

Bioorganic & Medicinal Chemistry Letters 11 (2001) 2189-2192

The Discovery of Anthranilic Acid-Based MMP Inhibitors. Part 2: SAR of the 5-Position and P1¹ Groups

J. I. Levin,^{a,*} J. Chen,^a M. Du,^a M. Hogan,^a S. Kincaid,^a F. C. Nelson,^a A. M. Venkatesan,^a T. Wehr,^a A. Zask,^a J. DiJoseph,^b L. M. Killar,^b S. Skala,^b A. Sung,^b M. Sharr,^b C. Roth,^b G. Jin,^a R. Cowling,^a K. M. Mohler,^c R. A. Black,^c C. J. March^c and J. S. Skotnicki^a

> ^aWyeth-Ayerst Research, 401 N. Middletown Rd., Pearl River, NY 10965, USA ^bWyeth-Ayerst Research, PO Box CN-8000, Princeton, NJ 08543, USA ^cImmunex Corporation, Seattle, WA 98101, USA

> > Received 10 April 2001; accepted 6 June 2001

Abstract—A novel series of anthranilic acid-based inhibitors of MMP-1, MMP-9, MMP-13, and TACE was prepared and evaluated. Selective inhibitors of MMP-9, MMP-13, and TACE were identified, including the potent, orally active MMP-13 inhibitor **4p**. © 2001 Elsevier Science Ltd. All rights reserved.

The matrix metalloproteinases (MMPs), including collagenases, stromelysins, gelatinases, and membrane-type MMPs, comprise a group of over 20 zinc-containing enzymes that play a role in the normal remodeling and degradation of extracellular matrix proteins. The potential exists for potent, orally bioavailable small molecule inhibitors of MMPs to treat a broad spectrum of pathologies, including atherosclerosis,¹ rheumatoid arthritis, osteoarthritis,² and cancer,³ in which the aberrant control of MMP levels has been implicated as a causative factor. For example, the nonpeptide sulfonamide hydroxamate CGS-27023A has been in oncology clinical trials (Fig. 1).

We have recently disclosed a novel series of sulfonamide hydroxamic acid inhibitors of MMP-1, MMP-9, MMP-13, and TACE (TNF- α converting enzyme), based on an anthranilic acid scaffold.⁴ The SAR of the anthranilic acid 3-position leading to compounds exemplified by 1 (Fig. 1), with nanomolar level in vitro activity, and oral bioavailability, has been discussed.

We now wish to report the MMP/TACE SARs for variations at the phenylsulfonyl P1¹ moiety (4, R^1), as well as the anthranilic acid 5-position (4, R^5). Compounds

selective for MMP-9, MMP-13, or TACE have been obtained by the judicious choice of substituents at these two key locations.

Chemistry

In general, the desired sulfonamide hydroxamic acids were prepared as previously described (Scheme 1).^{4,5}

Variants at R^5 of hydroxamic acid 4 were prepared by starting with the appropriately substituted anthranilic acid, 2, or via derivatization of the 5-bromo-sulfona-

Figure 1. Sulfonamide hydroxamic acid MMP inhibitors.

^{*}Corresponding author. Tel.: +1-845-732-3053; fax: +1-845-732-5561; e-mail: levinji@war.wyeth.com

⁰⁹⁶⁰⁻⁸⁹⁴X/01/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(01)00419-X

Scheme 1. (i) 4-R¹PhSO₂Cl, TEA; (ii) R²X, NaH; (iii) NaOH; (iv) (COCl)₂, DMF, NH₂OH.

mide-ester **3a** ($R^1 = OMe$; $R^2 = Bn$ or CH_2 -3-Py; $R^3 = Me$; $R^4 = Me$; $R^5 = Br$). Thus, Suzuki couplings of 3a with any boronic acids provided compounds 4c-e after conversion of the ester into the requisite hydroxamate. The 5-diethylaminomethyl analogue, 4f, was prepared via Stille coupling of **3b** ($R^1 = OMe$; $R^2 = H$; $R^3 = Me; R^4 = Me; R^5 = Br)$ with tributyl(vinyl)tin to give olefin 3c, followed by benzylation of the NH-sulfonamide, OsO₄/NaIO₄ oxidation of the olefin, reductive amination of the resulting aldehyde and hydroxamic acid formation. The N,N-dimethylaniline 4g was prepared via Buchwald coupling of 3a with tris(dimethylamino)borane.⁶ Similarly, coupling of 3d $(R^1 = OMe; R^2 = H; R^3 = Br; R^4 = Me; R^5 = Me)$ with phenylboronic acid and 2-furanboronic acid led to 4h and 4i, analogues at the anthranilate 3-position.

