.8, 129.8, 129.7, 29.6, 28.0.

MS (ESI): *m*/*z* (%) = 154 (51), 139 (24), 124 (100), 107 (28).

N-Alkylsulfoximines 6 *and N*-Methylsulfoximines 7 from Sulfides 8; General Procedure

A 50 mL round-bottomed flask, equipped with a magnetic stir bar was charged with MeOH (6 mL) and an alkylamine 11 (2.8 mmol, 2.8 equiv) for the synthesis of 6 and methylamine (11a; 33% in EtOH, 360 µL, 2.8 mmol, 2.8 equiv) for the synthesis of 7. Subsequently, bromine (80 µL, 1.4 mmol, 1.4 equiv) was added dropwise. The reaction mixture was stirred vigorously for 5 min. Afterwards, sulfide 8 (1.0 mmol, 1.0 equiv) was added and the mixture was stirred for another 10 min. The reaction progress was monitored by TLC. After full consumption of 8, the solvent was removed under reduced pressure. The residue was taken up in acetone (25 mL) and filtered over filter paper. The filtrate was concentrated under reduced pressure to ca. 10 mL. After the addition of K₂CO₃ (276.4 mg, 2.0 mmol, 2.0 equiv) and KMnO₄ (474.1 mg, 3.0 mmol, 3.0 equiv), the mixture was stirred for 16 h at r.t. Then, the solvent was removed under reduced pressure, the mixture was diluted with CH₂Cl₂ (20 mL), and the CH₂Cl₂ laver was washed with distilled H₂O (30 mL). The aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL) and the combined organic phases were dried (MgSO₄), filtered, and concentrated under reduced pressure. The product was purified by column chromatography (silica gel. eluent: n-pentane-EtOAc) to yield N-alkylsulfoximine 6 or N-methylsulfoximine 7.

N-Ethyl-S-methyl-S-phenylsulfoximine (6a)

Eluent: *n*-pentane-EtOAc (2:1) to EtOAc; yield: 64 mg (35%); colorless oil.

IR (ATR): 3396 (vw), 3061 (vw), 2968 (m), 2925 (w), 2855 (w), 2681 (vw), 2327 (vw), 2103 (vw), 1992 (vw), 1920 (vw), 1737 (vw), 1641 (vw), 1583 (vw), 1475 (vw), 1445 (m), 1408 (vw), 1375 (vw), 1292 (w), 1226 (vs), 1136 (vs), 1088 (s), 988 (s), 865 (vw), 814 (w), 775 (m), 743 (vs), 689 (m) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.87–7.82 (m, 2 H), 7.57–7.47 (m, 3 H), 3.02 (s, 3 H), 2.98–2.90 (m, 1 H), 2.81–2.73 (m, 1 H), 1.11 (t, J = 7.2 Hz, 3 H).

 ^{13}C NMR (101 MHz, CDCl₃): δ = 139.6, 132.8, 129.4, 128.7, 45.2, 38.5, 18.3.

 $\begin{array}{l} \mathsf{MS} \;(\mathsf{EI}, \mathsf{70\ eV}) \colon m/z \; (\%) = 184 \; (6), 183 \; ([\mathsf{M}^+], 11), 170 \; (5), 169 \; (9), 168 \\ (100), 142 \; (7), 141 \; (78), 140 \; (7), 126 \; (10), 125 \; (24), 124 \; (13), 97 \; (11), \\ 92 \; (6), 91 \; (5), 78 \; (9), 77 \; (24), 65 \; (5), 63 \; (6), 51 \; (16). \end{array}$

HRMS (ESI): m/z [M⁺ + H] calcd for C₉H₁₄NOS: 184.07906; found: 184.07928.

N-Butyl-S-methyl-S-phenylsulfoximine (6b)

Eluent: *n*-pentane–EtOAc (2:1) to EtOAc; yield: 68 mg (32%); yellow oil.

IR (ATR): 3821 (vw), 3401 (w), 3064 (vw), 2928 (s), 2863 (s), 2674 (vw), 2323 (w), 2097 (w), 1994 (vw), 1913 (vw), 1658 (w), 1581 (vw), 1531 (vw), 1447 (s), 1411 (w), 1368 (vw), 1311 (w), 1232 (vs), 1132 (vs), 1085 (vs), 976 (vs), 863 (w), 782 (m), 742 (vs), 688 (s) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 7.87–7.83 (m, 2 H), 7.55 (t, J = 7.3 Hz, 1 H), 7.51 (t, J = 7.4 Hz, 2 H), 3.03 (s, 3 H), 2.92–2.87 (m, 1 H), 2.74–2.69 (m, 1 H), 1.51–1.45 (m, 2 H), 1.33–1.23 (m, 2 H), 0.81 (t, J = 7.4 Hz, 3 H).

 ^{13}C NMR (151 MHz, CDCl_3): δ = 139.7, 132.8, 129.4, 128.7, 45.2, 43.6, 35.0, 20.4, 13.9.

MS (EI, 70 eV): m/z (%) = 212 ([M⁺], 4), 169 (5), 168 (66), 142 (8), 141 (100), 140 (7), 126 (12), 125 (34), 124 (15), 97 (13), 91 (5), 78 (11), 77 (26), 63 (6), 51 (7).

HRMS (ESI): m/z [M⁺ + H] calcd for C₁₁H₁₈NOS: 212.11036; found: 212.11043.

N-Cyclohexyl-S-methyl-S-phenylsulfoximine (6c)

Eluent: *n*-pentane–EtOAc (2:1) to EtOAc; yield: 45 mg (19%); colorless oil.

