Metal-Free Regioselective β-Alkylation of Pyrroles with Carbonyl Compounds and Hydrosilanes: Use of a Brønsted Acid as a Catalyst

Shota Nomiyama^a and Teruhisa Tsuchimoto^{a,*}

^a Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
 Fax: (+81)-44-934-7228; e-mail: tsuchimo@meiji.ac.jp

Received: May 19, 2014; Revised: August 18, 2014; Published online: ■ ■ ■, 0000

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201400497.

Abstract: A Brønsted acid, trifluoromethanesulfonimide [HN(SO₂CF₃)₂], was found to catalyze reductive β -alkylation of pyrroles with carbonyl compounds and hydrosilanes. This metal-free process features lower catalyst loadings compared to the original indium variant and exclusive generation of β -alkylpyrroles.

Keywords: alkylation; Brønsted acids; heterocycles; hydrides; regioselectivity

β-Alkylpyrroles are key structural motifs in natural products and biologically active compounds^[1] as well as functional materials.^[2] Due to sufficient aromaticity and π -excessive nature of pyrroles, a straightforward approach to β -alkylpyrroles seems to be S_EAr-based direct introduction of an alkyl group onto the pyrrole ring.^[3] However, preferential α-nucleophilicity of pyrroles actually makes the β -alkylation considerably difficult.^[4,5,6] Despite such characteristics of pyrroles, we have recently achieved S_FAr -based regioselective β alkylation of pyrroles by simply mixing alkynes 1, pyrroles 2 and Et₃SiH (3a) under indium catalysis (Scheme 1).^[7] This was the first example of the S_EArbased β-alkylation of pyrroles performed in one-step and catalytically. However, the alkyl unit installable onto 2 was restricted to the secondary alkyl group with a methyl substituent since 1 has been limited mainly to terminal alkynes. We therefore improved the issue by replacing 1 with carbonyl compounds 5, which serve as a source of a broad range of alkyl groups including primary, secondary and tertiary as well as cyclic structures.^[8] In addition to the improvement, we envisaged that exploiting a new catalyst in lieu of the indium salt, which includes a rather expensive indium metal^[9] and is required to be pre-synthesized,^[10,11] would further enhance the practicality and utility of the strategy. In terms of the social requirements of sustainable development, we aimed at achieving the β -alkylation as a metal-free process. We now report details of more sophisticated β -alkylation of pyrroles, where a Brønsted acid as a commercial source shows outstanding catalytic performance.

We first examined the effect of Brønsted acid catalysts in the reaction of N-methylpyrrole (2a) with 2decanone (5a) and Et₃SiH (3a) under the conditions in 1,4-dioxane at 85°C for 5 h (Table 1). Despite that HNTf₂ (25 mol%, Tf=SO₂CF₃) was totally inactive in the preceding study with the corresponding alkyne (1-decyne),^[7] 3 mol% of HNTf₂ successfully catalyzed the reaction of 5a, giving 3-(decan-2-yl)-1-methylpyrrole (4a) as a single isomer in 91% yield (entry 1). The non-formation of its α -isomer and complete consumption of dipyrrolylalkanes 6a as plausible intermediates are noteworthy. Although using other sulfonimides as well as oxygen and carbon analogues of HNTf₂ resulted in a complete conversion of **5a**, a significant amount of 6a remained unconsumed (entries 2-6). In addition to CF₃COOH, inorganic

Scheme 1. Catalytic reductive β -alkylation of pyrroles.

Adv. Synth. Catal. 0000, 000, 0-0

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

 & Co. KGaA, Weinheim
 Wiley Online Library

 These are not the final page numbers!
 ۲۹

orc	^{1:3:1.5} ₈ H ₁₇ + N + 3	a (3 mol%) solvent 85 °C, 5 h	C ₈ H ₁₇	+
5a	2a	,	4a	`6a ′
Entry	Catalyst	Solvent	Conv. (%) ^[b]	Yield (%) ^[c]

Table 1. Brønsted acid-catalyzed reductive β -2-decylation of 2a.^[a]

Entry	Catalyst	Solvent	Conv. (%) ^[b] 5a	Yield (%) ^[c] 4a	6a
1	HNTf ₂	1.4-dioxane	>99	91	<1
2	$HNNf_2^{[d]}$	1,4-dioxane	>99	79	8
3		1,4-dioxane	>99	62	21
4	HOTf	1,4-dioxane	>99	15	50
5	HONf ^[d]	1,4-dioxane	>99	12	51
6	$HCTf_2(C_6F_5)$	1,4-dioxane	>99	66	25
7	CF ₃ COOH	1,4-dioxane	<1	<1	<1
8	HBF₄ aq.	1,4-dioxane	74	5	49
9	H_2SO_4	1,4-dioxane	21	<1	5
10	HNO ₃	1,4-dioxane	<1	<1	<1
11	$HNTf_2$	Bu ₂ O	93	19	<1
12	$HNTf_2$	PhMe	96	46	<1
13	$HNTf_2$	PhCl	>99	69	10
14	$HNTf_2$	MeNO ₂	83	61	<1
15	$HNTf_2$	EtCN	>99	88	<1
16	$HNTf_2$	DMF ^[e]	<1	<1	<1
17 ^[f]	$HNTf_2$	1,4-dioxane	>99	87	<1
18 ^[g]	$HNTf_2$	1,4-dioxane	98	84	<1
19 ^[h]	HNTf ₂	1,4-dioxane	>99	76	<1

^[a] Reagents: **5a** (0.60 mmol), **2a** (1.8 mmol), **3a** (0.90 mmol), catalyst (18 μ mol), solvent (0.60 mL).

^[b] Determined by GC.

^[c] Determined by ¹H NMR.

^[d] $Nf = SO_2C_4F_9$.

- ^[e] DMF = N,N-dimethylformamide.
- ^[f] Performed with **2a** (1.2 mmol).

^[g] Performed with **2a** (0.60 mmol).

^[h] Performed with 2a (0.60 mmol) and 3a (0.60 mmol).

Brønsted acids such as HBF₄, H₂SO₄ and HNO₃ were much less effective (entries 7–10). With HNTf₂ as a promising catalyst, the continuous survey of the solvent effect showed that 1,4-dioxane is the solvent of choice for the reaction (entries 1 and 11–16). The effect of the amounts of **2a** and **3a** was also examined. Reducing the amount of **2a** from 3 to 2 and 1 molar equivalents to **5a** lowered the yield of **4a** but not significantly (entries 17 and 18). Accordingly, in the case that pyrrole substrates are expensive and elaborate, the use of less than 3 molar equivalents of the pyrrole should be a possible choice of the reaction conditions. On the other hand, reducing the quantity of both **2a** and **3a** resulted in further decrease of the yield (entry 19).

Scheme 2. Reductive β -2-decylation of 2a: HNTf₂ versus In(NTf₂)₃. Yields of isolated 4a based on 5a are shown here.

As shown in Scheme 2, the performance of 3 mol% of HNTf₂ is comparable enough to that of 10 mol% of $In(NTf_2)_3$. HNTf₂ as a catalyst has several advantages over $In(NTf_2)_3$: 1) no indium as a rather rare metal is required, 2) no metallic waste remains after the reaction, 3) pre-synthesis of $In(NTf_2)_3$ from In_2O_3 and HNTf₂ is unnecessary, 4) HNTf₂ is commercially available and reasonable in price,^[12] 5) the weight used of the catalyst can be reduced to less than onetenth, that is, from 57.3 mg of $In(NTf_2)_3$ to 5.1 mg of HNTf₂ in the 0.6 mmol-scale reaction.

