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Abstract: A mild and practical protocol for the metal-free trifluo-
romethylation of styrenes using NaSO2CF3 (Langlois reagent) and
TBHP was developed. The approach provides efficient access to
α-trifluoromethylated ketones and alcohols in moderate to good
yields.
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Organofluorine compounds bearing a CF3 group are im-
portant materials in pharmaceuticals, agrochemicals, and
material science.1 This is because the introduction of flu-
orine atoms into organic molecules often significantly al-
ters the biological activity, metabolism, solubility,
hydrophobicity or bulk properties of such organofluorine
compounds.2

During the past several years, a series of methods have
been reported that allow transition-metal-mediated/cata-
lyzed or photoredox-catalyzed construction of C–CF3

bonds.3–8 In this context, the synthesis of α-trifluorometh-
yl ketones has commonly been achieved by the radical
and electrophilic CF3 addition to enolates and silyl enol
ethers.9 In 2012, Grushin and co-workers developed a nu-
cleophilic trifluoromethylation of α-halogenated ketones
by using fluoroform-derived CuCF3.

10 Very recently, a
copper-mediated decarboxylative trifluoromethylation

was developed for the preparation of α-trifluoromethyl
ketones from propiolic acids.11 However, most of the de-
veloped methods suffer from the need to use metal cata-
lysts and/or expensive trifluoromethylating reagents. 

In this paper, a mild and practical protocol is described for
the metal-free trifluoromethylation of styrenes by using
NaSO2CF3 (Langlois’ reagent) and tert-butyl hydroperox-
ide (TBHP). The approach enables efficient access α-tri-
fluoromethylated ketones and/or alcohols.12 To the best of
our knowledge, only a few examples of the trifluorometh-
ylation of styrenes have been published so far (Scheme
1).13 Since the Langlois reagent was first developed in the
1980s as a convenient and inexpensive source of trifluo-
romethyl radicals, several reports have shown its synthetic
usefulness for the construction of C–CF3 bonds.14–16

Our initial investigation focused on the metal-free reac-
tion of styrene (1a) with NaSO2CF3, benzoquinone (BQ),
and TBHP at 80 °C in different solvents. The desired tri-
fluoromethylated products 2a and 3a (Table 1) were
formed in 54% yield by using the mixed solvent MeCN–
H2O (Table 1, entry 6). Other solvent systems such as
CH2Cl2–H2O, DMF–H2O, acetone–H2O, MeOH–H2O, or
MeCN–CH2Cl2–H2O (Table 1, entries 1–5) afforded the
product either in lower yield or not at all. It was found that
the use of a mixture of MeCN–H2O (4:1 v/v) resulted in

Scheme 1  Trifluoromethylation of styrenes; previous work by Zhang et al.13a and Nicewicz et al.,13b and current work
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an increased yield of 2a (37%) and 3a (21%) (Table 1, en-
tries 6–9). The addition of oxidant was very important to
increase the yields of the trifluoromethylated products.
Without oxidant, only 21% combined yield of the desired
products were obtained (Table 1, entry 10). By using other
quinoid oxidants such as 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ), 1,4-naphthoquinone, tetrachloro-
1,4-benzoquinone, or methyl-p-benzoquinone, lower
yields were obtained. When CuSO4 was used as the oxi-
dant (Table 1, entry 15), only trace quantities of the de-
sired products were detected by 19F NMR analysis.
Therefore, BQ was established as the best choice for this
trifluoromethylation of styrenes (Table 1, entries 11–14).
The addition of 0.5 or 2.0 equivalents BQ afforded the de-

sired products in only 34 and 54% combined yields, re-
spectively (Table 1, entries 16 and 17). The reaction
temperature was also changed to 60 or 80 °C, however,
neither the yields nor the ratios of the products changed
significantly (Table 1, entries 18 and 19). In an attempt to
make the trifluoromethylation more efficient, the amounts
of NaSO2CF3 and TBHP were reduced, however, under
these conditions the product was obtained in lower yield
(41%; Table 1, entry 20). It is notable that none of the de-
sired product was obtained when this reaction was carried
out under an N2 atmosphere (Table 1, entry 21).

With these results in hand, we then investigated the sub-
strate scope of this metal-free trifluoromethylation with

Table 1 Optimization of the Trifluoromethylation of Styrene 1aa

Entry Oxidant (equiv) Solvent (v/v) Temp (°C) Yield (2a + 3a) (%)b

1 BQ (1.0) CH2Cl2–H2O (2.5:1) 80 trace

2 BQ (1.0) DMF–H2O (2.5:1) 80 0

3 BQ (1.0) acetone–H2O (2.5:1) 80 29 (20 + 9)

4 BQ (1.0) MeOH–H2O (2.5:1) 80 15 (4 + 11)

5 BQ (1.0) MeCN–CH2Cl2–H2O (2.5:0.5:1) 80 53 (31 + 22)

6 BQ (1.0) MeCN–H2O (2.5:1) 80 54 (30 + 24)

7 BQ (1.0) MeCN–H2O (1:1) 80 52 (8 + 44)

8 BQ (1.0) MeCN–H2O (7:1) 80 55 (36 + 19)

9 BQ (1.0) MeCN–H2O (4:1) 80 58 (37 + 21)

10 none MeCN–H2O (4:1) 80 21 (10 + 11)