 $\begin{array}{l} IR \ (ATR): \ 3854 \ (vw), \ 3400 \ (w), \ 3063 \ (vw), \ 3011 \ (vw), \ 2925 \ (vs), \ 2852 \\ (s), \ 2663 \ (vw), \ 2335 \ (vw), \ 2088 \ (vw), \ 1992 \ (vw), \ 1919 \ (vw), \ 1735 \\ (vw), \ 1654 \ (vw), \ 1582 \ (vw), \ 1532 \ (vw), \ 1445 \ (s), \ 1410 \ (w), \ 1366 \ (w), \ 1316 \ (w), \ 1230 \ (vs), \ 1131 \ (vs), \ 1083 \ (s), \ 1018 \ (vw), \ 971 \ (s), \ 889 \ (w), \ 839 \ (vw), \ 787 \ (m), \ 742 \ (vs), \ 689 \ (s) \ cm^{-1}. \end{array}$

¹H NMR (600 MHz, CDCl₃): δ = 7.92–7.89 (m, 2 H), 7.60–7.56 (m, 1 H), 7.55–7.51 (m, 2 H), 3.03 (s, 3 H), 2.86–2.80 (m, 1 H), 1.89–1.85 (m, 1 H), 1.69–1.61 (m, 3 H), 1.49–1.45 (m, 1 H), 1.40–1.34 (m, 1 H), 1.32–1.26 (m, 1 H), 1.16–1.06 (m, 3 H).

 ^{13}C NMR (151 MHz, CDCl_3): δ = 140.9, 132.8, 129.3, 128.7, 54.3, 45.8, 37.7, 36.5, 25.7, 25.6, 25.4.

MS (EI, 70 eV): m/z (%) = 328 (3), 240 (6), 239 (18), 238 (100), 237 ([M⁺ + H], 43), 236 (20), 195 (7), 194 (57), 141 (5), 125 (3), 97 (3), 91 (2), 77 (3).

HRMS (ESI): m/z [M⁺ + H] calcd for C₁₃H₂₀NOS: 238.12601; found: 238.12653.

N,S-Dimethyl-S-phenylsulfoximine (7a)

Eluent: EtOAc; yield: 120 mg (71%); colorless oil.

IR (ATR): 3882 (vw), 3195 (m), 3062 (s), 2921 (s), 2314 (vw), 2098 (vw), 1999 (vw), 1912 (vw), 1672 (vs), 1446 (s), 1369 (w), 1312 (m), 1236 (vs), 1149 (s), 1093 (m), 967 (m), 847 (w), 751 (vs), 687 (s) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 7.92–7.88 (m, 2 H), 7.64–7.60 (m, 1 H), 7.59–7.55 (m, 2 H), 3.08 (s, 3 H), 2.65 (s, 3 H).

¹³C NMR (151 MHz, CDCl₃): δ = 138.9, 133.0, 129.6, 128.9, 45.1, 29.7.

MS (EI, 70 eV): m/z (%) = 172 (5), 171 (11), 170 ([M⁺], 100), 169 (23), 168 (14), 156 (9), 154 (42), 141 (10), 140 (6), 125 (10), 106 (19), 97 (6), 77 (17), 51 (9).

HRMS (ESI): m/z [M⁺ + H] calcd for C₈H₁₂NOS: 170.06341; found: 170.06325.

N,S-Dimethyl-S-(4-chlorophenyl)sulfoximine (7b)

Eluent: *n*-pentane–EtOAc (1:1) to EtOAc; yield: 65 mg (32%); colorless oil.

IR (ATR): 3561 (vw), 3202 (vw), 3069 (vw), 2916 (w), 2804 (vw), 2296 (vw), 2096 (vw), 1923 (vw), 1670 (s). 1575 (m), 1471 (m), 1393 (w), 1313 (w), 1237 (vs), 1146 (vs), 1086 (vs), 971 (vs), 833 (vs), 768 (vs) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 7.83 (d, *J* = 8.6 Hz, 2 H), 7.54 (d, *J* = 8.6 Hz, 2 H), 3.07 (s, 3 H), 2.64 (s, 3 H).

¹³C NMR (151 MHz, CDCl₃): δ = 139.8, 137.5, 130.4, 130.0, 45.2, 29.7.

 $\begin{array}{l} \mathsf{MS} \;(\mathsf{EI}, \; 70 \; \mathsf{eV}): \; m/z \; (\%) = 206 \; (7), \; 205 \; (10), \; 204 \; (23), \; 203 \; ([\mathsf{M}^+], \; 26), \\ \mathsf{190} \; (11), \; \mathsf{188} \; (27), \; \mathsf{177} \; (6), \; \mathsf{175} \; (18), \; \mathsf{174} \; (6), \; \mathsf{161} \; (11), \; \mathsf{160} \; (10), \; \mathsf{159} \\ \mathsf{(33)}, \; \mathsf{158} \; (8), \; \mathsf{143} \; (8), \; \mathsf{142} \; (34), \; \mathsf{141} \; (8), \; \mathsf{140} \; (100), \; \mathsf{139} \; (7), \; \mathsf{138} \; (5), \\ \mathsf{133} \; (6), \; \mathsf{131} \; (14), \; \mathsf{128} \; (9), \; \mathsf{127} \; (6), \; \mathsf{126} \; (13), \; \mathsf{125} \; (6), \; \mathsf{113} \; (14), \; \mathsf{112} \\ \mathsf{(11)}, \; \mathsf{111} \; (40), \; \mathsf{108} \; (10), \; \mathsf{105} \; (9), \; \mathsf{104} \; (5), \; \mathsf{99} \; (10), \; \mathsf{85} \; (6), \; \mathsf{77} \; (12), \; \mathsf{75} \\ \mathsf{(47)}, \; \mathsf{74} \; (13), \; \mathsf{73} \; (6), \; \mathsf{63} \; (19), \; \mathsf{61} \; (6), \; \mathsf{61} \; (7), \; \mathsf{50} \; (20), \; \mathsf{34} \; (5). \end{array}$

HRMS (ESI): m/z [M⁺ + H] calcd for C₈H₁₁ClNOS: 204.02444; found: 204.02406.

N,S-Dimethyl-S-(4-bromophenyl)sulfoximine (7c)

Eluent: *n*-pentane–EtOAc (1:1) to EtOAc; yield: 131 mg (53%); white solid; mp 59–60 °C.