With the suitable reaction conditions in hand, we next explored the scope of the HNTf₂-catalyzed reaction (Table 2). Besides the 2-decyl group, the different length of the secondary alkyl chains and the cyclic structures were installed onto the β -position of **2a** exclusively (4b-4f). In the use of 2-adamantanone, its direct reduction occurred, giving 2-adamantanol (6% NMR yield). The undesired reduction was suppressed entirely by switching the procedure (method A) to method B, where 3a is added after consumption of carbonyl compounds 5 (4e).^[13] The compatibility of the functional groups, sulfide, alkenyl, alkynyl, ester, chloro, and boryl [B(pin) = B(pinacolate)], is noteworthy (4f-4k, 4q and 4t). The tolerance of the alkynyl part is especially remarkable and is thus an additional advantage of this method over the corresponding indium reaction because an indium catalyst is capable of activating the $C \equiv C$ bond (4h).^[14,15] In fact, use of $In(NTf_2)_3$ instead of HNTf₂ as a catalyst provided no 4h due to the formation of a complex mixture of products. Pyrroles with a benzyl (Bn), iPr, 1-phenylethyl, tBu, Ph, and cumyl group on the nitrogen atom also participated in this protocol (4I-4p and 4s-4x). Of these, the reactions of N-iPr- and N-tBu-pyrrole with **5a** allowed us to further reduce the loading of HNTf₂ to $1 \mod \%$ (4m and 4o). Despite that 1,2-dimethylpyrrole has the two unsymmetrical β -sites, only the C4-position was alkylated (4q). In contrast to the pyrroles that have been used so far, no β -alkylation proceeded in the reaction using an electron-deficient pyrrole such as N-Boc-pyrrole (Boc=tert-butoxycarbonyl); reagents and conditions used are given in the reference section.^[16] The reaction of pyrrole with no

asc.wiley-vch.de

2

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

[a] Reagents: 5 (0.60 mmol), 2 (1.8 or 2.4 mmol), 3a (0.90 or 1.8 mmol), HNTf₂ (6.0-42 μmol), 1,4-dioxane (0.60 mL). Yields of isolated 4 based on 5 are shown here. The methods used are shown in parentheses. See experimental section for further details.

- ^[b] The yield when performed on 7.5 mmol scale is shown in parentheses.
- ^[c] Ac = acetyl.
- ^[d] The product was obtained as a 78:22 mixture of diastereomers.
- ^[e] Performed on 7.0 mmol scale.
- ^[f] **3a** (4.2 mmol) was used.

substituent on the nitrogen atom also led to a poor result; a reaction scheme is provided in the reference section.^[17] These results suggest that electron-rich pyrroles with alkyl and aryl groups on the nitrogen atom should be essential for the progress of the reductive β -alkylation of pyrroles. When using aryl and heteroaryl ketones, method B is valid to exclude a small extent of α -alkylation that was concurrent with the β alkylation in the use of method A (**4r**-**4u**). Upon introducing a primary alkyl group, the yield of the product was found to tend to increase with increasing the size of the alkyl unit (**4v**-**4x**). As Table 2 shows, 3-4 molar equivalents of **2** to **5** are used, but the excess amount of **2** can be recovered if desired. For example, 3 molar equivalents of N-(1-phenylethyl)pyrrole to acetone were used in the reaction giving **4n**. The pyrrole that remained unreacted was thus recovered with efficiency of 95%, which was calculated based on the excess amount of the pyrrole: 2 molar equivalents in this case (see the Experimental Section for further details). This result indicates that pyrrole substrates used as an excess amount are recoverable and reusable.

As a practical application, gram-scale synthesis can be performed. For example, **4b** and **4n** were prepared on 7.5 and 7.0 mmol scales, respectively, to provide 1.15 g of **4b** (92% yield) and 1.40 g of **4n** (92% yield).

```
Adv. Synth. Catal. 0000, 000, 0-0
```

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

3

Scheme 3. HNTf₂-catalyzed β -alkylation of pyrroles with carbonyl compounds and carbon nucleophiles (**3b**: Me₃SiCN, **3c**: 2-methylfuran, **3d**: 4-vinylanisole).

Scheme 4. HNTf₂-catalyzed reaction for mechanistic studies.

Besides hydride nucleophile **3a**, carbon nucleophiles [Nu(*C*)] **3** such as Me₃SiCN (**3b**), 2-methylfuran (**3c**) and 4-vinylanisole (**3d**) can be used for extending a carbon–carbon bond (Scheme 3).^[8] The use of such nucleophiles enables us to create the quaternary carbon center with the β -pyrrolyl group. Here again, the β -selectivities were perfectly controlled in all the cases. In the use of **3d**, the bicyclic ring was formed at once via a regioselective three carbon– carbon bond-forming cascade, where a benzylic cation generated after nucleophilic attack of the C=C bond of **3d** is likely to accept the α -carbon of the pyrrolyl group.

As thus far described, nitrogen-substituted β -alkylpyrroles with primary, secondary and tertiary alkyl groups can be prepared by utilizing the present method. Importantly, we have previously demonstrated that the benzyl and cumyl groups on the nitrogen atom are easily removable.^[8] Therefore, combining this method and the deprotection reaction enables preparation of all six types including nitrogen-substi-

Scheme 5. A plausible reaction mechanism.

tuted and nitrogen-unsubstituted β -alkylpyrroles with primary, secondary and tertiary alkyl groups.

Some pieces of experimental observations are available for the mechanistic studies (Scheme 4). Thus, the reaction of 5a with 2a and HNTf₂ (3 mol%), but without Et₃SiH (3a), gave an isomeric mixture of dipyrrolylalkanes 6a, as observed in the reaction performed by method B. The isolated mixture (6a) then reacted with 3a in the presence of HNTf₂ (3 mol%) and H_2O ,^[18] giving **4a** exclusively in 94% yield. These results indicate that dipyrrolylalkanes 6 are intermediates in the three-component reaction. On the basis of these results and our previous ones,^[7,8] a plausible mechanism is shown in Scheme 5, in which one pyrrole ring of **6** is fixed as the β -pyrrolyl ring, due actually to the non-formation of an α -alkylpyrrole derived inevitably from α, α' -6. The HNTf₂ (H⁺) first assembles 5 and 2 into 6, one pyrrole ring of which undergoes protonation and then eliminates to give cationic species β -8 via the C(sp³)-C(pyrrolyl) bond cleavage, as previously reported.^[19] The trapping of β -8 by nucleophile (Nu) 3 leads to product 4 or 7. As previously noted, the origin of the observed β -selectivity would be ascribed to the dominant generation of β -8 being much more stable than possible alternative cationic species α -8 that has 1,3-allylic-type strain between R^1 and R^3 .^[20]

In conclusion, we have disclosed that $HNTf_2$ works as a powerful catalyst for the regioselective β -alkylation of pyrroles with carbonyl compounds and nucleophiles. The use of the Brønsted acid catalyst has several distinct advantages in comparison to the corresponding indium-catalyzed reaction. This method also features a wide range of substrate coverage with the high functional group tolerance, and thus would be useful and reliable tool for the synthesis of β -alkylpyrroles.

asc.wiley-vch.de

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Experimental Section

General Remarks

All manipulations were conducted with a standard Schlenk technique under an argon atmosphere. Nuclear magnetic resonance (NMR) spectra were taken on a JEOL JMN-ECA 400 (¹H, 400 MHz; ¹³C, 100 MHz) or JEOL JMN-ECA 500 (¹H, 500 MHz; ¹³C, 125 MHz) spectrometer using tetramethylsilane (¹H and ¹³C) as an internal standard. Analytical gas chromatography (GC) was performed on a Shimadzu model GC-2014 instrument equipped with a capillary column of InertCap 5 (5% phenyl polysilphenylene-siloxane, $30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ }\mu\text{m}$) using nitrogen as carrier gas. Gas chromatography-mass spectrometry (GC-MS) analyses were performed with a Shimadzu model GCMS-QP2010 instrument equipped with a capillary column of ID-BPX5 (5% phenyl polysilphenylene-siloxane, $30 \text{ m} \times$ $0.25 \text{ mm} \times 0.25 \text{ \mu m}$) by electron ionization at 70 eV using helium as carrier gas. Preparative recycling high-performance liquid chromatography (HPLC) was performed with JAI LC-9104 equipped with JAIGEL-GS320 column using a mixture of hexane-ethyl acetate (EtOAc) as eluent. Preparative recycling gel permeation chromatography (GPC) was performed with JAI LC-9105 equipped with JAIGEL-1H and JAIGEL-2H columns using chloroform as eluent. High-resolution mass spectra (HRMS) were obtained with a JEOL JMS-T100GCV spectrometer. All melting points were measured with a Yanaco Micro Melting Point apparatus and uncorrected. Kugelrohr bulb-to-bulb distillation was carried out with a Sibata glass tube oven GTO-250RS apparatus. Dibutyl ether and 1,4-dioxane were distilled under argon from sodium just prior to use. Toluene (PhMe) and chlorobenzene (PhCl) were distilled under argon from calcium chloride just prior to use. Propionitrile (EtCN) was distilled under argon from P₂O₅ just prior to use. Nitromethane was stored over molecular sieves 4 A (MS 4 A) under argon. Anhydrous N,N-dimethylformamide (DMF) was purchased from Wako pure chemical industries and used as received. N-(2-Phenylpropan-2-yl)pyrrole,^[8] 6heptyn-2-one,^[21] and 1-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]ethanone^[8] were prepared according to the respective literature procedures. Unless otherwise noted, other substrates and reagents were commercially available and used as received.