Table 1. In vitro potency of substituted anthranilate hydroxamic acids

HOHNOC R^{2} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3}

Compound	\mathbf{R}^1	R ²	R ³	R ⁵	MMP-1 ^a	MMP-9 ^a	MMP-13 ^a	TACE ^a
1	OMe	CH ₂ -3-Py	Me	Н	143	5	8	231
4a	OMe	CH ₂ -3-Py	Me	Br	124	24	20	43
4b	OMe	CH ₂ -3-Py	Me	Me	132	15	11	70
4c	OMe	CH ₂ -3-Py	Me	Ph	195	3	4	64
4d	OMe	CH ₂ -3-Py	Me	Ph-3-CF ₃	542	1	2	294
4e	OMe	CH ₂ -3-Py	Me	2-Naphthyl	745	2	1	194
4f	OMe	CH_2Ph	Me	CH_2NEt_2	1050	5	113	$44\%(1)^{b}$
4g	OMe	CH ₂ -3-Py	Me	NMe ₂	74	2	39	633
4h	OMe	CH ₂ -3-Py	Ph	Me	103	7	3	133
4i	OMe	CH ₂ -3-Py	2-Furyl	Me	18	8	1	61
4j	OEt	CH_2Ph	Me	Me	291	NT	24	173
4k	O-n-Bu	CH_2Ph	Me	Me	33%(1) ^b	144	137	377
4l	OCH ₂ Ph	CH_2Ph	Me	Me	$25\%(1)^{b}$	554	959	429
4m	O(CH ₂) ₂ Ph	CH_2Ph	Me	Me	747	46	75	467
4n	OPh	CH_2Ph	Me	Me	376	4	6	$37\%(1)^{b}$
4o	OPh-4-tBu	Me	Me	Br	25%(10) ^b	125	44	19%(1) ^b
4p	O-4-Py	Me	Me	Н	3245	7	4	$32\%(1)^{b}$
4q	O-4-Py	Me	Н	Н	48%(10) ^b	153	38	$22\%(1)^{b}$
4r	SPh	Me	Me	Me	1314	8	3	727
4s	Ph-4-OMe	CH ₂ -3-Py	Me	Н	2268	152	18	$4\%(1)^{b}$
4t	Ph-3,4-(-OCH ₂ O-)	CH ₂ -3-Py	Me	Н	37%(10) ^b	$43\%(1)^{b}$	26	9%(1) ^b
4u	OCH ₂ Ph	CH ₂ Ph	Me	Br	18%(10) ^b	3448	1752	285
4v	OCH ₂ Ph	Me	Me	Br	57%(10) ^b	189	163	57
4w	OCH ₂ -3-Thienyl	Me	Me	Br	4640	232	142	56
4x	OCH_2 -2-Thiazolyl	Me	Me	Br	45%(10) ^b	952	661	23
4y	OCH ₂ -3-Py	Me	Me	Br	$42\%(10)^{b}$	$28\%(1)^{b}$	$48\%(1)^{b}$	28
ČGS-27023A		—	—	—	15	9	8	231

^aIC₅₀, nM.

^b% Inhibition (concentration, μM).

Alkoxy P1¹ derivatives **4j–4m**, **4v–4y**, and thioether **4r** were available via fluoride displacement from a 4-fluorophenyl sulfonamide, **3e** (R¹=F; R²=Me, Bn or CH₂-3-Py; R³=Me; R⁴=H, Me or Bn; R⁵=Me or Br), with the appropriate alcohol or thiol and NaH/DMF, or from the phenol **3f** (R¹=OH; R²=Bn; R³=Me; R⁴=Me; R⁵=Br) via a Mitsunobu alkylation (**4u**). Biaryl P1¹ groups were introduced from the 4-bromophenyl sulfonamide **3g** (R¹=Br; R²=CH₂-3-Py; R³=Me; R⁴=Me; R⁵=H) using Suzuki couplings (**4s–4t**). Biaryl ethers were prepared from the requisite biaryl sulfonyl chloride (**4p–4q**), or via aryl ether formation (**4n–4o**) according to the method of Chan from phenol **3f**.