IR (ATR): 3197 (vw), 2915 (m), 2807 (w), 2283 (vw), 2087 (vw), 1922 (vw), 1671 (m), 1569 (m), 1464 (m), 1383 (m), 1314 (w), 1227 (vs), 1145 (vs), 1081 (vs), 968 (vs), 826 (vs), 756 (vs) cm⁻¹.

 ^1H NMR (400 MHz, CDCl_3): δ = 7.77–7.73 (m, 2 H), 7.72–7.68 (m, 2 H), 3.06 (s, 3 H), 2.64 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃): δ = 138.1, 132.9, 130.5, 128.3, 45.2, 29.7.

MS (EI, 70 eV): m/z (%) = 255 (5), 251 (11), 250 (93), 249 (59), 248 (100), 247 ([M⁺], 51), 246 (13), 236 (6), 235 (7), 234 (66), 233 (6), 232 (57), 221 (10), 220 (6), 219 (11), 218 (7), 205 (18), 204 (10), 203 (18), 202 (6), 187 (8), 186 (80), 185 (10), 184 (79), 172 (6), 157 (10), 155 (10), 105 (7), 76 (6), 75 (7), 63 (5), 50 (6).

HRMS (ESI): m/z [M⁺ + H] calcd for C₈H₁₁BrNOS: 247.97429; found: 247.97392.

N,S-Dimethyl-*S*-(4-methylphenyl)*sulfoximine* (7d)

Eluent: EtOAc; yield: 88 mg (48%); colorless oil.

IR (ATR): 3399 (vw), 2919 (w), 2804 (vw), 2364 (vw), 2089 (vw), 1925 (vw), 1660 (vw), 1595 (w), 1408 (w), 1313 (w), 1234 (vs), 1142 (vs), 1100 (vs), 971 (vs), 815 (s), 759 (s) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 7.75 (d, *J* = 8.1 Hz, 2 H), 7.35 (d, *J* = 7.9 Hz, 2 H), 3.05 (s, 3 H), 2.62 (s, 3 H), 2.43 (s, 3 H).

¹³C NMR (151 MHz, CDCl₃): δ = 143.9, 135.7, 130.3, 128.9, 45.2, 29.6, 21.6.

MS (EI, 70 eV): m/z (%) = 184 (6), 183 ([M⁺], 23), 168 (19), 155 (14), 140 (5), 139 (27), 138 (5), 121 (10), 120 (100), 119 (5), 118 (5), 108 (6), 107 (7), 105 (6), 93 (5), 92 (14), 91 (63), 89 (10), 79 (7), 78 (8), 77 (19), 65 (32), 63 (17), 51 (6).

HRMS (ESI): m/z [M⁺ + H] calcd for C₉H₁₄NOS: 184.07906; found: 184.07875.

N,S-Dimethyl-S-(4-methoxyphenyl)sulfoximine (7e)

Eluent: EtOAc; yield: 114 mg (57%); colorless oil.

IR (ATR): 3555 (vw), 2925 (w), 2568 (vw), 2299 (vw), 2084 (vw), 1906 (vw), 1737 (w), 1588 (s), 1489 (m), 1309 (m), 1237 (vs), 1139 (vs), 1098 (vs), 1020 (s), 971 (s), 836 (vs), 764 (s) cm⁻¹.

 ^1H NMR (600 MHz, CDCl_3): δ = 7.84–7.78 (m, 2 H), 7.05–7.01 (m, 2 H), 3.88 (s, 3 H), 3.06 (s, 3 H), 2.64 (s, 3 H).

 ^{13}C NMR (151 MHz, CDCl₃): δ = 163.4, 131.0, 130.0, 114.8, 55.8, 45.5, 29.6.

 $\begin{array}{l} \mathsf{MS} \; (\mathsf{EI}, \; 70 \; \mathsf{eV}) \colon \; m/z \; (\%) = \; 201 \; (2), \; 200 \; (12), \; 199 \; ([\mathsf{M}^+], \; 30), \; 184 \; (14), \\ \mathsf{171} \; (8), \; 156 \; (5), \; 155 \; (35), \; 139 \; (5), \; 137 \; (8), \; 136 \; (100), \; 123 \; (10), \; 121 \\ (13), \; 108 \; (11), \; 95 \; (5), \; 92 \; (12), \; 77 \; (14), \; 64 \; (6), \; 63 \; (11). \end{array}$

HRMS (ESI): m/z [M⁺ + H] calcd for C₉H₁₄NO₂S: 200.07398; found: 200.07355.

N,S-Dimethyl-S-(4-acetylphenyl)sulfoximine (7f)

Eluent: EtOAc; yield: 144 mg (68%); white solid; mp 72 °C.

IR (ATR): 3566 (vw), 3360 (vw), 3281 (vw), 3091 (vw), 3055 (vw), 2996 (w), 2962 (vw), 2914 (w), 2880 (w), 2801 (vw), 2637 (vw), 2298 (vw), 2175 (vw), 2081 (vw), 1945 (vw), 1841 (vw), 1684 (vs), 1573 (w), 1393 (s), 1360 (m), 1319 (vw), 1224 (vs), 1145 (vs), 1096 (s), 962 (vs), 835 (s), 778 (vs), 742 (s) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.14–8.11 (m, 2 H), 8.01–7.97 (m, 2 H), 3.10 (s, 3 H), 2.67 (s, 3 H), 2.65 (s, 3 H).

 ^{13}C NMR (101 MHz, CDCl_3): δ = 197.0, 140.5, 129.4, 129.3, 128.2, 44.9, 29.7, 27.1.

MS (EI, 70 eV): m/z (%) = 213 (11), 212 (77), 211 ([M⁺], 52), 210 (9), 198 (11), 197 (11), 196 (100), 183 (16), 182 (11), 167 (18), 152 (11), 149 (6), 148 (54), 132 (7), 121 (5), 106 (7), 105 (6), 104 (5), 91 (9), 76 (5).

Anal. Calcd for $C_{10}H_{13}NO_2S$: C, 56.85; H, 6.20; N, 6.63. Found: C, 56.85; H, 6.15; N, 6.63.