Synthesis of N-Isopropylpyrrole

Based on the literature procedure,^[22] *N*-isopropylpyrrole was synthesized with the following reagents: isopropylamine (5.91 g, 100 mmol), 2,5-dimethoxytetrahydrofuran (13.2 g, 100 mmol) and acetic acid (50.0 mL), and isolated in 29 % yield (3.17 g) by vacuum distillation (85 °C/160 hPa). A colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.45 (d, *J*=5.4 Hz, 6H), 4.25 (sept, *J*=5.4 Hz, 1H), 6.15 (t, *J*=1.7 Hz, 2H), 6.73 (t, *J*=1.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 24.0, 50.7, 107.7, 118.1. HRMS (FI) Calcd for C₇H₁₁N: M, 109.0892. Found: *m/z* 109.0868.

Synthesis of N-(1-Phenylethyl)pyrrole

Based on the literature procedure, [22] *N*-(1-phenylethyl)pyrrole was synthesized with the following reagents: 1-phenyle-

thylamine (6.06 g, 50.0 mmol), 2,5-dimethoxytetrahydrofuran (6.61 g, 50.0 mmol) and acetic acid (22.5 mL), and isolated in 60% yield (5.15 g) by vacuum distillation (82 °C/ 133 Pa). A colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.83 (d, *J*=6.9 Hz, 3H), 5.28 (q, *J*=7.1 Hz, 1H), 6.19 (dd, *J*=2.3, 1.7 Hz, 2H), 6.76 (dd, *J*=2.3, 1.7 Hz, 2H), 7.09 (d, *J*= 7.5 Hz, 2H), 7.22–7.27 (m, 1H), 7.31 (t, *J*=7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 22.1, 58.1, 108.0, 119.5, 125.8, 127.4, 128.6, 143.5. HRMS (FI) Calcd for C₁₂H₁₃N: M, 171.1048. Found: *m/z* 171.1020.

Synthesis of N-tert-Butylpyrrole

N-tert-Butylpyrrole was synthesized according to the following modified literature procedure.^[22] Under an argon atmosphere, a 300 mL two-necked round-bottomed flask was charged with tert-butylamine (29.3 g, 400 mmol), acetic acid (90.0 mL) and 2,5-dimethoxytetrahydrofurran (26.4 g, 200 mmol). After stirring at 80 °C for 50 h, the reaction mixture was diluted with Et₂O (200 mL). The resulting solution was washed with a 2M NaOH aqueous solution (100 mL x 3), H₂O (100 mL) and brine (100 mL), and then dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent followed by vacuum distillation (78°C/80 hPa) provided N-tert-butylpyrrole (16.6 g, 67 % yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.54 (s, 9H), 6.16 (t, J= 2.2 Hz, 2H), 6.84 (t, J=2.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) & 30.8, 54.6, 107.4, 117.5. HRMS (FI) Calcd for C₈H₁₃N: M, 123.1048. Found: *m*/*z* 123.1017.

HNTf₂-Catalyzed Reductive β -Alkylation of Pyrroles with Carbonyl Compounds and Et₃SiH. A General Procedure of Method A for Table 2

A flame-dried 20 mL Schlenk tube was filled with argon and then charged with HNTf₂ [(1.69 mg, 6.00 µmol), (5.06 mg, 18.0 µmol), (8.43 mg, 30.0 µmol) or (11.8 mg, 42.0 µmol)] and 1,4-dioxane (0.60 mL). The solution was stirred at room temperature for 3 min. To this were added carbonyl compound 5 (0.600 mmol), pyrrole derivative 2 (1.80 or 2.40 mmol) and Et₃SiH (3a) (0.900, 1.80 or 4.20 mmol), and the resulting mixture was stirred at 50, 85 or 100 °C. After the time specified in Table 2 (see t^{1}), a saturated NaHCO₃ aqueous solution (0.3 mL) was added, and the aqueous phase was extracted with EtOAc (5 mL x 3). The combined organic layer was washed with brine (1 mL) and then dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent followed by column chromatography on silica gel using hexane-EtOAc or hexane-CHCl₃ as eluent gave the corresponding product (4). The results are summarized in Table 2. Unless otherwise noted, products 4 synthesized here were fully characterized by ¹H and ¹³C NMR spectroscopy and HRMS.

HNTf₂-Catalyzed Reductive β-Alkylation of Pyrroles with Carbonyl Compounds and Et₃SiH. A General Procedure of Method B for Table 2

A flame-dried 20 mL Schlenk tube was filled with argon and then charged with HNTf₂ [(5.06 mg, $18.0 \mu \text{mol}$) or (11.8 mg, $42.0 \mu \text{mol}$)] and 1,4-dioxane (0.60 mL). The solution was stirred at room temperature for 3 min. To this were added carbonyl compound **5** (0.600 mmol) and pyrrole derivative **2**

Adv. Synth. Catal. 0000, 000, 0-0

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

(1.80 or 2.40 mmol), and the resulting mixture was stirred at 85 or 100 °C for 3, 4 or 24 h. Et₃SiH (**3a**) (0.900 or 1.80 mmol) was then added, and the resulting solution was stirred further at 85 or 100 °C. After the time specified in Table 2 (see t^3), the work-up process was carried out similarly as above. The results are summarized in Table 2. Unless otherwise noted, products **4** prepared here were fully characterized by ¹H and ¹³C NMR spectroscopy and HRMS.

3-(Decan-2-yl)-1-methyl-1*H***-pyrrole (4a):** The title compound was synthesized with the following reagents based on method A: **5a** (0.600 mmol), **2a** (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=80:1). Compound **4a** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, *J*=7.0 Hz, 3H), 1.17 (d, *J*= 6.9 Hz, 3H), 1.20–1.35 (m, 12H), 1.36–1.47 (m, 1H), 1.48–1.58 (m, 1H), 2.60 (sext, *J*=7.0 Hz, 1H), 3.60 (s, 3H), 5.98 (t, *J*=2.1 Hz, 1H), 6.37 (dd, *J*=2.0, 1.8 Hz, 1H), 6.51 (t, *J*= 2.5 Hz, 1H).

3-(Hexan-2-yl)-1-methyl-1H-pyrrole (4b): The title compound was synthesized with the following reagents based on method A: for the reaction performed on 0.600 mmol scale: 2-hexanone (0.600 mmol), 2a (1.80 mmol), 3a (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc = 80:1); for the reaction performed on 7.50 mmol scale: 2-hexanone (7.50 mmol), 2a (22.5 mmol), 3a (11.3 mmol), HNTf₂ (225 µmol) and 1,4-dioxane (7.5 mL), and isolated by column chromatography on silica gel (hexane/EtOAc= 80:1). A colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.17 (d, J = 6.9 Hz, 3H), 1.22–1.34 (m, 4H), 1.37–1.48 (m, 1H), 1.49–1.59 (m, 1H), 2.60 (sext, J = 6.9 Hz, 1 H), 3.60 (s, 3 H), 5.99 (t, J = 2.2 Hz, 1 H), 6.37 (t, J = 2.0 Hz, 1 H), 6.50 (dd, J=2.6, 2.3 Hz, 1 H); ¹³C NMR (125 MHz, $CDCl_3$) δ 14.1, 22.2, 22.9, 29.9, 31.8, 36.0, 38.5, 106.7, 118.0, 121.2, 131.1. HRMS (FI) Calcd for C₁₁H₁₉N: M, 165.1518. Found: *m*/*z* 165.1504.

1-Methyl-3-(pentan-3-yl)-1*H*-**pyrrole (4c):** The title compound was synthesized with the following reagents based on method A: 3-pentanone (0.600 mmol), **2a** (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (30.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=100:1). A colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 0.84 (t, *J*=7.5 Hz, 6H), 1.40–1.51 (m, 2H), 1.51–1.65 (m, 2H), 2.25 (tt, *J*=8.1, 5.6 Hz, 1H), 3.60 (s, 3H), 5.93 (t, *J*=2.2 Hz, 1H), 6.35 (t, *J*=1.9 Hz, 1H), 6.51 (t, *J*=2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.1, 29.0, 36.0, 41.2, 106.9, 119.0, 121.1, 128.6. HRMS (FI) Calcd for C₁₀H₁₇N: M, 151.1361. Found: *m/z* 151.1334.