Biology

All of the anthranilate hydroxamic acids were tested in vitro⁸ for their ability to inhibit MMP-1, MMP-9, MMP-13, and TACE⁹ (Table 1). Inhibitors of MMP-9 are potentially valuable as inhibitors of tumor metastasis,³ while MMP-13 inhibitors may offer protection from the cartilage degradation associated with osteoarthritis.² Inhibitors of TACE are potentially valuable for the treatment of rheumatoid arthritis, Crohn's disease and other inflammatory diseases.¹⁰ Selectivity for MMP-9 or MMP-13 or TACE over MMP-1 was sought in order to examine whether the inhibition of MMP-1 is

a possible source of the musculoskeletal side effects seen in clinical trials of broad spectrum MMP inhibitors.¹¹

The in vitro potencies against the MMPs and TACE for a series of anthranilate hydroxamic acid analogues, 4a-4i, in which substitution at the 5-position of the anthranilate phenyl ring was explored are shown in Table 1. All of these compounds, with the exception of analogue 4f, are potent inhibitors of both MMP-9 and MMP-13, comparable to the 5-unsubstituted derivative 1. Aryl or heteroaryl groups at the anthranilate 3- (4h and 4i) or 5-positions (4c-4e) provide excellent activity versus MMP-13. Furthermore, the 5-aryl compounds, 4c-4e, display high levels of selectivity over MMP-1, from almost 50- to over 700-fold. Interestingly, incorporating basic alkylamino substituents at the 5-position, as in diethylaminomethyl derivative 4f and dimethylaniline 4g, results in compounds that are potent against MMP-9 and selective over MMP-1 and MMP-13.

TACE activity is also affected by the choice of the anthranilate 5-substituent. Thus, the 5-bromo derivative **4a** is 5 times more potent against TACE than the 5-unsubstituted parent, **1**. Although a 5-bromo substituent (**4a**) provided the greatest TACE potency in the series **4a**–**4i**, all of the 5-substituents in this series which were not excessively bulky (**4d** and **4e**) or basic (**4f** and **4g**) had enhanced TACE activity relative to compound **1**. Unfortunately, despite their potency against isolated enzyme, compounds **4a**–**4i** did not display significant TNF- α inhibitory activity in a THP-1 cellular assay at 3 μ M.¹²

Variations of the P1¹ substituent of the anthranilate hydroxamic acids are shown for compounds 4j-4y in Table 1. NMR studies have shown that the R^1 group of compound 4 occupies the S1¹ pocket of MMP-13.¹³ Lengthening of $P1^{\bar{1}}$ alkoxy moieties (4j-4l) results in a loss of MMP-1 activity, as expected from the shallow nature of the S11 pocket of this enzyme. However, MMP-9 and MMP-13 activity for 4k and benzyl ether 4l also diminish beyond useful levels. Inserting an additional methylene spacer in **4** leads to the phenethyl analogue 4m and restores some MMP-9 and MMP-13 activity. On the other hand, the more rigid $P1^1$ biaryl ethers, 4n-4q, and thioether 4r retain or improve their potency against MMP-9 and MMP-13 relative to methyl ether 1. Surprisingly, comparison of the neutral phenyl ethers, **4n** and **4o**, shows that a bulky *para*-substituent is required for these to realize greater than 100-fold selectivity over MMP-1. It is possible that the arginine residue that normally forms the bottom of the MMP-1 S1¹ pocket is pushed aside to some degree by the P1¹ biphenyl ether substituent of 4n, extending the depth of the pocket. Thioether 4r and the more polar 4-pyridyl ethers, 4p and 4q, do not need additional substitution and are among the most selective members of the series (>250-fold). It is important to note that compound 4q, with its lengthy P1¹ moiety, no longer requires the 3-substituent on the anthranilate ring $(R^3 = H)$ that our initial series needed to attain acceptable potency.⁴ The biaryl derivatives 4s and 4t are also potent and selective MMP-13 inhibitors, with 4t possessing over 300- and 35-fold selectivity over MMP-1 and MMP-9, respectively.

