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ABSTRACT: A chemoselective ring opening protocol of the 

formal [2+2] cycloadducts of 3-triflyloxyarynes was developed to 

generate 2,3-aryne intermediate via Grob fragmentation. A variety 

of 1,3-di- and 1,2,3-trisubstituted arenes could be readily accessed 

through this [2+2] cycloaddition-2,3-aryne formation sequence. 

The regioselectivity in these transformations originates from the 

steric repulsion of the aliphatic chain. 

In the past a few decades, aryne chemistry earned fruitful 

achievements in the areas of nucleophilic reactions, pericyclic 

reactions, and transition-metal-catalyzed reactions.1 Recent ad-

vances in this field were greatly boosted by mild generation con-

ditions for these highly reactive intermediates, i.e. the methods 

developed by Kobayashi1f,1g,2 and Hoye.3 Toward aromatic com-

pounds with over two substituents, however, a simple aryne in-

termediate cannot fulfill the task. Alternatively, building blocks 

that can generate multiple triple bonds on a benzene ring, i.e. 

benzdiyne4 and benztriyne5 equivalents, were investigated, which 

could furnish a benzene analog with up to six substituents. In 

view of the vast existence of natural products as well as drug mol-

ecules containing multifunctionalized arene structural motifs, the 

convenient, practical, and/or transition-metal-free production of 

these aromatic frameworks remains one of the top goals to pur-

suit.  

Figure 1. Selected Medicines. 

 
As a recently emerged aryne intermediate, 3-triflyloxybenzyne 

(i) has been found versatile to prepare various multisubstituted 

arenes through the iterative generation of two aryne intermediates, 

namely 1,2- and 2,3-arynes (Scheme 1a).6 Mechanistic perception 

of this process, however, reveals that a nucleophile is necessary to 

act as the “vanguard” to attack intermediate i in an SN2’ manner 

in order to trigger the following steps. In sharp contrast, whenever 

a pericyclic reaction takes place, both the 1- and 2-positions on i 

are locked simultaneously, which would then prohibit the genera-

tion of the 2,3-aryne intermediate.7 Is it really obligatory that no 

second aryne could be produced after i is “locked” by its cycload-

ducts? Herein we would like to present our discovery on the con-

venient regioselective multifunctionalization of 3-

triflyloxybenzyne (i), where its formal [2+2] cycloadducts with 

ketene silyl acetals (KSAs) could be readily converted to 2,3-

aryne intermediates through Grob fragmentation.  

It is worth mentioning that this protocol can readily reach phe-

nylacetic acid framework that plays important pharmacological 

roles in medicines, such as Fexofenadine and a variety of pain 

relievers (Ibuprofen, Carprofen, Fenoprofen, and Bromofenec, 

etc.) (Figure 1). Further elaboration of the aliphatic side chain 

could afford benzoates or benzamides, such as the structure of 

anticancer drug Niraparib.8 

Scheme 1. Background and Our Design. 

 
In line with our interest in the efficient preparation of multisub-

stituted arenes via aryne chemistry,6,9 we were curious that, after 

3-triflyloxybenzyne (i) undergoes [2+2] cycloaddition to form a 

four-membered ring, whether it is plausible to kick out the C3-

OTf group and generate a 2,3-aryne intermediate. With this con-

sideration in mind, we commenced our study by seeking possible 

further conversion means from the [2+2] cycloadduct of 3-

triflyloxybenzyne (i). Upon ring opening, benzocyclobutenols or  

benzocyclobutenones intend for either distal C-C bond cleavage 

(Scheme 1b, path a) or proximal C-C bond cleavage (Scheme 1b, 

path b). In general, thermolytic ring opening prefers path a via o-

xylylene intermediates (Scheme 1c).10 Recently, Dong11 and oth-

ers12 developed transition-metal insertion approaches to these 

strained rings, which enabled the selective C-C bond cleavage via 

path b (Scheme 1d). As shown in Scheme 1e, we conceived that 

both the excellent leaving ability and electron withdrawing char-

acter of an OTf group might be able to alter the ring-opening 
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means towards path b and result in the generation of 2,3-aryne 

species (also see Scheme 1b, X = OTf), the process of which is 

also seen as a Grob fragmentation.13 Although Grob fragmenta-

tion is well-known to form alkenes and alkynes with numerous 

synthetic applications, this fragmentation approach has yet to be 

utilized in aryne generation.14  

Scheme 2. Study on Various Leaving Groups. 