3-Cycloheptyl-1-methyl-1*H***-pyrrole (4d):** The title compound was synthesized with the following reagents based on method A: cycloheptanone (0.600 mmol), **2a** (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc = 40:1). Compound **4d** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 1.45–1.78 (m, 10H), 1.91–2.03 (m, 2H),

2.57–2.71 (m, 1H), 3.59 (s, 3H), 5.99 (dd, J=2.3, 2.1 Hz, 1H), 6.37 (t, J=1.9 Hz, 1H), 6.49 (dd, J=2.5, 2.3 Hz, 1H).

3-(Adamant-2-yl)-1-methyl-1H-pyrrole (4e): The title compound was synthesized with the following reagents based on method A: 2-adamantanone (0.600 mmol), 2a (1.80 mmol), 3a (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4dioxane (0.60 mL) or with the following reagents based on method B: 2-adamantanone (0.600 mmol), 2a (2.40 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=30:1). Compound 4e has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 1.51 \text{ (d, } J = 13.2 \text{ Hz}, 2 \text{ H}), 1.75 \text{ (s, 3 H)},$ 1.84–1.96 (m, 5H), 1.99 (d, J = 12.6 Hz, 2H), 2.15 (dd, J =4.9, 3.2 Hz, 2H), 2.92 (s, 1H), 3.63 (s, 3H), 6.02 (t, J =2.0 Hz, 1H), 6.42 (dd, J=3.2, 2.0 Hz, 1H), 6.54 (t, J=2.3 Hz. 1 H).

1-Methyl-3-(tetrahydro-2*H*-thiopyran-4-yl)-1*H*-pyrrole (4 f): The title compound was synthesized with the following reagents based on method A: tetrahydro-2*H*-thiopyran-4one (0.600 mmol), **2a** (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (30.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc= 20:1). Compound **4f** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 1.73 (dtd, J=13.3, 12.0, 3.4 Hz, 2H), 2.21 (dq, J=13.8, 3.4 Hz, 2H), 2.47 (tt, J=11.8, 3.3 Hz, 1H), 2.62–2.70 (m, 2H), 2.79 (td, J=12.9, 2.5 Hz, 2H), 3.61 (s, 3H), 5.99 (t, J=2.2 Hz, 1H), 6.38 (t, J=1.8 Hz, 1H), 6.51 (t, J=2.4 Hz, 1H).

1-Methyl-3-(6-methyl-5-hepten-2-yl)-1*H*-pyrrole (4g): The title compound was synthesized with the following reagents based on method A: 6-methyl-5-hepten-2-one (0.600 mmol), **2a** (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (42.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by recycling GPC after column chromatography on silica gel (hexane/CHCl₃=5:1). Compound **4g** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 1.19 (d, *J*= 6.9 Hz, 3H), 1.41–1.52 (m, 1H), 1.55–1.63 (m, 1H), 1.58 (s, 3H), 1.68 (d, *J*=0.9 Hz, 3H), 1.97 (q, *J*=7.6 Hz, 2H), 2.62 (sext, *J*=7.0 Hz, 1H), 3.60 (s, 3H), 5.08–5.16 (m, 1H), 5.99 (t, *J*=2.2 Hz, 1H), 6.37 (dd, *J*=2.1, 1.8 Hz, 1H), 6.51 (t, *J*= 2.4 Hz, 1H).

3-(6-Heptyn-2-yl)-1-methyl-1*H***-pyrrole (4h):** The title compound was synthesized with the following reagents based on method A: 6-heptyn-2-one (0.600 mmol), **2a** (1.80 mmol), **3a** (1.80 mmol), HNTf₂ (42.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=20:1). A colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.20 (d, *J*=6.9 Hz, 3 H), 1.49–1.66 (m, 4H), 1.93 (t, *J*=2.6 Hz, 1H), 2.17 (td, *J*=6.7, 2.8 Hz, 2H), 2.63 (sext, *J*=6.8 Hz, 1H), 3.60 (s, 3H), 5.98 (dd, *J*=2.2, 1.9 Hz, 1H), 6.38 (t, *J*=1.9 Hz, 1H), 6.51 (t, *J*=2.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 18.6, 22.3, 26.6, 31.5, 36.0, 37.7, 68.0, 84.9, 106.6, 118.1, 121.4, 130.3 HRMS (FI) Calcd for C₁₂H₁₇N: M, 175.1361. Found: *m/z* 175.1350.

asc.wiley-vch.de

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

4-(1-Methyl-1*H***-pyrrol-3-yl)pentyl acetate (4i):** The title compound was synthesized with the following reagents based on method A: 5-acetoxypentan-2-one (0.600 mmol), **2a** (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=8:1). Compound **4i** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 1.20 (d, *J*=7.1 Hz, 3H), 1.46-1.68 (m, 4H), 2.03 (s, 3H), 2.64 (sext, *J*=6.9 Hz, 1H), 3.60 (s, 3H), 4.04 (t, *J*=6.6 Hz, 2H), 5.98 (dd, *J*=2.3, 2.1 Hz, 1H), 6.38 (dd, *J*=2.1, 1.8 Hz, 1H), 6.51 (dd, *J*=2.5, 2.3 Hz, 1H).

Dihydro-3-[1-(1-methyl-1H-pyrrol-3-yl)ethyl]-2(3H)-furanone (4j): The title compound was synthesized with the following reagents based on method A: 3-acetyldihydro-2(3H)-furanone (0.600 mmol), **2a** (1.80 mmol), 3 (1.80 mmol), HNTf₂ (42.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=3:1) as a 78/22 mixture of diastereomers. The mixture was then separated by recycling HPLC (hexane/EtOAc=3:1). For the major isomer: A colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.27 (d, J = 7.2 Hz, 3H), 2.10-2.23 (m, 2H), 2.88 (td, J=9.5, 3.8 Hz, 1H), 3.34 (qd, J=7.1, 3.8 Hz, 1 H), 3.61 (s, 3 H), 4.10-4.20 (m, 2 H), 6.01 (t, J=2.3 Hz, 1 H), 6.44 (t, J=1.7 Hz, 1 H), 6.53 (t, J=2.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 16.5, 24.3, 31.7, 36.1, 45.8, 66.7, 107.1, 118.8, 121.8, 126.5, 178.8. HRMS (FI) Calcd for C₁₁H₁₅NO₂: M, 193.1103. Found: *m*/*z* 193.1085. For the minor isomer: A colorless oil. ¹H MNR (500 MHz, CDCl₃) δ 1.34 (d, J=7.2 Hz, 3 H), 2.05 (dq, J=12.7, 8.5 Hz, 1H), 2.12–2.20 (m, 1H), 2.68 (td, J=9.0, 4.5 Hz, 1H), 3.42 (qd, J=7.2, 4.3 Hz, 1H), 3.59 (s, 3H), 3.93 (td, J=8.7, 4.4 Hz, 1 H), 4.09 (dt, J = 8.6, 8.0 Hz, 1 H), 6.00 (t, J = 2.3 Hz, 1 H), 6.43 (dd, J = 2.0, 1.7 Hz, 1 H), 6.50 (t, J = 2.5 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) δ 19.7, 23.8, 31.7, 36.1, 46.5, 66.8, 107.5, 119.8, 121.5, 124.1, 179.4. HRMS (FI) Calcd for C₁₁H₁₅NO₂: M, 193.1103. Found: *m*/*z* 193.1097.

3-(6-Chlorohexan-2-yl)-1-methyl-1*H***-pyrrole (4k):** The title compound was synthesized with the following reagents based on method A: 6-chlorohexan-2-one (0.600 mmol), **2a** (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=20:1). Compound **4k** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 7. Therefore, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 1.19 (d, *J*=6.9 Hz, 3H), 1.36–1.61 (m, 4H), 1.76 (quint, *J*=7.1 Hz, 2H), 2.62 (sext, *J*=6.8 Hz, 1H), 3.51 (t, *J*=6.9 Hz, 2H), 3.60 (s, 3H), 5.98 (dd, *J*=2.3, 2.1 Hz, 1H), 6.37 (dd, *J*=2.1, 1.8 Hz, 1H), 6.51 (dd, *J*=2.5, 2.3 Hz, 1H).

1-Benzyl-3-(decan-2-yl)-1*H***-pyrrole (41):** The title compound was synthesized with the following reagents based on method A: **5a** (0.600 mmol), 1-benzyl-1*H*-pyrrole (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/CHCl₃=8:1). Compound **41** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 7. Therefore, only ¹H NMR data are provided here. ¹H NMR

(500 MHz, CDCl₃) δ 0.87 (t, J=7.0 Hz, 3H), 1.17 (d, J= 6.9 Hz, 3H), 1.21–1.34 (m, 12H), 1.37–1.48 (m, 1H), 1.49– 1.57 (m, 1H), 2.61 (sext, J=6.9 Hz, 1H), 5.00 (s, 2H), 6.03 (dd, J=2.6, 1.7 Hz, 1H), 6.44 (dd, J=2.0, 1.7 Hz, 1H), 6.59 (t, J=2.5 Hz, 1H), 7.07–7.12 (m, 2H), 7.24–7.28 (m, 1H), 7.31 (tt, J=7.3, 1.6 Hz, 2H).