N,S-Dimethyl-S-(4-nitrophenyl)sulfoximine (7g)

Eluent: *n*-pentane-EtOAc (1:1); yield: 45 mg (21%); yellow solid; mp 128 °C.

 $\begin{array}{l} IR \ (ATR): \ 3104 \ (w), \ 3055 \ (vw), \ 2995 \ (vw), \ 2919 \ (m), \ 2810 \ (vw), \ 2635 \\ (vw), \ 2450 \ (vw), \ 2289 \ (vw), \ 2207 \ (vw), \ 2164 \ (vw), \ 2093 \ (vw), \ 2007 \\ (vw), \ 1945 \ (vw), \ 1821 \ (vw), \ 1707 \ (vw), \ 1604 \ (w), \ 1518 \ (vs), \ 1468 \ (m), \\ 1402 \ (vw), \ 1345 \ (vs), \ 1229 \ (vs), \ 1146 \ (vs), \ 1081 \ (vs), \ 990 \ (vs), \ 966 \ (s), \\ 856 \ (vs), \ 770 \ (vs), \ 736 \ (vs), \ 682 \ (s) \ cm^{-1}. \end{array}$

¹H NMR (600 MHz, CDCl₃): δ = 8.41–8.38 (m, 2 H), 8.10–8.06 (m, 2 H), 3.11 (s, 3 H), 2.63 (s, 3 H).

¹³C NMR (151 MHz, CDCl₃): δ = 150.6, 145.4, 130.2, 124.8, 44.8, 29.6.

$$\begin{split} \mathsf{MS} (\mathsf{EI}, \mathsf{70\ eV}): \ m/z \ (\%) &= 215 \ (19), \ 214 \ ([\mathsf{M}^+], \ 38), \ 213 \ (6), \ 201 \ (6), \ 200 \\ (10), \ 199 \ (100), \ 186 \ (14), \ 170 \ (6), \ 153 \ (14), \ 151 \ (14), \ 150 \ (11), \ 140 \\ (10), \ 105 \ (22), \ 104 \ (5), \ 92 \ (7), \ 76 \ (9), \ 75 \ (6), \ 63 \ (7), \ 50 \ (7). \end{split}$$

HRMS (ESI): m/z [M⁺ + H] calcd for C₈H₁₁N₂O₃S: 215.04849; found: 215.04849.

N,S-Dimethyl-S-(2-naphthyl)sulfoximine (7h)

Eluent: EtOAc; yield: 55 mg (58%); colorless oil.

IR (ATR): 3863 (vw), 3390 (w), 3014 (w), 2915 (w), 2803 (w), 2311 (w), 2093 (w), 1995 (vw), 1918 (vw), 1713 (vw), 1587 (w), 1501 (vw), 1455 (w), 1409 (w), 1341 (w), 1235 (vs), 1141 (vs), 975 (s), 845 (s), 755 (vs) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 8.45 (s, 1 H), 7.95 (dd, J = 12.5, 8.4 Hz, 2 H), 7.89 (d, J = 8.1 Hz, 1 H), 7.80 (dd, J = 8.6, 1.6 Hz, 1 H), 7.61 (t, J = 7.5 Hz, 1 H), 7.57 (t, J = 6.9 Hz, 1 H), 3.11 (s, 3 H), 2.64 (s, 3 H).

¹³C NMR (151 MHz, CDCl₃): δ = 135.7, 135.0, 132.7, 130.6, 129.7, 129.2, 128.9, 127.9, 127.5, 123.5, 44.9, 29.6.

 $\begin{array}{l} \mathsf{MS} \; (\mathsf{EI}, \; 70 \; \mathsf{eV}) \colon \; m/z \; (\%) = \; 221 \; (3), \; 220 \; ([\mathsf{M}^+], \; 10), \; 219 \; (37), \; 204 \; (11), \\ \mathsf{191} \; (8), \; 175 \; (25), \; 157 \; (12), \; 156 \; (100), \; 147 \; (12), \; 144 \; (5), \; 141 \; (5), \; 129 \\ (17), \; 128 \; (33), \; 127 \; (72), \; 126 \; (10), \; 115 \; (31), \; 101 \; (6), \; 77 \; (9), \; 63 \; (9). \end{array}$

HRMS (ESI): m/z [M⁺ + H] calcd for C₁₂H₁₄NOS: 220.07906; found: 220.07895.

N,S-Dimethyl-S-(3-bromophenyl)sulfoximine (7i)

Eluent: *n*-pentane–EtOAc (1:1); yield: 129 mg (52%); yellow oil.

IR (ATR): 3408 (vw), 2914 (m), 2809 (w), 2305 (vw), 1737 (m), 1568 (w), 1410 (m), 1238 (vs), 1134 (vs), 973 (vs), 855 (m), 777 (vs) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 8.04–8.02 (m, 1 H), 7.82–7.79 (m, 1 H), 7.74–7.72 (m, 1 H), 7.45–7.42 (m, 1 H), 3.07 (s, 3 H), 2.63 (s, 3 H).

 ^{13}C NMR (151 MHz, CDCl_3): δ = 141.1, 136.1, 131.8 131.1, 127.4, 123.7, 45.1, 29.7.

 $\begin{array}{l} \mathsf{MS} (\mathsf{EI}, 70 \; \mathsf{eV}): \; m/z \; (\%) = 251 \; (10), \; 250 \; (89), \; 249 \; (37), \; 248 \; (100), \; 247 \\ ([\mathsf{M}^+], \; 31), \; 246 \; (11), \; 235 \; (5), \; 234 \; (54), \; 232 \; (52), \; 221 \; (8), \; 219 \; (8), \; 205 \\ (7), \; 203 \; (7), \; 186 \; (20), \; 185 \; (7), \; 184 \; (22), \; 183 \; (6), \; 157 \; (15), \; 155 \; (13), \\ 108 \; (8), \; 105 \; (14), \; 104 \; (7), \; 96 \; (8), \; 92 \; (5), \; 77 \; (9), \; 76 \; (25), \; 75 \; (27), \; 74 \\ (13), \; 69 \; (5), \; 63 \; (18), \; 61 \; (5), \; 50 \; (19). \end{array}$

HRMS (ESI): m/z [M⁺ + H] calcd for C₈H₁₁BrNOS: 247.97392; found: 247.97415.