 
To test our hypothesis, we commenced our study by examining 

a series of [2+2] cycloadducts 1 prepared from 3-substituted ben-

zynes and KSAs, the regioselective construction of which have 

been established by Suzuki and others5,7a,15 (Scheme 2, also see 

Supporting Information for their preparation). Satisfyingly, when 

1a with an OTf as the leaving group (LG) was tested, its Diels-

Alder reaction with furan afforded 2a in 78% yield. Interestingly, 

1b with a 6-Br group could also afford 2a in 66% yield. However, 

both 1c and 1d with 6-OTs and 6-Cl groups, respectively, either 

gave trace amount of 2a or had no desired product at all. These 

results indicate that the groups on the C6 position of 1 dramatical-

ly affect aryne generation efficiency. To the best of our 

knowledge, this is the first example exhibiting the generation of 

an aryne intermediate via Grob fragmentation from a benzocyclo-

butenol analog along with the concomitant disconnection of three 

chemical bonds, namely O-Si, C-C, and C-O bonds. Because the 

OTf group is superior over other LGs in this transformation,1f,1g in 

addition with the convenient preparation of 1a, we decided to 

carry on our study using OTf as the leaving group.   

After establishing this ring opening, 2,3-aryne formation proto-

col, morpholine was chosen as the nucleophile to examine the 

reactivity of this method (Scheme 3). A challenge was encoun-

tered on this stage: there would be lack of regioselective control 

on intermediate iii (Scheme 1e) when 1a is employed. Indeed, 

when 1a reacted with morpholine, a mixture of regioisomers 3a 

and 3a’ were obtained in a ratio of ~1.7:1. Similar ratios were also 

found with 1e and 1f, when a methoxy or a tert-butoxy group is 

present (Scheme 3). How to differentiate the two reaction sites on 

intermediate iii, namely the meta- and ortho-positions, in order to 

enhance the regioselectivity becomes an urgent demand for this 

work. Gratifyingly, gradually increasing the steric congestion on 

the C2-position (Scheme 3, 1g to 1j) could dramatically affect the 

meta-to-ortho selectivity and eventually reach the sole products 3i 

and 3j. Preliminary modeling study revealed that the excellent 

selectivity originates from the prominent steric repulsion of the 

bulky gem-dimethyl or gem-dimethoxy groups. Although EW 

conductive effect has been extensively investigated in aryne 

chemistry to regulate the regioselectivity,1c,16 there are only lim-

ited successes on steric repulsion-controlled aryne chemistry.17 

Moreover, compounds 1 with additional substituents, such as Me 

(1k and 1l), Br (1m), and Ph (1n) groups, on the benzene ring 

were tested; all of them could afford the desired products in good 

to high yields with excellent regioselectivity.  

After identifying both gem-dimethyl and gem-dimethoxy 

groups as the ideal regulation factors with morpholine, we pro-

ceeded to study their reactivity with various arynophiles. As 

shown in Table 1, different nucleophiles, such as N-methylaniline, 

imidazole, phenol, and thiophenol, could all afford the desired 

products 4-7 in distinct meta-selection. Because arynes are supe-

rior in making fused rings, we then tested different cycloaddition 

reactions with 1i and 1j. The formal [2+2] cycloaddition of 1,1-

dimethoxyethene with 1i and 1j gave 8a and 8b in 73% and 54% 

yields, respectively, both of which showed excellent selectivity. 

[3+2] Cycloaddition with N-tert-butyl-α-phenylnitrone and benzyl 

azide afforded 9 and 10, respectively, in good to high regioselec-

tivities. However, when 2-methyl furan was reacted with 1i, the 

reaction gave products 11a and 11a’ in a ratio of 1.4:1. With an 

effort to increase the steric repulsion by using 2-trimethylsilyl 

furan as the substrate, the product ratio of 11b:11b’ only slightly 

enhanced to 2.8:1. Moreover, the insertion reactions of the gener-

ated 2,3-aryne with both σ-bond and double bond were tested. 

Single product 12a was obtained in 68% yields when p-tolyl cy-

anamide18 was utilized. In the presence of ethyl bromoacetate, 

aryne insertion into the S=O bond of p-tolyl methyl sulfoxide19 

gave 13a as the product in high selectivity and good yield as well. 

The structures of 10b and 12a were unambiguously determined by 

their X-ray single crystal analysis, and the stereochemistry of the 

other major products was determined by NOE study (Table 1). 