Although benzyl ether **41** was only a weakly active TACE inhibitor, it was the first member of this series that was more potent against TACE than against MMP-1, MMP-9, and MMP-13. The optimization of this lead into a potent and selective TACE inhibitor is represented with compounds **4u**–**4y**. The 5-bromo analogue **4u** provides a slight increase in TACE potency over **41** and substantially improves selectivity for TACE. Next, a 5-fold increase in potency was realized in going from *N*-benzyl analogue **4u** to the corresponding *N*-methyl sulfonamide **4v**. Replacement of the terminal phenyl ring of **4v** with a 3-thienyl group (**4w**) offered no improvement.

Thiazole analogue **4x**, however, is over twice as potent as **4v** and is approximately 400-, 40-, and 30-fold selective over MMP-1, MMP-9, and MMP-13, respectively. Still greater TACE selectivity is obtained with 3-picolyl ether **4y**, while the analogous 2- and 4-picolyl derivatives (not shown) displayed a 6- to 8-fold diminution of TACE activity.

Examination of the X-ray structure of TACE suggests that the terminal phenyl or heteroaryl ring of 4u-4y is positioned in the channel connecting the S1¹ and S3¹ pockets.¹⁴ The TNF- α inhibitory activity of compounds 4u-4y in a THP-1 cellular assay was disappointingly poor, however. Thiophene 4w was the most potent derivative in cells, affording only 22% inhibition of TNF- α at 3 μ M.

The in vivo bioactivity against MMP-13 for some of the anthranilate-hydroxamates (4c-4e, 4h-4i, and 4p-4t) after oral dosing was assessed through the use of a dialysis tubing implant assay.¹⁵ All of the compounds tested were compared to Novartis' sulfonamide-hydroxamate clinical lead, CGS-27023A,¹⁶ in the same experiment. Despite the fact that the compounds tested had in vitro potencies comparable to CGS-27023A against MMP-13, only 4h was as potent as CGS-27023A in vivo. Compounds 4c, 4e, 4p, and 4r were approximately 80% as potent CGS-27023A.

Anthranilate-hydroxamates **4c**, **4e**, and **4p** were also tested side by side with CGS-27023A in a bovine articular cartilage explant assay.¹⁷ At a concentration of 1 μ M, compound **4e** provided a level of inhibition of cartilage degradation slightly superior to CGS-27023A (**4e**: 83%/CGS-27023A: 70%, *n*=2). Compounds **4c** and **4p** were roughly equivalent to CGS-27023A at 1 μ M in this assay.

Hydroxamates **4c**, **4e**, and **4p** were then evaluated in an in vivo rat sponge-wrapped cartilage model.¹⁸ Only pyridyl ether **4p** demonstrated significant inhibition of collagen degradation in this model. Oral dosing at 50 mg/kg/bid provided a 35% inhibition (n=2) of collagen degradation compared to a 51% inhibition by CGS-27023A at the same dose.

In conclusion, we have expanded upon our initial series of anthranilate-hydroxamic acid MMP inhibitors. We have found that through the proper choice of substituents, these compounds can be manipulated to provide potent and selective inhibitors of MMP-9 or MMP-13 or TACE. The best MMP-13 inhibitors of the series were evaluated in vitro and in vivo to assess their potential for treating osteoarthritis. Compounds **4c**, **4e**, and **4p** are active in an in vitro cartilage degradation assay and display oral activity in an in vivo mouse bioactivity model. Pyridyl ether **4p**, a potent MMP-9 and MMP-13 inhibitor with greater than 800-fold selectivity over MMP-1, has also demonstrated oral activity in a rat sponge-wrapped cartilage model. The further exploration of the SAR of these novel MMP inhibitors will be reported in due course.