N,S-Dimethyl-S-(2-bromophenyl)sulfoximine (7j)

Eluent: *n*-pentane–EtOAc (3:1) to EtOAc; yield: 77 mg (31%); white solid; mp 79 °C.

IR (ATR): 3840 (vw), 3405 (m), 2924 (m), 2662 (vw), 2320 (vw), 2206 (vw), 2104 (vw), 1908 (vw), 1733 (s), 1550 (vs), 1428 (s), 1374 (s), 1240 (vs), 1141 (s), 1094 (vs), 957 (m), 903 (m), 836 (m), 754 (vs), 690 (vs) cm⁻¹.

¹H NMR (600 MHz, $CDCl_3$): δ = 8.19 (dd, *J* = 7.9, 1.7 Hz, 1 H), 7.74 (dd, *J* = 7.9, 1.2 Hz, 1 H), 7.50 (td, *J* = 7.7, 1.2 Hz, 1 H), 7.42 (td, *J* = 7.7, 1.7 Hz, 1 H), 3.25 (s, 3 H), 2.58 (s, 3 H).

 ^{13}C NMR (151 MHz, CDCl_3): δ = 137.7, 135.6, 134.1, 133.8, 128.4, 121.0, 42.6, 29.7.

MS (EI, 70 eV): m/z (%) = 251 (10), 250 (96), 249 (36), 248 (100), 247 ([M⁺], 29), 246 (9), 234 (50), 232 (48), 221 (9), 220 (7), 219 (9), 218 (7), 205 (10), 204 (5), 203 (10), 186 (32), 185 (5), 184 (36), 183 (6), 157 (17), 155 (19), 153 (16), 139 (8), 138 (16), 125 (18), 120 (5), 109 (7), 108 (25), 106 (8), 105 (51), 104 (28), 97 (11), 96 (42), 95 (8), 92 (17), 91 (30), 89 (6), 85 (9), 83 (13), 82 (6), 81 (8), 78 (16), 77 (57), 76 (68), 75 (84), 74 (41), 70 (10), 69 (20), 65 (15), 64 (13), 63 (84), 61 (16), 60 (9), 57 (6), 55 (6), 51 (18), 50 (69), 48 (8), 47 (11), 46 (6), 45 (12).

HRMS (ESI): m/z [M⁺ + H] calcd for C₈H₁₁BrNOS: 247.97392; found: 247.97412.

Methyl 2-(N,S-Dimethylsulfonimidoyl)benzoate (7k)

Eluent: *n*-pentane–EtOAc (1:1); yield: 57 mg (25%); colorless oil.

IR (ATR): 3609 (vw), 3379 (vw), 3188 (vw), 3016 (vw), 2950 (w), 2879 (vw), 2806 (vw), 2329 (vw), 2174 (vw), 2095 (vw), 1990 (vw), 1729 (vs), 1663 (w), 1590 (vw), 1567 (vw), 1432 (s), 1288 (vs), 1242 (vs), 1150 (vs), 1111 (vs), 1056 (s), 959 (s), 854 (m), 829 (w), 776 (vs), $747 (vs) cm^{-1}$.

 ^1H NMR (600 MHz, CDCl_3): δ = 7.97–7.94 (m, 1 H), 7.61 (m, 2 H), 7.56–7.53 (m, 1 H), 3.91 (s, 3 H), 3.23 (s, 3 H), 2.57 (s, 3 H).

 ^{13}C NMR (151 MHz, CDCl₃): δ = 168.7, 137.3, 134.7, 132.9, 130.8, 130.8, 129.1, 53.2, 45.0, 29.6.

MS (EI, 70 eV): m/z (%) = 228 (20), 227 ([M⁺], 13), 212 (17), 200 (5), 199 (39), 198 (29), 196 (18), 184 (8), 183 (86), 169 (5), 168 (10), 167 (100), 166 (6), 165 (6), 164 (6), 153 (18), 152 (54), 148 (10), 137 (6), 136 (7), 135 (10), 133 (11), 132 (50), 125 (10), 121 (13), 120 (15), 119 (5), 118 (6), 109 (11), 108 (9), 106 (6), 105 (55), 104 (48), 97 (8), 96 (19), 95 (6), 92 (45), 91 (13), 79 (8), 78 (11), 77 (55), 76 (42), 75 (11), 74 (12), 70 (5), 69 (6), 65 (7), 64 (10), 63 (31), 59 (7), 51 (9), 50 (22).

HRMS (ESI): m/z [M⁺ + Na] calcd for C₁₀H₁₃NO₃S + Na: 250.05084; found: 250.05064.

N,S-Dimethyl-S-(2-pyridinyl)sulfoximine (71)

Eluent: EtOAc; yield: 78 mg (46%); colorless oil.

IR (ATR): 3847 (vw), 3420 (m), 2916 (m), 2804 (vw), 2694 (vw), 2296 (m), 2092 (m), 1996 (vw), 1916 (w), 1742 (w), 1643 (vw), 1569 (m), 1423 (s), 1315 (vw), 1236 (vs), 1149 (vs), 1103 (vs), 974 (s), 854 (m), 766 (vs), 689 (vw) cm⁻¹.

¹H NMR (600 MHz, $CDCl_3$): δ = 8.76 (m, 1 H), 8.10 (d, *J* = 7.8 Hz, 1 H), 7.94 (td, *J* = 7.7, 1.2 Hz, 1 H), 7.53–7.47 (m, 1 H), 3.23 (s, 3 H), 2.66 (s, 3 H).

¹³C NMR (151 MHz, CDCl₃): δ = 157.5, 150.6, 137.9, 126.6, 123.6, 41.1, 29.7.

MS (EI, 70 eV): m/z (%) = 171 ([M⁺], 2), 155 (4), 142 (20), 127 (7), 124 (16), 107 (10), 96 (9), 95 (7), 93 (4), 92 (6), 80 (22), 79 (37), 78 (100), 76 (6), 75 (5), 67 (12), 63 (8), 52 (15), 51 (53), 47 (5).