11 DDQ (1.0) MeCN–H2O (4:1) 80 trace

12 1,4-naphthoquinone (1.0) MeCN–H2O (4:1) 80 11 (7 + 4)

13 tetrachloro-1,4-benzoquinone (1.0) MeCN–H2O (4:1) 80 27 (16 + 11)

14 methyl-p-benzoquinone MeCN–H2O (4:1) 80 49 (36 + 13)

15 CuSO4 (1.0) MeCN–H2O (4:1) 80 trace

16 BQ (0.5) MeCN–H2O (4:1) 80 34 (21 + 13)

17 BQ (2.0) MeCN–H2O (4:1) 80 54 (35 + 19)

18 BQ (1.0) MeCN–H2O (4:1) 60 47 (31 + 16)

19 BQ (1.0) MeCN–H2O (4:1) 100 53 (26 + 27)

20c BQ (1.0) MeCN–H2O (4:1) 80 41 (28 + 13)

21d BQ (1.0) MeCN–H2O (4:1) 80 0

a Reaction conditions: styrene 1a (0.3 mmol), NaSO2CF3 (1.8 mmol), TBHP (70% aqueous), solvent (4 mL), sealed tube under 1 atm O2.
b Yield was determined by 19F NMR spectroscopic analysis using benzotrifluoride as internal standard.
c Reactions were performed with styrene 1a (0.3 mmol), NaSO2CF3 (3.0 equiv), TBHP (5.0 equiv).
d Reaction performed under a nitrogen atmosphere.
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NaSO2CF3, TBHP, and a range of styrenes. As shown in
Table 2, styrenes with either electron-withdrawing or
electron-donating groups on the phenyl ring could be
transformed into the corresponding oxidative-trifluoro-
methylation products in moderate to good yields (Table 2,
entries 1–12), except in the case of 2,4,6-trimethylstyrene
(Table 2, entry 13), which was deactivated due to its high
steric bulk. The position of the substituent had some influ-
ence on the reaction. On replacement of ortho-chlorosty-
rene with the para-chloro analogue, the
trifluoromethylated products in the latter case were ob-
tained in higher yields (Table 2, entries 4 vs. 5). The reac-

tion was also tested with other alkenes such as indene
(Table 2, entry 14), an internal olefin (Table 2, entry 15),
and an aliphatic olefin (Table 2, entry 16), but they were
not suitable substrates for this reaction.

To obtain the single trifluoromethylated product ketone or
alcohol, after the metal-free radical trifluoromethylation,
either an oxidative or a reductive reaction was conducted
by applying two-step successive reactions. To our delight,
both the trifluoromethylated ketone and alcohol could be
independently obtained in moderate yields by these meth-
ods (Scheme 2).

Table 2  Substrate Scope of Metal-Free Trifluoromethylation of Styrenesa 

Entry Styrene Products 2 + 3 Yield (%)b Ratio 2/3

1 2a + 3a 57 63:37

2 2b + 3b 59 31:69

3 2c + 3c 53 61:39

4 2d + 3d 57 44:56

5 2e + 3e 67 55:45

6 2f + 3f 58 61:39

7 2g + 3g 58 60:40

8 2h + 3h 45 65:35

Scheme 2 Synthesis of α-trifluoromethyl ketone or alcohol
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A plausible mechanism is proposed as shown in Scheme
3. From the control reaction (Table 1, entry 20), it is clear
that O2 is necessary to form intermediate I, however, the
role of BQ in this reaction is not clear. A detailed study of
the mechanism of this reaction is in progress.

In conclusion, we have demonstrated a mild, metal-free
trifluoromethylation reaction of various styrenes with the
stable solid NaSO2CF3.

17 Based on these results, a conve-
nient method for the synthesis of α-trifluoromethylated
ketones and alcohols has been developed.
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9 2i + 3i 58 62:38

10 2j + 3j 70 54:46

11 2k + 3k 56 56:44

12 2l + 3l 53 66:34

13 2m + 3m 18c 31:69c

14 2n + 3n 0 –

15 2o + 3o 0 –

16 2p + 3p 0 –

a Reaction conditions: styrene 1a (0.3 mmol), NaSO2CF3 (1.8 mmol), TBHP (70% aqueous), MeCN–H2O (4:1; 4 mL), sealed tube under 1 atm 
O2 atmosphere.
b Isolated combined yield.
c Yields and ratio of 2m and 3m were determined by 19F NMR spectroscopic analysis using benzotrifluoride as internal standard.

Table 2  Substrate Scope of Metal-Free Trifluoromethylation of Styrenesa  (continued)
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