3-(Decan-2-yl)-1-isopropyl-1*H***-pyrrole (4m):** The title compound was synthesized with the following reagents based on method A: **5a** (0.600 mmol), *N*-isopropylpyrrole (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (6.00 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=50:1). A colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, *J*=6.9 Hz, 3H), 1.18 (d, *J*=6.9 Hz, 3H), 1.20–1.35 (m, 12H), 1.37–1.47 (m, 1H), 1.43 (d, *J*=6.6 Hz, 6H), 1.50–1.60 (m, 1H), 2.60 (sext, *J*=6.9 Hz, 1H), 4.16 (sept, *J*=6.7 Hz, 1H), 5.99 (t, *J*=2.3 Hz, 1H), 6.48 (t, *J*=2.0 Hz, 1H), 6.63 (dd, *J*=2.6, 2.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 21.9, 22.7, 23.9, 27.7, 29.4, 29.7, 29.9, 31.91, 31.94, 38.8, 50.4, 105.9, 114.5, 117.5, 130.3. HRMS (FI) Calcd for C₁₇H₃₁N: M, 249.2457. Found: *m/z* 249.2460.

3-Isopropyl-1-(1-phenylethyl)-1H-pyrrole (4n): The title compound was synthesized with the following reagents based on method A: acetone (7.00 mmol), N-(1-phenylethyl)pyrrole (21.0 mmol), 3a (10.5 mmol), HNTf₂ (0.350 mmol), and 1,4-dioxane (7.0 mL), and isolated by column chromatography on silica gel (hexane/CHCl₃=3:1). In the process of purifying 4n, N-(1-phenylethyl)pyrrole was also collected with a recovery efficiency of 95% (13.3 mmol), which was calculated based on 14.0 mmol of N-(1-phenylethyl)pyrrole used as an excess amount. A colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.19 (d, J=6.6 Hz, 3H), 1.20 (d, J=6.9 Hz, 3H), 1.80 (d, J=7.1 Hz, 3H), 2.81 (sept, J = 6.9 Hz, 1H), 5.20 (q, J = 7.1 Hz, 1H), 6.07 (t, J =2.2 Hz, 1H), 6.49–6.54 (m, 1H), 6.66 (t, J=2.5 Hz, 1H), 7.04-7.11 (m, 2H), 7.21-7.25 (m, 1H), 7.27-7.33 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 22.1, 24.05, 24.07, 26.5, 58.0, 106.5, 115.4, 119.0, 125.9, 127.3, 128.6, 131.7, 143.9. HRMS (FI) Calcd for C₁₅H₁₉N: M, 213.1518. Found: *m*/*z* 213.1530.

1-tert-Butyl-3-(decan-2-yl)-1*H*-pyrrole (40): The title compound was synthesized with the following reagents based on method A: **5a** (0.600 mmol), *N-tert*-butylpyrrole (1.80 mmol), **3a** (0.900 mmol), HNTf₂ (6.00 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc = 40:1). Compound **4o** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, *J*=6.9 Hz, 3H), 1.18 (d, *J*=7.2 Hz, 3H), 1.21–1.35 (m, 12H), 1.36–1.61 (m, 2H), 1.50 (s, 9H), 2.61 (sext, *J*=6.9 Hz, 1H), 6.00 (dd, *J*=2.6, 2.0 Hz, 1H), 6.58 (dd, *J*=2.3, 1.7 Hz, 1H), 6.73 (t, *J*=2.3 Hz, 1H).

3-(Decan-2-yl)-1-phenyl-1*H***-pyrrole (4p):** The title compound was synthesized with the following reagents based on method B: **5a** (0.600 mmol), *N*-phenylpyrrole (2.40 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/CHCl₃=5:1). Compound **4p** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, *J*=6.9 Hz, 3H), 1.19–1.39 (m,

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

12 H), 1.23 (d, J=6.9 Hz, 3 H), 1.42–1.64 (m, 2 H), 2.68 (sext, J=6.9 Hz, 1 H), 6.21 (dd, J=2.9, 1.7 Hz, 1 H), 6.86–6.89 (m, 1 H), 7.02 (dd, J=2.7, 2.4 Hz, 1 H), 7.19 (tt, J=6.9, 1.7 Hz, 1 H), 7.35–7.42 (m, 4 H).

1,2-Dimethyl-4-(tetrahydro-2*H*-thiopyran-4-yl)-1*H*-pyr-

role (4q): The title compound was synthesized with the following reagents based on method A: tetrahydro-2*H*-thiopyran-4-one (0.600 mmol), 1,2-dimethylpyrrole (1.80 mmol), **3a** (1.80 mmol), HNTf₂ (42.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=20:1). A white solid, mp=60–61 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.71 (dtd, J=13.2, 12.1, 3.4 Hz, 2H), 2.16–2.22 (m, 2H), 2.18 (d, J=1.4 Hz, 3H), 2.42 (tt, J=11.6, 3.3 Hz, 1H), 2.62–2.68 (m, 2H), 2.78 (ddd, 13.7, 12.2, 2.4 Hz, 2H), 3.46 (s, 3H), 5.75 (d, J=0.9 Hz, 1H), 6.31 (d, J=2.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 11.9, 29.1, 33.4, 35.6, 36.0, 105.0, 116.7, 128.5, 128.7. HRMS (FI) Calcd for C₁₁H₁₇NS: M, 195.1082. Found: m/z 195.1082.

1-Methyl-3-(1-phenylethyl)-1*H***-pyrrole (4r):** The title compound was synthesized with the following reagents based on method B: acetophenone (0.600 mmol), **2a** (1.80 mmol), **3a** (1.80 mmol), HNTf₂ (42.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by bulb-to-bulb distillation (100 °C/100 Pa) after column chromatography on silica gel (hexane/EtOAc=20:1). Compound **4r** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 1.56 (d, *J*=7.3 Hz, 3H), 3.58 (s, 3H), 4.00 (q, *J*=7.2 Hz, 1H), 5.96 (t, *J*=2.1 Hz, 1H), 6.29–6.33 (m, 1H), 6.51 (dd, *J*=2.5, 2.3 Hz, 1H), 7.14–7.20 (m, 1H), 7.24–7.31 (m, 4H).

1-Isopropyl-3-(1-phenylethyl)-1*H*-pyrrole (4s): The title compound was synthesized with the following reagents based on method B: acetophenone (0.600 mmol), *N*-isopropylpyrrole (2.40 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/CHCl₃=10:3). A colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.41 (d, *J*=6.6 Hz, 3H), 1.42 (d, *J*=6.6 Hz, 3H), 1.56 (d, *J*=7.2 Hz, 3H), 4.01 (q, *J*=7.2 Hz, 1H), 4.15 (sept, *J*=6.7 Hz, 1H), 5.95 (t, *J*=2.3 Hz, 1H), 6.41–6.45 (m, 1H), 6.63 (t, *J*=2.6 Hz, 1H), 7.14–7.19 (m, 1H), 7.24–7.30 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 22.8, 23.86, 23.91, 38.2, 50.5, 106.9, 115.5, 117.9, 125.6, 127.4, 128.1, 128.7, 148.1. HRMS (FI) Calcd for C₁₅H₁₉N: M, 213.1518. Found: *m/z* 213.1509.

1-Isopropyl-3-{1-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]ethyl]-1H-pyrrole (4t): The title compound was synthesized with the following reagents based on method B: 1-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl]ethanone (0.600 mmol), N-isopropylpyrrole (2.40 mmol), 3a (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc/NEt₃=92:5:3). A viscous colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.34 (s, 12 H), 1.40 (d, J = 6.6 Hz, 3 H), 1.41 (d, J = 6.6 Hz, 3 H), 1.56 (d, J = 7.2 Hz, 3H), 4.03 (q, J=7.2 Hz, 1H), 4.14 (sept, J=6.7 Hz, 1H), 5.95 (dd, J = 2.3, 2.0 Hz, 1 H), 6.39–6.46 (m, 1 H), 6.62 (t, J =2.6 Hz, 1 H), 7.28 (t, J = 7.6 Hz, 1 H), 7.34 (ddd, J = 7.7, 1.8, 1.4, Hz, 1H), 7.63 (ddd, J=7.2, 1.5, 1.2 Hz, 1H), 7.72–7.75 (m, 1H); 13 C NMR (125 MHz, CDCl₃) δ 22.8, 23.86, 23.90, 24.9, 38.2, 50.5, 83.6, 107.0, 115.6, 117.8, 127.7, 128.8, 130.4, 132.3, 133.9, 147.3 (A signal of the boron-bound carbon atom was not detected due to quadrupolar relaxation of boron). HRMS (FD) Calcd for $C_{21}H_{30}BNO_2$: M, 339.2370. Found: m/z 339.2396.