References and Notes

1. George, S. J. Expert Opin. Invest. Drugs 2000, 9, 993.

2. (a) Clark, I. M.; Rowan, A. D.; Cawston, T. E. *Curr. Opin. Anti-Inflam. Immunomod. Invest. Drugs* **2000**, *2*, 16. (b) Bottomley, K. M.; Johnson, W. H.; Walter, D. S. *J. Enzyme Inhib.* **1998**, *13*, 79.

3. (a) Yip, D.; Ahmad, A.; Karapetis, C. S.; Hawkins, C. A.; Harper, P. G. *Investigational New Drugs* **1999**, *17*, 387. (b) Nelson, A. R.; Fingleton, B.; Rothenberg, M. L.; Matrisian, L. M. J. Clin. Oncol. **2000**, *18*, 1135.

4. Levin, J. I.; Du, M. T.; DiJoseph, J. F.; Killar, L. M.; Sung,

A.; Walter, T.; Sharr, M. A.; Roth, C. E.; Moy, F. J.; Powers, R.; Jin, G.; Cowling, R.; Skotnicki, J. S. *Bioorg. Med. Chem.*

Lett. 2001, 11, 235.

5. All new compounds gave satisfactory ¹H NMR, IR, and MS data in accord with the assigned structure.

6. Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1348.

7. Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. **1998**, *39*, 2933.

8. (a) Weingarten, H.; Feder, J. *Anal. Biochem.* **1985**, *147*, 437. (b) Inhibitor concentrations were run in triplicate. MMP IC_{50} determinations were calculated from a four-parameter logistic fit of the data within a single experiment.

9. Jin, G.; Black, R.; Wolfson, M.; Rauch, C.; Ellestad, G. A.; Cowling, R. *Anal. Biochem.*, submitted for publication.

10. Newton, R. C.; Decicco, C. P. J. Med. Chem. 1999, 42, 2295.

11. Scrip 1998, 2349, 20.

12. For a description of the THP-1 assay, see: Levin, J. I.; Chen, J. M.; Cole, D. C. WO 00/44709, 2000; *Chem. Abstr.* **2000**, *133*, 150908.

13. (a) Moy, F. J.; Chanda, P. K.; Chen, J. M.; Cosmi, S.; Edris, W.; Levin, J. I.; Powers, R. *J. Mol. Biol.* 2000, *302*, 671.
(b) Moy, F. J.; Chanda, P. K.; Cosmi, S.; Edris, W.; Levin, J. I.; Powers, R. *J. Biomol. NMR* 2000, *17*, 269.

14. Maskos, K.; Fernandez-Catalan, C.; Huber, R.; Bourenkov, G. P.; Bartunik, H.; Ellestad, G. A.; Reddy, P.; Wolfson, M. F.; Rauch, C. T.; Castner, B. J.; Davis, R.; Clarke, H. R. G.; Petersen, M.; Fitzner, J. N.; Cerreti, D. P.; March, C. J.; Paxton, R. J.; Black, R. A.; Bode, W. *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95*, 3408.

15. DiJoseph, J. F.; Sharr, M. A. *Drug Dev. Res.* **1998**, *43*, 200. 16. MacPherson, L. J.; Bayburt, E. K.; Capparelli, M. P.; Carroll, B. J.; Goldstein, R.; Justice, M. R.; Zhu, L.; Hu, S.; Melton, R. A.; Fryer, L.; Goldberg, R. L.; Doughty, J. R.; Spirito, S.; Blancuzzi, V.; Wilson, D.; O'Byrne, E. M.; Ganu, V.; Parker, D. T. *J. Med. Chem.* **1997**, *40*, 2525.

17. Lewis, E. J.; Bishop, J.; Bottomley, K. M.; Bradshaw, D.; Brewster, M.; Broadhurst, N. J.; Brown, P. A.; Budd, J. M.; Elliott, L.; Greenham, A. K.; Johnson, W. H.; Nixon, J. S.; Rose, F.; Sutton, B.; Wilson, K. Br. J. Pharm. **1997**, *121*, 540. 18. Bishop, J.; Greenham, A. K.; Lewis, E. J. J. Pharmacol. Toxicol. Methods **1993**, *30*, 19.