Anal. Calcd for $C_7H_{10}N_2OS$: C, 49.39; H, 5.92; N, 16.46. Found: C, 49.24; H, 5.96; N, 16.32.

N-Methyl-S-ethyl-S-phenylsulfoximine (7m)

Eluent: *n*-pentane-EtOAc (1:1) to EtOAc; yield: 97 mg (53%); colorless oil.

IR (ATR): 3827 (vw), 3408 (w), 3062 (vw), 2932 (w), 2878 (w), 2804 (w), 2666 (vw), 2321 (vw), 2099 (w), 2000 (vw), 1920 (vw), 1741 (vw), 1646 (vw), 1580 (vw), 1447 (s), 1233 (vs), 1142 (vs), 981 (vw), 927 (vw), 859 (vs), 771 (s), 728 (vs), 689 (s) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 7.85–7.81 (m, 2 H), 7.62–7.58 (m, 1 H), 7.57–7.53 (m, 2 H), 3.19–3.09 (m, 2 H), 2.66 (s, 3 H), 1.21 (t, J = 7.5 Hz, 3 H).

 ^{13}C NMR (151 MHz, CDCl₃): δ = 137.0, 133.0, 129.7, 129.5, 50.9, 29.6, 7.5.

MS (EI, 70 eV): m/z (%) = 184 (12), 183 ([M⁺], 7), 155 (12), 154 (21), 126 (11), 125 (24), 109 (20), 108 (6), 107 (89), 106 (60), 105 (26), 97 (21), 94 (13), 91 (6), 79 (11), 78 (50), 77 (100), 76 (5), 65 (10), 61 (7), 60 (8), 51 (48).

HRMS (ESI): m/z [M⁺ + H] calcd for C₉H₁₄NOS: 184.07906; found: 184.07909.

N-Methyl-S-cyclopropyl-S-phenylsulfoximine (7n)

Eluent: *n*-pentane-EtOAc (1:1) to EtOAc; yield: 23 mg (12%); colorless oil.

IR (ATR): 3573 (vw), 3394 (vw), 3059 (vw), 3014 (vw), 2915 (w), 2875 (w), 2804 (w), 2663 (vw), 2329 (vw), 2097 (w), 1990 (vw), 1908 (vw), 1733 (vw), 1640 (vw), 1581 (vw), 1444 (s), 1305 (w), 1242 (vs), 1186 (m), 1145 (vs), 1109 (s), 1082 (s), 997 (vw), 887 (vs), 857 (vs), 760 (s), 724 (vs), $689 (s) cm^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 7.84–7.76 (m, 2 H), 7.59–7.46 (m, 3 H), 2.65 (s, 3 H), 2.55–2.43 (m, 1 H), 1.46–1.38 (m, 1 H), 1.08–0.97 (m, 2 H), 0.82–0.73 (m, 1 H).

¹³C NMR (151 MHz, CDCl₃): δ = 139.2, 132.7, 129.4, 129.0, 32.9, 29.9, 5.8, 4.9.

MS (EI, 70 eV): m/z (%) = 197 (6), 196 (38), 195 (44), 194 ([M⁺], 22), 167 (8), 166 (5), 154 (13), 147 (10), 126 (8), 125 (51), 118 (6), 117 (19), 116 (11), 115 (13), 109 (15), 107 (29), 106 (100), 105 (13), 104 (5), 97 (33), 94 (8), 91 (6), 87 (5), 85 (34), 83 (49), 79 (13), 78 (23), 77 (81), 76 (5), 65 (9), 61 (6), 53 (5), 51 (40), 50 (15), 49 (5), 48 (10), 47 (15).

HRMS (ESI): m/z [M⁺ + Na] calcd for C₁₀H₁₃NOS + Na: 218.06101; found: 218.06102.

N,S-Dimethyl-*S*-benzylsulfoximine (70)

Eluent: *n*-pentane–EtOAc (1:1) to EtOAc; yield: 27 mg (15%); colorless oil.

IR (ATR): 3868 (vw), 3393 (w), 2918 (m), 2806 (w), 2323 (w), 2091 (w), 1896 (w), 1652 (w), 1454 (m), 1413 (m), 1314 (w), 1232 (vs), 1117 (vs), 976 (m), 843 (m), 774 (m), 699 (m) cm⁻¹.

 ^1H NMR (600 MHz, CDCl_3): δ = 7.41–7.35 (m, 5 H), 4.32 (s, 2 H), 2.85 (s, 3 H), 2.70 (s, 3 H).

 ^{13}C NMR (151 MHz, CDCl₃): δ = 130.7, 129.8, 129.1, 128.9, 59.5, 38.4, 29.6.

MS (EI, 70 eV): m/z (%) = 183 ([M⁺], 1), 168 (3), 92 (7), 91 (100), 89 (5), 65 (21), 63 (9).

HRMS (ESI): m/z [M⁺ + Na] calcd for C₉H₁₃NOS + Na: 206.06101; found: 206.06139.

N,S-Dimethyl-*S*-cyclohexylsulfoximine (7p)

Eluent: EtOAc; yield: 77 mg (44%); colorless oil.

IR (ATR): 3530 (w), 2928 (vs), 2865 (s), 2804 (w), 2323 (vw), 2089 (w), 1993 (vw), 1644 (vw), 1450 (m), 1227 (vs), 1131 (vs), 958 (m), 849 (s), 752 (vw), 694 (w) cm⁻¹.

¹H NMR (600 MHz, $CDCl_3$): δ = 2.88 (tt, *J* = 12.3, 3.4 Hz, 1 H), 2.76 (s, 3 H), 2.73 (s, 3 H), 2.25–2.16 (m, 2 H), 1.88 (d, *J* = 13.5 Hz, 2 H), 1.68 (d, *J* = 13.0 Hz, 1 H), 1.48–1.37 (m, 2 H), 1.30–1.22 (m, 2 H), 1.19–1.11 (m, 1 H).