1-Isopropyl-3-[1-(3-thienyl)ethyl]-1*H*-pyrrole (4u): The title compound was prepared with the following reagents based on method B: 3-acetylthiophene (0.600 mmol), *N*-isopropylpyrrole (2.40 mmol), **3a** (0.900 mmol), HNTf₂ (42.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=20:1). A colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.411 (d, *J*=6.6 Hz, 3H), 1.413 (d, *J*=6.6 Hz, 3H), 1.56 (d, *J*=7.0 Hz, 3H), 4.09 (q, *J*=7.1 Hz, 1H), 4.15 (sept, *J*=6.7 Hz, 1H), 5.98 (t, *J*=2.2 Hz, 1H), 6.42–6.44 (m, 1H), 6.63 (t, *J*=2.5 Hz, 1H), 6.94–6.97 (m, 1H), 7.00 (dd, *J*=4.9, 1.3 Hz, 1H), 7.21 (dd, *J*=5.0, 3.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 22.8, 23.88, 23.90, 33.6, 50.5, 106.7, 115.3, 117.8, 119.3, 124.8, 127.8, 128.5, 148.9. HRMS (FI) Calcd for C₁₃H₁₇NS: M, 219.1082. Found: *m/z* 219.1088.

3-(Decan-1-yl)-1-(2-phenylpropan-2-yl)-1*H***-pyrrole** (4v): The title compound was synthesized with the following reagents based on method A: 1-decanal (0.600 mmol), *N*-(2-phenylpropan-2-yl)pyrrole (2.40 mmol), **3a** (4.20 mmol), HNTf₂ (42.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc = 5:1). Compound **4v** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H), 1.21–1.38 (m, 14H), 1.56 (quint, *J*=7.5 Hz, 2H), 1.86 (s, 6H), 2.45 (t, *J*=7.8 Hz, 2H), 6.04 (dd, *J*=2.0, 1.6 Hz, 1H), 6.52–6.55 (m, 1H), 6.70 (t, *J*=2.6 Hz, 1H), 6.95–6.99 (m, 2H), 7.21 (tt, *J*=7.3, 1.6 Hz, 1H), 7.24–7.30 (m, 2H).

3-(1-Cyclohexylmethyl)-1-(2-phenylpropan-2-yl)-1H-pyrrole (4w): The title compound was synthesized with the following reagents based on method A: cyclohexanecarboxaldehyde (0.600 mmol),*N*-(2-phenylpropan-2-yl)pyrrole (2.40 mmol), 3a (1.80 mmol), HNTf₂ (42.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/CHCl₃=4:1). A colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 0.89 (qd, J=12.0, 2.9 Hz, 2H), 1.08– 1.28 (m, 3H), 1.41 (ttt, J=11.2, 7.3, 3.7 Hz, 1H), 1.59–1.78 (m, 5H), 1.85 (s, 6H), 2.32 (d, J = 7.2 Hz, 2H), 6.00 (dd, J =2.8, 1.9 Hz, 1 H), 6.50 (dd, J=2.5, 1.9 Hz, 1 H), 6.70 (t, J=2.6 Hz, 1 H), 6.93–6.97 (m, 2 H), 7.20 (tt, J=7.3, 1.6 Hz, 1 H), 7.24–7.29 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 26.5, 26.7, 30.5, 33.4, 35.3, 39.5, 59.9, 108.4, 117.5, 118.7, 122.6, 124.9, 126.8, 128.3, 148.6. HRMS (FI) Calcd for C₂₀H₂₇N: M, 281.2144. Found: m/z 281.2158.

1-*tert***-Butyl-3-neopentyl-1***H***-pyrrole (4 x):** The title compound was synthesized with the following reagents based on method A: pivalaldehyde (0.600 mmol), *N-tert*-butylpyrrole (2.40 mmol), **3a** (0.900 mmol), HNTf₂ (18.0 µmol) and 1,4-dioxane (0.60 mL), and isolated by column chromatography on silica gel (hexane/EtOAc = 100:1). Compound **4x** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in ref. 8. Therefore, only ¹H NMR data are provided here. ¹H NMR (500 MHz, CDCl₃) δ 0.88 (s, 9H), 1.50 (s, 9H), 2.31 (s, 2H), 5.93 (dd, *J*=2.6, 2.0 Hz, 1H), 6.55 (dd, *J*=2.3, 2.0 Hz, 1H), 6.70 (t, *J*=2.6 Hz, 1H).

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

HNTf₂-Catalyzed β-Alkylation of Pyrroles with Carbonyl Compounds and Carbon Nucleophiles. A General Procedure for Scheme 3

A flame-dried 20 mL Schlenk tube was filled with argon and then charged with HNTf₂ [(4.22 mg, 15.0 µmol) or (5.90 mg, 21.0 µmol)] and 1,4-dioxane (0.30 or 2.4 mL). The solution was stirred at room temperature for 3 min. To this were added carbonyl compound 5 (0.300 mmol) and pyrrole derivative 2 (1.20 mmol), and the resulting mixture was stirred at 85 or 100°C for 8 or 20 h. Carbon nucleophile 3 (0.450, 0.750 or 0.900 mmol) was then added, and the resulting solution was stirred further at 70, 85 or 100 °C. After the time specified in Scheme 3 (see t^2), a saturated NaHCO₃ aqueous solution (0.3 mL) was added, and the aqueous phase was extracted with EtOAc (5 mL x 3). The combined organic layer was washed with brine (1 mL) and then dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent followed by column chromatography on silica gel using hexane-EtOAc or hexane-CHCl₃ as eluent gave the corresponding product (7). The results are summarized in Scheme 3. Unless otherwise noted, products 7 synthesized here were fully characterized by ¹H and ¹³C NMR spectroscopy and HRMS.

2-(1-Methyl-1*H*-pyrrol-3-yl)-2-adamantanecarbonitrile

(7a): The title compound was synthesized with the following reagents based on method B: 2-adamantanone (0.300 mmol), **2a** (1.20 mmol), **3b** (0.450 mmol), HNTf₂ (21.0 µmol) and 1,4-dioxane (0.30 mL), and isolated by column chromatography on silica gel (hexane/EtOAc=3:1). A white solid, mp = 106-107 °C. ¹H NMR (500 MHz, CDCl₃) δ 1.61 (ddd, J=13.1, 3.6, 2.7 Hz, 2H), 1.70–1.77 (m, 3H), 1.92 (ddd, J=13.3, 3.6, 2.7 Hz, 2H), 1.97–2.05 (m, 3H), 2.41 (dd, J=13.2, 2.3 Hz, 2H), 2.46 (t, J=2.9 Hz, 2H), 3.64 (s, 3H), 6.10 (dd, J=2.9, 1.7 Hz, 1H), 6.55 (dd, J=2.3, 1.7 Hz, 1 H), 6.57 (dd, J=2.9, 2.3 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃) & 26.9, 31.5, 34.1, 34.9, 36.4, 37.63, 37.64, 42.9, 106.5, 119.6, 122.1, 123.0, 124.9. HRMS (FD) Calcd for C₁₆H₂₀N₂: M, 240.1627. Found: m/z 240.1624.

2-(1-Benzyl-1*H*-pyrrol-3-yl)-2-(5-methylfuran-2-yl)octane (7b): The title compound was synthesized with the following reagents based on method B: 2-octanone (0.300 mmol), 1benzyl-1*H*-pyrrole (1.20 mmol), 3c (0.750 mmol), HNTf₂ (15.0 µmol) and 1,4-dioxane (2.4 mL), and isolated by column chromatography on silica gel (hexane/CHCl₃=4:1). Compound **7b** has already appeared in the literature, and its spectral and analytical data are in good agreement with those reported in the literature.^[23] Therefore, only ¹H NMR data are provided here. ¹H NMR (400 MHz, CDCl₃) δ 0.85 (t, J=6.9 Hz, 3 H), 1.07-1.31 (m, 8 H), 1.51 (s, 3 H), 1.75-1.86 (m, 1H), 1.88–2.00 (m, 1H), 2.24 (d, J=0.9 Hz, 3H), 5.00 (s, 2H), 5.80–5.83 (m, 1H), 5.85 (d, J=3.2 Hz, 1H), 6.06 (dd, J = 2.7, 1.8 Hz, 1 H), 6.45 (dd, J = 2.3, 1.8 Hz, 1 H), 6.56 (dd, J=2.7, 2.3 Hz, 1 H), 7.04-7.10 (m, 2 H), 7.22-7.34 (m, 3H).