Scheme 3. Reactions of Morpholine with Aryne Precursors 1. 

 

conditions: 1 (0.2 mmol), morpholine (0.4 mmol) and CsF (0.4 

mmol) in MeCN (4 mL) at rt. 

To elucidate the relationship between reaction type and product 

structure, a close analysis of the examples in Table 1 disclosed 

that our approach has a tendency to give excellent meta selectivity 

whenever a nucleophile is employed or the first step of the reac-

tion with the 2,3-aryne is more or less nucleophilic. For example, 

the formal [2+2] cycloaddition with arynes is known to be a first-

step nucleophilic process,5,15 which is also the same scenario with 

both aryl cyanamide and sulfoxide. In contrast, in the pericyclic 

transformations with furan derivatives, the ratios of products 11 

are significantly diminished, indicating that the steric repulsion 

does not dramatically affect the regioselectivity in concerted pro-

cesses. As for the [3+2] cycloadditions with phenylnitrone and 

benzyl azide, the medium product ratios might be attributed to an 

overall effect of the nucleophilic and the steric characters of these 

substrates. 
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Table 1. The reactions with Aryne Precursors 1i and 1j. 

 

These examples are the first to exhibit that 3-triflyloxybenzyne 

(i) can be involved in unprecedented reaction sequences, namely 

cycloaddition-nucleophilic and cycloaddition-cycloaddition reac-

tions. Moreover, with the success of this strategy, we wonder if 

we could track back this transformation to 3-triflyloxybenzyne (i) 

stage. As an exhibition, gram-scale of 3-triflyloxybenzyne (i) 

precursor was treated with KSA first and, upon reaction comple-

tion, CsF and furan were then added. Finally, 2a was isolated in a 

total 60% yield in this one-pot process (eq 1).  

 

Study on the phenylacetic acid framework of the products dis-

closed that this protocol could not only provide convenient further 

elaboration opportunities but also be used in practical synthesis of 

valuable molecules. It was noticed that the successful utilization 

of gem-dimethoxy analog 1j in this transformation is distinct, 

because this side chain could be converted to various other func-

tional groups. As an exhibition, ketone acid 14 was readily ob-

tained in 87% yield from compound 3j in wet trifluoroacetic acid. 

Further decarboxylative conversion of 14 produced benzamide 15 

in 80% yield (Scheme 4a).20 Consequently, the aliphatic side-

chain from our ring-opening products could also be seen as an 

equivalent of either benzoate or benzamide, which shed the light 

on a broader spectrum of applications for this methodology.  

Because phenylacetic acid is an important structural motif on 

many drug molecules, we picked Fenoprofen and Carprofen as 

our synthetic targets. As shown in Scheme 4b, Fenoprofen was 

synthesized in two steps from 1h, and Carprofen was made in one 

extra step, both of which gave high regioselectivity in the ring-

opening step. In order to further exhibit the synthetic applicability 

of our protocol, Niraparib was chosen, which is recently emerged 

as a potent antitumor PARP inhibitor, especially in the treatment 

of ovarian cancer.8 As shown in Scheme 4c, [3+2] Cycloaddition 

of 1j with 16 afforded 17 in 42% yield along with 50% of the 

other isomer 17’. The following two-step one-pot conversion of 

17 to benzamide using the conditions developed in Scheme 4a 

could afford racemic Niraparib in 65% overall yield. Although the 

regioselectivity in the [3+2] cycloaddition step is not satisfactory, 

the core of compound 17’ also shows PARP inhibition activity, 

the framework of which cannot be readily synthesized via tradi-

tional ways.21 All of these examples suggest that our protocol is 

amenable and could be used in broad synthetic applications. 

Scheme 4. Synthetic Elaboration. 
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In summary, toward arene multifunctionalization, we have de-

veloped a unique protocol with 3-triflyloxyaryne intermediates, in 

which a chemoselective ring opening method was exquisitely 

designed from their [2+2] cycloadducts via Grob fragmentation in 

order to allow the generation of the consequent 2,3-aryne inter-

mediate. This strategy is general, highly efficient, and transition-

metal-free, which could be utilized in various combinations of 

arynophiles as well as in drug syntheses. The regioselectivity of 

this protocol is influenced by steric repulsion and preferentially 

favors nucleophilic-type transformations. Our ongoing work in-

cludes other synthetic applications of this protocol.     
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