 ^{13}C NMR (151 MHz, CDCl₃): δ = 62.5, 34.7, 29.2, 26.6, 26.5, 25.6, 25.6, 25.2, 25.2.

MS (EI, 70 eV): *m/z* (%) = 176 ([M⁺], 10), 145 (5), 94 (24), 93 (23), 83 (27), 79 (6), 78 (47), 77 (5), 67 (10), 63 (139), 55 (100), 54 (5), 53 (13), 47 (5).

HRMS (ESI): m/z [M⁺ + H] calcd for C₈H₁₈NOS: 176.11036; found: 176.10951.

Methyl 2-{[(Benzyloxy)carbonyl]amino}-4-(*N,S-dimethylsulfonim-idoyl*)butanoate (7q)

Eluent: EtOAc; yield: 158 mg (46%); viscous colorless oil.

IR (ATR): 3855 (vw), 3319 (w), 2943 (m), 2807 (vw), 2641 (vw), 2320 (w), 2082 (w), 1717 (vs), 1529 (s), 1446 (m), 1223 (vs), 1148 (vs), 1047 (vs), 853 (m), 744 (m) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.45–7.12 (m, 5 H), 6.22 (dd, *J* = 41.1, 7.9 Hz, 1 H), 5.05 (s, 2 H), 4.40 (s, 1 H), 3.69 (s, 3 H), 3.19–2.99 (m, 2 H), 2.80 (s, 3 H), 2.69 (s, 3 H), 2.39–2.27 (m, 1 H), 2.20–2.07 (m, 1 H). ^{13}C NMR (101 MHz, CDCl₃): δ = 171.7, 171.6, 156.1, 136.0, 128.5, 128.2, 128.2, 128.1, 128.1, 67.1, 52.7, 52.6, 52.5, 49.9, 38.6, 38.4, 29.0, 28.9, 26.1, 26.0.

MS (EI, 70 eV): m/z (%) = 343 (1), 342 ([M⁺], 2), 250 (2), 249 (3), 158 (10), 146 (2), 120 (2), 114 (11), 111 (2), 107 (3), 97 (3), 94 (9), 92 (9), 91 (100), 85 (2), 83 (3), 79 (2), 78 (10), 71 (3), 65 (4), 57 (4).

HRMS (ESI): m/z [M⁺ + H] calcd for C₁₅H₂₃N₂O₅S: 343.13222; found: 343.13278.

Acknowledgment

V.B. thanks the Alexander von Humboldt foundation for a postdoctoral fellowship. We also thank Prof. Dr. M. Rueping and C. Vermeeren for performing preparative high-performance liquid chromatography.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380536.

References

- For reviews about sulfoximines, see: (a) Reggelin, M.; Zur, C. Synthesis 2000, 1. (b) Harmata, M. Chemtracts 2003, 16, 660.
 (c) Okamura, H.; Bolm, C. Chem. Lett. 2004, 33, 482. (d) Bolm, C. In Asymmetric Synthesis with Chemical and Biological Methods; Enders, D.; Jaeger, K.-E., Eds.; Wiley-VCH: Weinheim, 2007, 149.
 (e) Gais, H.-J. Heteroat. Chem. 2007, 18, 472. (f) Bolm, C. Latv. J. Chem. 2012, 49. (g) Bizet, V.; Kowalczyk, R.; Bolm, C. Chem. Soc. Rev. 2014, 43, 2426. (h) Shen, X.; Hu, J. Eur. J. Org. Chem. 2014, 4437.
- (2) For recent articles dealing with sulfoximine syntheses, see:
 (a) Wang, J.; Frings, M.; Bolm, C. Angew. Chem. Int. Ed. 2013, 52, 8661; Angew. Chem. 2013, 125, 8823. (b) Wang, J.; Frings, M.; Bolm, C. Chem. Eur. J. 2014, 20, 966. (c) Bizet, V.; Buglioni, L.; Bolm, C. Angew. Chem. Int. Ed. 2014, 53, 5639; Angew. Chem. 2014, 126, 5745. (d) Buglioni, L.; Bizet, V.; Bolm, C. Adv. Synth. Catal. 2014, 356, 2209. (e) Miao, J.; Richards, N. G. J.; Ge, H. Chem. Commun. 2014, 50, 9687; and references cited therein.
- (3) For a recent overview about the use of sulfoximines in medicinal chemistry, see: Lücking, U. Angew. Chem. Int. Ed. 2013, 52, 9399; Angew. Chem. 2013, 125, 9570.
- (4) (a) Lücking, U.; Jautelat, R.; Krueger, M.; Brumby, T.; Lienau, P.; Schaefer, M.; Briem, H.; Schulze, J.; Hillisch, A.; Reichel, A.; Wengner, A. M.; Siemeister, G. *ChemMedChem* **2013**, *8*, 1067. (b) Siemeister, G.; Lücking, U.; Wengner, A. M.; Lienau, P.; Steinke, W.; Schatz, C.; Mumberg, D.; Ziegelbauer, K. *Mol. Cancer Ther.* **2012**, *11*, 2265. (c) Krüger, J.; Gries, J.; Lovis, K.; Hassfeld, J. Bayer Pharma AG, Patent WO 2012/038411 A1, **2012**. (d) Foote, K. M.; Nissink, J. W. M.; Turner, P. AstraZeneca Patent WO 2011/154737 A1, **2011**.
- (5) For bioactivities of N-methylated sulfoximines, see: (a) Walker, D. P.; Zawistoski, M. P.; McGlynn, M. A.; Li, J.-C.; Kung, D. W.; Bonnette, P. C.; Baumann, A.; Buckbinder, L.; Houser, J. A.; Boer, J.; Mistry, A.; Han, S.; Xing, L.; Guzman-Perez, A. Bioorg. Med. Chem. Lett. 2009, 19, 3253. (b) Park, S. J.; Baars, H.; Mersmann, S.; Buschmann, H.; Baron, J. M.; Amann, P. M.; Czaja, K.; Hollert, H.; Bluhm, K.; Redelstein, R.; Bolm, C. ChemMedChem 2013, 8, 217. (c) Park, S. J.; Buschmann, H.; Bolm, C. Bioorg. Med. Chem. Lett. 2011, 21, 4888.

Paper

1959

Syn<mark>thesis</mark>

C. A. Dannenberg et al.

- (6) (a) Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.; Huang, J. X.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.; Nugent, B. M.; Renga, J. M.; Denholm, I.; Gorman, K.; DeBoer, G. J.; Hasler, J.; Meade, T.; Thomas, J. D. J. Agric. Food Chem. 2011, 59, 2950. (b) Babcock, J. M.; Gerwick, C. B.; Huang, J. X.; Loso, M. R.; Nakamura, G.; Nolting, S. P.; Rogers, R. B.; Sparks, T. C.; Thomas, J.; Watson, G. B.; Zhu, Y. Pest. Manag. Sci. 2011, 67, 328. (c) Watson, G. B.; Loso, M. R.; Babcock, J. M.; Hasler, J. M.; Letherer, T. J.; Young, C. D.; Zhu, Y.; Casida, J. E.; Sparks, T. C. Insect. Biochem. Mol. Biol. 2011, 41, 432. (d) Sparks, T. C.; Loso, M. R.; Watson, G. B.; Babcock, J. M.; Kramer, V. J.; Zhu, Y.; Nugent, B. M.; Thomas, J. D. In Modern Crop Protection Compounds, 2nd ed., Vol. 3; Kraemer, W.; Schirmer, U.; Jeschke, P.; Witschel, M., Eds.; Wiley-VCH: Weinheim, 2012, 1226.
- (7) Liberation, Absorption, Distribution, Metabolism, Excretion.
- (8) Goldberg, F. W.; Kettle, J. G.; Xiong, J.; Lin, D. Tetrahedron 2014, 70, 6613.
- (9) Bolm, C.; Hackenberger, C. P. R.; Simić, O.; Verrucci, M.; Müller, D.; Bienewald, F. Synthesis 2002, 879.
- (10) (a) Johnson, C. R.; Lavergne, O. M. J. Org. Chem. **1993**, 58, 1922.
 (b) Raguse, B.; Ridley, D. D. Aust. J. Chem. **1986**, 39, 1655.
 (c) Williams, T. R.; Cram, D. J. J. Org. Chem. **1973**, 38, 20.
- (11) Hendriks, C. M. M.; Bohmann, R. A.; Bohlem, M.; Bolm, C. *Adv. Synth. Catal.* **2014**, *356*, 1847.
- (12) (a) Williams, T. R.; Booms, R. E.; Cram, D. J. J. Am. Chem. Soc.
 1971, 93, 7338. (b) Schmidbaur, H.; Kammel, G. Chem. Ber. 1971, 104, 3234. (c) Johnson, C. R.; Schroeck, C. W.; Shanklin, J. R. J. Am. Chem. Soc. 1973, 95, 7424. (d) Johnson, C. R.; Corkins, H. G. J. Org. Chem. 1978, 43, 4136.
- (13) (a) Johnson, C. R.; Rigau, J. J.; Haake, M.; McCants, D. Jr; Keiser, J. E.; Gertsema, A. *Tetrahedron Lett.* **1968**, *9*, 3719. (b) Johnson, C. R.; Haake, M.; Schroeck, C. W. J. Am. Chem. Soc. **1970**, *92*, 6594.
- (14) Greenwald, R. B.; Evans, D. H. Synthesis 1977, 650.

- (15) Brussaard, Y.; Olbrich, F.; Schaumann, E. *Inorg. Chem.* **2013**, *52*, 13160.
- (16) For other applications of 9, see: (a) Tamura, Y.; Ikeda, H.; Morita,
 I.; Tsubouchi, H.; Ikeda, M. *Chem. Pharm. Bull.* 1982, 30, 1221.
 (b) Franek, W.; Claus, P. K. *Monatsh. Chem.* 1990, 121, 539.
- (17) Compound 9 is the *N*-methyl analogue of *O*-(mesitylenesulfonyl)hydroxylamine (MSH), which is a well-utilized compound in sulfur imidations. However, large-scale applications have raised safety concern. For relevant references, see: (a) Tamura, Y.; Minamikawa, J.; Sumoto, K.; Fujii, S.; Ikeda, M. *J. Org. Chem.* 1973, 38, 1239. (b) Mendiola, J.; Rincón, J. A.; Mateos, C.; Soriano, J. F.; de Frutos, Ó.; Niemeier, J. K.; Davis, E. M. Org. *Process Res. Dev.* 2009, 13, 263.
- (18) Bortolini, O.; Yang, S. S.; Cooks, R. G. Org. Mass Spectrom. **1993**, 28, 1313.
- (19) (a) Alternatively, the formation of the *N*-alkylsulfiliminium bromides **14** could be explained by reactions of the alkylamines with *S*-bromosulfonium salts being formed by initial bromineto-sulfide additions. Here, however, this reaction path appears unlikely as all attempts to promote such process were unsuccessful leading to only complex product mixtures as revealed by NMR spectroscopy. (b) For an early work, see: Tsujihara, K.; Furukawa, N.; Oae, K.; Oae, S. *Bull. Chem. Soc. Jpn.* **1969**, *42*, 2631.
- (20) Initially, an equimolar mixture of MeNH₂, Br₂, und *t*-BuOK (1.4 equiv each) was applied for the imidation of sulfide 8a. Under these conditions, the conversion of 8a was only moderate (59%), and besides sulfiliminium salt 14a small amounts (2%) of sulf-oxide 15a were detected.
- (21) For the thermal stability of sulfiliminium salts, see: Tamura, Y.; Matsushima, H.; Minamikawa, J.; Ikeda, M.; Sumoto, K. *Tetrahedron* **1975**, *31*, 3035.
- (22) Oae, S.; Masuda, T.; Tsujihara, K.; Furukawa, N. *Bull. Chem. Soc. Jpn.* **1972**, *45*, 3586.

V