5',6'-Dihydro-6'-(4-methoxyphenyl)-1'-methyl-spiro[adamantane-2,4'(1'H)-cyclopenta[b]pyrrole] (7 c): The title compound was synthesized with the following reagents based on method B: 2-adamantanone (0.300 mmol), 2a (1.20 mmol), 3d (0.900 mmol), HNTf₂ (21.0 μ mol) and 1,4dioxane (0.30 mL), and isolated by column chromatography on silica gel (hexane/CHCl₃=2:1). A viscous colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 1.56–1.72 (m, 6H), 1.76 (s, 2H), 1.78–1.85 (m, 2H), 1.95 (quint, J=2.9 Hz, 1H), 2.02 (ddd, J=12.7, 5.4, 3.3 Hz, 1H), 2.11 (dd, J=13.2, 6.6 Hz, 1H), 2.33 (ddd, J=12.6, 6.3, 3.5 Hz, 1H), 2.46 (ddd, J=13.3, 6.0, 3.5 Hz, 1H), 3.03 (dd, J=13.2, 8.3 Hz, 1H), 3.16 (s, 3H), 3.79 (s, 3H), 4.17 (dd, J=8.0, 6.9 Hz, 1H), 6.21 (d, J= 2.9 Hz, 1H), 6.50 (d, J=2.6 Hz, 1H), 6.83 (dt, J=8.9, 2.6 Hz, 2H), 7.07 (dt, J=8.6, 2.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 27.4, 27.6, 33.9, 34.3, 34.4, 34.8, 35.1, 37.4, 38.9, 39.8, 42.2, 49.8, 54.3, 55.2, 106.0, 113.9, 123.2, 128.4, 134.8, 137.7, 137.9, 158.0. HRMS (FD) Calcd for C₂₄H₂₀NO: M, 347.2249. Found: m/z 347.2469.

HNTf₂-Catalyzed Synthesis of Dipyrrolyldecanes 6a by Treatment of 2-Decanone (5a) and *N*-Methylpyrrole (2a) (Scheme 4)

A flame-dried 50 mL Schlenk tube was filled with argon and then charged with HNTf₂ (59.0 mg, 210 µmol) and 1,4-dioxane (7.0 mL). The solution was stirred at room temperature for 3 min. To this were added 5a (1.09 g, 7.00 mmol) and 2a (2.27 g, 28.0 mmol) successively, and the resulting mixture was stirred at 85°C for 5 h. A saturated NaHCO₃ aqueous solution (2 mL) was added, and the aqueous phase was extracted with EtOAc (50 mL x 3). The combined organic layer was washed with brine (20 mL) and then dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent followed by column chromatography on silica gel (hexane/EtOAc=20:1) gave dipyrrolyldecanes **6a** (1.92 g, 92% yield) as a mixture of three isomers including α, α' -6a, α , β '-6a and β , β '-6a. The result is summarized in Scheme 4. ¹H NMR spectra showed that β , β '-6a is a major isomer, along with $\alpha,\beta'-6a$ and a small amount of $\alpha,\alpha'-6a$. The ratio of $\alpha, \alpha' - 6a: \alpha, \beta' - 6a: \beta, \beta' - 6a$ was determined to be 2:13:85 by GC analysis. The two major isomers, α , β' -6a and β , β' -6a, have already appeared in the literature, and their spectral and analytical data are in good agreement with those reported in ref. 7. Due to the small amount of α, α' -6a produced here, other reaction for synthesizing $\alpha_{,\alpha'}$ -6a was carried out under the reaction conditions shown in the next section, and α, α' -6a was obtained as a pure form.

HNTf₂-Catalyzed Synthesis of 2,2-Bis(1-methyl-1*H*-pyrrol-2-yl)decane (α , α' -6a) by Treatment of 2-Decanone (5a) and *N*-Methylpyrrole (2a)

A flame-dried 20 mL Schlenk tube was filled with argon and then charged with HNTf₂ (5.06 mg, 18.0 µmol) and 1,4-dioxane (0.60 mL). The solution was stirred at room temperature for 3 min. To this were added 5a (93.8 mg, 0.600 mmol) and 2a (195 mg, 2.40 mmol) successively, and the resulting mixture was stirred at room temperature for 3 h. A saturated NaHCO₃ aqueous solution (0.3 mL) was added, and the aqueous phase was extracted with EtOAc (5 mL x 3). The combined organic layer was washed with brine (1 mL) and then dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent followed by column chromatography on silica gel (hexane/CHCl₃=6:1) gave α, α' -6a (29.0 mg, 16% yield) as a viscous colorless oil. ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3) \delta 0.87 \text{ (t, } J = 7.0 \text{ Hz}, 3 \text{ H}), 1.04 - 1.34 \text{ (m,}$ 12H), 1.59 (s, 3H), 2.01-2.09 (m, 2H), 3.02 (s, 6H), 6.02 (dd, J=3.6, 2.7 Hz, 2H), 6.07 (dd, J=3.8, 2.0 Hz, 2H), 6.45

```
Adv. Synth. Catal. 0000, 000, 0-0
```

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

UPDATES

(t, J=2.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 22.7, 24.0, 26.7, 29.4, 29.6, 30.2, 31.9, 34.3, 38.7, 39.7, 105.8, 106.7, 122.8, 137.7. HRMS (FI) Calcd for C₂₀H₃₂N₂: M, 300.2566. Found: m/z 300.2568.

HNTf₂-Catalyzed Synthesis of 3-(Decan-2-yl)-1methyl-1*H*-pyrrole (4a) by Treatment of Dipyrrolyldecanes 6a, Et₃SiH (3a) and H₂O (Scheme 4)

A flame-dried 20 mL Schlenk tube was filled with argon and then charged with HNTf₂ (2.53 mg, 9.00 µmol) and 1,4-dioxane (0.30 mL). The solution was stirred at room temperature for 3 min. To this were added 6a (90.1 mg, 0.300 mmol), 3a (52.3 mg, 0.450 mmol) and H₂O (5.40 mg, 0.300 mmol) successively, and the resulting mixture was stirred at 85°C for 5 h. A saturated NaHCO3 aqueous solution (0.3 mL) was added, and the aqueous phase was extracted with EtOAc (5 mL x 3). The combined organic layer was washed with brine (1 mL) and then dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent followed by column chromatography on silica gel (hexane/EtOAc = 40:1) gave 4a (62.6 mg, 94% yield). The result is summarized in Scheme 4. The full data on ¹H NMR, ¹³C NMR spectroscopy and HRMS analysis of 4a have been already collected in ref. 8.

Acknowledgements

Partial financial support from Nissan Chemical Industries, L.T.D. is gratefully acknowledged.

References

- For selected recent reviews, see: a) N. K. Garg, B. M. Stoltz, *Chem. Commun.* 2006, 3769; b) N. R. Williamson, P. C. Fineran, F. J. Leeper, G. P. C. Salmond, *Nat. Rev. Microbiol.* 2006, 4, 887; c) C.-C. Chang, W.-C. Chen, T.-F. Ho, H.-S. Wu, Y.-H. Wei, *J. Biosci. Bioeng.* 2011, *111*, 501. For selected recent reports, see: d) U. Robben, I. Lindner, W. Gärtner, *J. Am. Chem. Soc.* 2008, *130*, 11303; e) C. P. Soldermann, R. Vallinayagam, M. Tzouros, R. Neier, *J. Org. Chem.* 2008, *73*, 764; f) J. H. Frederich, P. G. Harran, *J. Am. Chem. Soc.* 2013, *135*, 3788; g) C. Vergeiner, S. Banala, B. Kräutler, *Chem. Eur. J.* 2013, *19*, 12294.
- [2] For selected recent examples, see: a) L. Jiao, E. Hao, M. G. H. Vicente, K. M. Smith, J. Org. Chem. 2007, 72, 8119; b) G. Zotti, B. Vercelli, A. Berlin, Chem. Mater. 2008, 20, 397; c) X. Lv, L.-J. Hong, Y. Li, M.-J. Yang, J. Appl. Polym. Sci. 2009, 112, 1287; d) M. Krayer, M. Ptaszek, H.-J. Kim, K. R. Meneely, D. Fan, K. Secor, J. S. Lindsey, J. Org. Chem. 2010, 75, 1016; e) J. T. Lee, D.-H. Chae, Z. Ou, K. M. Kadish, Z. Yao, J. L. Sessler, J. Am. Chem. Soc. 2011, 133, 19547; f) T.-T. Bui, A. Iordache, Z. Chen, V. V. Roznyatovskiy, E. Saint-Aman, J. M. Lim, B. S. Lee, S. Ghosh, J.-C. Moutet, J. L. Sessler, D. Kim, C. Bucher, Chem. Eur. J. 2012, 18, 5853.

- [3] Heterocyclic Chemistry, 5th ed. (Eds.: J. A. Joule, K. Mills) Wiley, New York, 2010, pp. 9–10.
- [4] For a selected review on the Friedel–Crafts alkylation of pyrroles, see: B. A. Trofimov, N. A. Nedolya In *Comprehensive Heterocyclic Chemistry III, Vol.* 3 (Eds.: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, G. Jones), Elsevier, Oxford, **2008**, pp. 110–134.
- [5] For reviews on β-alkylation of pyrroles, see: a) H. J. Anderson, C. E. Loader, *Synthesis* 1985, 353; b) W. D. Harman, *Chem. Rev.* 1997, 97, 1953; c) B. C. Brooks, T. B. Gunnoe, W. D. Harman, *Coord. Chem. Rev.* 2000, 206–207, 3; d) T. Tsuchimoto, *Chem. Eur. J.* 2011, 17, 4064. For selected recent reports on β-alkylation of pyrroles, see: e) D. Prajapati, M. Gohain, B. J. Gogoi, *Tetrahedron Lett.* 2006, 47, 3535; f) O. I. Shmatova, N. E. Shevchenko, E. S. Balenkova, G.-V. Röschenthaler, V. G. Nenajdenko, *Eur. J. Org. Chem.* 2013, 3049; see also refs. 6–8.
- [6] Among the strategies for the S_EAr -based β -alkylation of pyrroles, a bulky triisopropylsilyl group on the nitrogen atom has been known to direct incoming electrophiles to the β -position due to its effective steric shielding of the α -position. For selected recent reports on the β -alkylation of N-(iPr)₃Si-pyrrole, see: a) C. Berini, F. Minassian, N. Pelloux-Léon, J.-N. Denis, Y. Vallée, C. Philouze, Org. Biomol. Chem. 2008, 6, 2574; b) J. Barluenga, A. Fernández, F. Rodríguez, F. J. Fañanás, Chem. Eur. J. 2009, 15, 8121; c) C. Berini, N. Pelloux-Léon, F. Minassian, J.-N. Denis, Org. Biomol. Chem. 2009, 7, 4512; d) F. Martinelli, A. Palmieri, M. Petrini, Chem. Eur. J. 2011, 17, 7183; e) L. Boiaryna, M. K. El Mkaddem, C. Taillier, V. Dalla, M. Othman, Chem. Eur. J. 2012, 18, 14192; f) F. de Nanteuil, J. Loup, J. Waser, Org. Lett. 2013, 15, 3738; g) S. Lancianesi, A. Palmieri, M. Petrini, Adv. Synth. Catal. 2013, 355, 3285.
- [7] T. Tsuchimoto, T. Wagatsuma, K. Aoki, J. Shimotori, Org. Lett. 2009, 11, 2129.
- [8] T. Tsuchimoto, M. Igarashi, K. Aoki, *Chem. Eur. J.* **2010**, *16*, 8975. Due to a request from one reviewer, results of some experiments performed to confirm whether $HNTf_2$ is a true catalyst or not in the preceding study are collected in the Supporting Information.
- [9] For a report on increases in consumption and price of indium during the last few decades, see: T. G. Goonan, "Materials Flow of Indium in the United States in 2008 and 2009" that can be found at http://pubs.usgs.gov/ circ/1377.
- [10] For synthesis of $In(NTf_2)_3$ (Tf=SO₂CF₃), see: a) C. G. Frost, J. P. Hartley, D. Griffin, *Tetrahedron Lett.* **2002**, 43, 4789; b) M. Nakamura, K. Endo, E. Nakamura, *Adv. Synth. Catal.* **2005**, 347, 1681. For synthesis of $In(ONf)_3$ (Nf=SO₂C₄F₉), see: c) T. Tsuchimoto, H. Matsubayashi, M. Kaneko, E. Shirakawa, Y. Kawakami, *Angew. Chem.* **2005**, 117, 1360; *Angew. Chem. Int. Ed.* **2005**, 44, 1336.
- [11] In(NTf₂)₃ is currently commercially available from Sigma–Aldrich, but is expensive; 20,700 yen/1 g.
- [12] HNTf₂ is commercially available at 20,000 yen/250 g (=80 yen/1 g) from Kanto Chemical Co., Inc.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

¹⁰ asc.wiley-vch.de

- [13] Disappearance of carbonyl compounds **5** followed by formation of dipyrrolylalkanes **6** can be confirmed by GC and GC–MS analysis.
- [14] For our representative reports on indium-catalyzed transformation via activation of C≡C bonds, see: a) T. Tsuchimoto, T. Maeda, E. Shirakawa, Y. Kawakami, *Chem. Commun.* 2000, 1573; b) T. Tsuchimoto, K. Hatanaka, E. Shirakawa, Y. Kawakami, *Chem. Commun.* 2003, 2454; c) T. Tsuchimoto, H. Matsubayashi, M. Kaneko, Y. Nagase, T. Miyamura, E. Shirakawa, *J. Am. Chem. Soc.* 2008, 130, 15823; d) T. Tsuchimoto, M. Kanbara, *Org. Lett.* 2011, 13, 912; e) Y. Nagase, H. Shirai, M. Kaneko, E. Shirakawa, T. Tsuchimoto, *Org. Biomol. Chem.* 2013, 11, 1456. See also refs. 7, 10c.
- [15] Other research groups have also reported indium-catalyzed transformation by way of activation of C≡C bonds. See an important review: Z.-L. Shen, S.-Y. Wang, Y.-K. Chok, T.-P. Loh, *Chem. Rev.* 2013, 113, 271.
- [16] 5a (0.60 mmol), N-Boc-pyrrole (1.8 mmol), 3a (0.90 mmol), HNTf₂ (18 μmol), 1,4-dioxane (0.60 mL), 85 °C, 5 h.

- [18] The process of the HNTf₂-catalyzed reaction of **5a** with **2a** produces one molar equivalent of H₂O along with the formation of **6a**. Accordingly, the reaction was performed in the presence of H₂O (1 equiv.).
- [19] a) D. M. Wallace, S. H. Leung, M. O. Senge, K. M. Smith, J. Org. Chem. 1993, 58, 7245; b) G. R. Geier III, B. J. Littler, J. S. Lindsey, J. Chem. Soc. Perkin Trans. 2
 2001, 701; c) A. Auger, A. J. Muller, J. C. Swarts, Dalton Trans. 2007, 3623.
- [20] a) W. Adam, J. Gläser, K. Peters, M. Prein, J. Am. Chem. Soc. 1995, 117, 9190; b) Y. Yokoyama, Chem. Eur. J. 2004, 10, 4388.
- [21] For synthesis of 6-heptyn-2-one, see: a) P. E. Peterson, R. J. Kamat, J. Am. Chem. Soc. 1969, 91, 4521; for spectral and analytical data of 6-heptyn-2-one, see: b) C. Le Drian, A. E. Greene, J. Am. Chem. Soc. 1982, 104, 5473; c) B. M. Trost, M. J. Bartlett, Org. Lett. 2012, 14, 1322.
- [22] A. D. Josey, Org. Synth. 1967, 47, 81.
- [23] T. Tsuchimoto, T. Ainoya, K. Aoki, T. Wagatsuma, E. Shirakawa, *Eur. J. Org. Chem.* 2009, 2437.

asc.wiley-vch.de

11

UPDATES

12 Metal-Free Regioselective β-Alkylation of Pyrroles with Carbonyl Compounds and Hydrosilanes: Use of a Brønsted Acid as a Catalyst

Adv. Synth. Catal. 2014, 356, 1-12

Shota Nomiyama, Teruhisa Tsuchimoto*

12 asc.wiley-vch.de © 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim