Communications

E. S. Smirnova, A. M. Echavarren* ____

Gold Clusters

1111-1111

A Hexanuclear Gold Cluster Supported by Three-Center–Two-Electron Bonds and Aurophilic Interactions

A heart of gold: The first hexanuclear gold cluster formed exclusively by gold(I) centers (see picture; Au yellow, C black, P purple) has been shown to be catalytically active for the activation of alkynes under homogeneous conditions.

Gold Clusters

A Hexanuclear Gold Cluster Supported by Three-Center–Two-Electron Bonds and Aurophilic Interactions**

Ekaterina S. Smirnova and Antonio M. Echavarren*

Gold clusters or nanoparticles have been proposed as catalytically active species in a variety of homogeneous processes,^[1–5] which might proceed by mechanisms that are very different from those occurring under homogeneous conditions.^[6,7] The preparation of new types of small gold clusters has attracted recent attention because of their structural novelty and potential for the discovery of new reaction types.^[8] Herein we report the ready preparation of a robust hexagold cluster composed exclusively by Au^I centers that is catalytically active in the activation of alkynes.^[9]

We decided to synthesize new gold(I) complexes of type 1 in which the *ortho*-boryl group could enhance the electrophilicity of the metal center in the catalytic activation of alkynes, allenes, and alkenes. This catalyst design was inspired both by the high reactivity displayed by cationic catalysts of type 2 with sterically hindered Buchwald phosphines^[10] and by the stability of gold(I) boratranes, such as 3 developed by Bourissou, that display significant donor–acceptor $Au \rightarrow B$ interactions.^[11]

Complexes of type **1** could undergo bimolecular Au^l/B transmetalation to form known dinuclear complexes of type

[*] E. S. Smirnova, Prof. A. M. Echavarren
 Institute of Chemical Research of Catalonia (ICIQ)
 Av. Països Catalans 16, 43007 Tarragona (Spain)
 Prof. A. M. Echavarren
 Departament de Química Analítica i Química Orgànica
 Universitat Rovira i Virgili

C/Marcel·li Domingo s/n, 43007 Tarragona (Spain) E-mail: aechavarren@iciq.es

- [**] We thank the MICINN (CTQ2010-16088/BQU), the European Research Council (Advanced Grant No. 321066), the AGAUR (2009 SGR 47), and the ICIQ Foundation for financial support. We also thank the ICIQ X-Ray diffraction unit for the X-ray structures.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201303336.

4.^[12] Indeed, the reaction of [LAuX] with arylboronic acids leads to aryl gold(I) derivatives [ArAuL] in a general manner,^[13,14] while by using two equivalents of [Ph₃PAuNTf₂], diaurated complexes [(μ -aryl)(Ph₃PAu)₂]NTf₂ (**5**) are obtained (Scheme 1).^[15] Very similar *gem*-diarurated complexes have been obtained by reaction of arylboronic acids with two equivalents of [{Au(IPr)}₂(μ -OH)][BF₄].^[16]

Scheme 1. Formation of diaurated complexes 5.

Complexes **6** and **7a** (Scheme 2) were easily prepared in 90–92% yield by reaction of the corresponding *o*-borylphosphines^[17] with [Au(tht)Cl] (tht = tetrahydrothiophene). Interestingly, whereas reaction of **7a** with AgOTf or AgNTf₂ led to neutral complexes **7b** or **7c** by chloride ligand exchange, **6** reacted with AgNTf₂ to give cationic [AuL₂]⁺Tf₂N⁻ complex

Scheme 2

Scheme 2. Formation of hexanuclear gold cluster 9.

www.angewandte.org

2

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2013, 52, 1-5

These are not the final page numbers!

8. Very weak Au \rightarrow B interactions are present in the solid structure of **7**a–c^[18] (3.55–3.62 Å), which are in the range corresponding to the sum of their van der Waals radii (3.58 Å), whereas in the case of **6** and **8** no interaction was observed in the solid state (Figure 1).

Figure 1. Structure of complexes 6 (a), **7a** (b), **7b** (c), **7c** (d), and **8** (e). ORTEP plot (ellipsoids set at 50% probability). Hydrogen atoms, solvate molecules, and the Tf_2N^- anion for **8** are omitted for clarity.

In an attempt at preparing a cationic Au^I complex of type **2**, neutral complexes **6** and **7a** were treated with AgSbF₆ at 23 °C in the presence of acetonitrile, benzonitrile, or 2,4,6-trimethoxybenzonitrile. Surprisingly, hexanuclear cluster $[AuL_4](SbF_6)_2$ **9** was obtained instead as a yellow solid. The best yield (45%) was achieved by treatment of **7a** with AgSbF₆ in CH₂Cl₂ at 23 °C. An analogous hexanuclear cluster **9**' was obtained using AgBF₄.

The X-ray crystal structure of the dicationic hexanuclear cluster **9** shows a pseudoctahedral geometry with two types of gold atoms: four Au¹ centers (Au1, Au2, Au4, and Au6) bonded to the carbon and phosphorous atoms of the L ligands and two Au¹ centers (Au3 and Au5) bonded to carbon atoms through three-center-two-electron bonds (Figure 2). Owing to the distortion of planarity formed by the four gold atoms, the cluster is $C_{2\nu}$ -symmetric instead of D_{4h} -symmetric. Dicationic hexanuclear clusters [Au₆(PR₃)₆]²⁺(A⁻)₂ have distorted octahedral^[19] or edge-sharing bitetrahedral structures^[20] with average Au–Au bond distances of 3.02 Å and 2.76 Å, respectively. In cluster **9**, the average Au–Au bond length is

Figure 2. Structure of dicationic $[Au_6]^{2^+}$ cluster **9**. ORTEP plot (ellipsoids set at 50% probability). Hydrogen atoms, SbF₆⁻ anions, and solvate molecules are omitted for clarity.

3.05 Å, with a closest Au···Au interaction of 2.71 Å, which is the shortest bond distance between gold atoms in structurally characterized hexanuclear gold clusters. This distance is within the range observed for homoleptic mesitylgold complex (AuMes)₅ (2.69–2.71 Å) with a five-pointed star structure.^[21]

Cluster **9** is unique among hexanuclear gold clusters as it bears only four phosphines to stabilize six Au^{I} centers and features four *ipso*-carbon-digold interactions.^[22] In contrast to the carbon-centered hexagold cluster $[CAu_{6}(dppy)_{6}](BF_{4})_{2}$ (dppy = diphenylphosphino-2-pyridine), which is non-emissive in solution,^[23] complex **9** shows emission at room temperature in CH₂Cl₂ solution with the maximum at circa 460 nm that is due to an intraligand and/or metal-to-ligand transitions. In the solid state, **9** displays more intense emission, which is substantially red-shifted with the maximum at ca. 550 nm.

Although 9 is quite robust and does not react at 23 °C with nitriles, isonitriles, or pyridine, it is conceivable that the two gold atoms Au3 and Au5 bonded to the *ortho* carbons of the aryl phosphines by relatively weak three-center-two-electron bonds could act as electrophilic centers to activate alkynes by complexes **10** (Scheme 3).

Accordingly, treatment of 1,6-enyne **11** with gold cluster **9** as the catalyst led to dienes **12 a**,**b**^[24] (Scheme 4). Cluster **9** was quantitatively recovered from the reaction mixture. Furthermore, no induction period was observed by monitoring the cycloisomerization of **11 a** to **12 a**,**b** in CD₂Cl₂ at 0–23 °C.^[25]

Catalyst **7c** with a NTf₂ ligand is a more reactive catalyst than **9**. The more demanding [4+2] cycloaddition^[10a,26] of 1,6enyne **13** bearing a disubstituted alkyne with a *o*-tolyl substituent (Table 1). For this cycloisomerization, catalyst

Scheme 3. Formation of alkyne adduct 10.

Scheme 4. Formation of 12a and 12b. DCE = 1,2-dicloroethane.

Table 1: [4+2] Cycloaddition of enyne 13 to form 14.

7c (entry 2) was found to be even more active for the formation **14** than cationic complex **2a** with JohnPhos ligand.

In summary, we have prepared a robust hexanuclear $(Au^{1})_{6}$ cluster **9** with two of the Au¹ centers bound only to two carbons and four other Au¹ centers by three-center–twoelectron bonds. This gold cluster is catalytically active in a variety of gold-catalyzed reactions. We have also found that complex **7c** with a borylphosphine ligand is catalyst more reactive than [((2-biphenyl)*t*Bu₂P)Au(MeCN)]SbF₆ (**2a**) in a more challenging cycloisomerization reaction. Synthesis of new gold complexes based on these motifs and further mechanistic studies to determine the reactivity of cluster **9** are underway.

Received: April 19, 2013 Revised: May 31, 2013 Published online: **Keywords:** aurophilic interactions · borylphosphanes · cycloisomerizations · gold catalysis · gold clusters

- a) M. Stratakis, H. García, Chem. Rev. 2012, 112, 4469-4506;
 b) J. Han, Y. Liu, R. Guo, J. Am. Chem. Soc. 2009, 131, 2060-2061;
 c) G. Kyriakou, S. K. Beaumont, S. M. Humphrey, C. Antonetti, R. M. Lambert, ChemCatChem 2010, 2, 1444-1449;
 d) V. K. Kanuru, G. Kyriakou, S. K. Beaumont, A. C. Papageorgiou, D. J. Watson, R. M. Lambert, J. Am. Chem. Soc. 2010, 132, 8081-8086;
 e) S. K. Beaumont, G. Kyriakou, R. M. Lambert, J. Am. Chem. Soc. 2010, 132, 12246-12248;
 f) A. Corma, R. Juárez, M. Boronat, F. Sánchez, M. Iglesias, H. García, Chem. Commun. 2011, 47, 1446-1448.
- [2] M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, Angew. Chem. 2004, 116, 5936-5939; Angew. Chem. Int. Ed. 2004, 43, 5812-5815.
- [3] a) P. S. D. Robinson, G. N. Khairallah, G. da Silva, H. Lioe, R. A. J. O'Hair, Angew. Chem. 2012, 124, 3878–3883; Angew. Chem. Int. Ed. 2012, 51, 3812–3817; b) A. S. K. Hashmi, Science 2012, 338, 1434–1434.
- [4] J. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Dominguez, A. Leyva-Perez, A. Corma, *Science* 2012, 338, 1452–1455.
- [5] G. Li, R. Jin, Acc. Chem. Res. 2013, DOI: 10.1021/ar300213z.
 [6] M. García-Mota, N. Cabello, F. Maseras, A. M. Echavarren, J.
- Pérez-Ramírez, N. López, *ChemPhysChem* 2008, 9, 1624–1629.
 [7] C. Gryparis, C. Efe, C. Raptis, I. N. Lykakis, M. Stratakis, *Org. Lett.* 2012, 14, 2956–2959.
- [8] a) T. J. Robilotto, J. Bacsa, T. G. Gray, J. P. Sadighi, Angew. Chem. 2012, 124, 12243-12246; Angew. Chem. Int. Ed. 2012, 51, 12077-12080; b) E. S. Borren, A. F. Hill, R. Shang, M. Sharma, A. C. Willis, J. Am. Chem. Soc. 2013, 135, 4942-4945; c) X.-L. Pei, Y. Yang, Z. Lei, Q.-M. Wang, J. Am. Chem. Soc. 2013, 135, 6435-6437.
- [9] a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; b) E. Jiménez-Núñez, A. M. Echavarren, Chem. Commun. 2007, 333-346; c) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351-3378; d) A. S. K. Hashmi, M. Rudolph, Chem. Soc. Rev. 2008, 37, 1766-1775; e) Z. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239-3265; f) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; g) V. Michelet, P. Y. Toullec, J. P. Genêt, Angew. Chem. 2008, 120, 4338-4386; Angew. Chem. Int. Ed. 2008, 47, 4268-4315; h) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448-2462.
- [10] a) C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179; b) E. Herrero-Gómez, C. Nieto-Oberhuber, S. López, J. Benet-Buchholz, A. M. Echavarren, Angew. Chem. 2006, 118, 5581-5585; Angew. Chem. Int. Ed. 2006, 45, 5455-5459; c) P. Pérez-Galán, N. Delpont, E. Herrero-Gómez, F. Maseras, A. M. Echavarren, Chem. Eur. J. 2010, 16, 5324-5332.
- [11] a) S. Bontemps, G. Bouhadir, W. Gu, M. Mercy, C.-H. Chen, B. M. Foxman, L. Maron, O. V. Ozerov, D. Bourissou, *Angew. Chem.* 2008, 120, 1503–1506; *Angew. Chem. Int. Ed.* 2008, 47, 1481–1484; b) M. Sircoglou, S. Bontemps, G. Bouhadir, N. Saffon, K. Miqueu, W. Gu, M. Mercy, C.-H. Chen, B. M. Foxman, L. Maron, O. V. Ozerov, D. Bourissou, *J. Am. Chem. Soc.* 2008, 130, 16729–16738; c) for the In^{III} analogue of 3, see: E. J. Derrah, M. Sircoglou, M. Mercy, S. Ladeira, G. Bouhadir, K. Miqueu, L. Maron, D. Bourissou, *Organometallics* 2011, 30, 657–660.
- [12] a) M. A. Bennett, S. K. Bhargava, K. D. Griffiths, G. B. Robertson, W. A. Wickramasinghe, A. C. Willis, *Angew. Chem.* 1987, 99, 261–262; *Angew. Chem. Int. Ed. Engl.* 1987, 26, 258–260;
 b) M. A. Bennett, S. K. Bhargava, N. Mirzadeh, S. H. Privér, J. Wagler, A. C. Willis, *Dalton Trans.* 2009, 7537–7551; c) T.-P. Lin,

www.angewandte.org

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

I.-S. Ke, F. P. Gabbaï, Angew. Chem. 2012, 124, 5069-5072; Angew. Chem. Int. Ed. 2012, 51, 4985-4988.

- [13] a) D. V. Partyka, M. Zeller, A. G. Hunter, T. G. Gray, Angew. Chem. 2006, 118, 8368-8371; Angew. Chem. Int. Ed. 2006, 45, 8188-8191; b) D. V. Partyka, J. B. Updegraff, M. Zeller, A. D. Hunter, T. G. Gray, Organometallics 2009, 28, 1666-1674; c) L. Gao, M. A. Peay, D. V. Partyka, J. B. Updegraff, T. S. Teets, A. J. Esswein, M. Zeller, A. D. Hunter, T. G. Gray, Organometallics 2009, 28, 5669-5681; d) D. V. Partyka, T. S. Teets, M. Zeller, J. B. Updegraff, A. D. Hunter, T. G. Gray, Chem. Eur. J. 2012, 18, 2100-2112; e) M. A. Peay, J. E. Heckler, N. Deligonul, T. G. Gray, Organometallics 2011, 30, 5071-5074; f) D. V. Partyka, M. Zeller, A. D. Hunter, T. G. Gray, Inorg. Chem. 2012, 51, 8394-8401.
- [14] A. S. K. Hashmi, T. D. Ramamurthi, F. Rominger, J. Organomet. Chem. 2010, 694, 592–597.
- [15] J. E. Heckler, M. Zeller, A. D. Hunter, T. G. Gray, Angew. Chem. 2012, 124, 6026–6030; Angew. Chem. Int. Ed. 2012, 51, 5924–5928.
- [16] A. Gómez-Suárez, S. Dupuy, A. M. Z. Slawin, S. P. Nolan, Angew. Chem. 2013, 125, 972–976; Angew. Chem. Int. Ed. 2013, 52, 938–942.
- [17] a) S. Porcel, G. Bouhadir, N. Saffon, L. Maron, D. Bourissou, Angew. Chem. 2010, 122, 6322-6325; Angew. Chem. Int. Ed.
 2010, 49, 6186-6189; b) T. W. Hudnall, Y.-M. Kim, M. W. P. Bebbington, D. Bourissou, F. P. Gabbai, J. Am. Chem. Soc. 2008, 130, 10890-10891.

- [18] CCDC 934740 (7c), 934741 (7b), 934742 (9), 934743 (9'), 934744
 (7a), 934745 (6), and 934746 (8), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [19] P. L. Bellon, M. Manaserro, M. Sansoni, J. Chem. Soc. Dalton Trans. 1973, 2423–2427.
- [20] a) C. E. Briant, K. P. Hall, M. P. Mingos, J. Organomet. Chem.
 1983, 254, C18-C20; b) C. E. Briant, K. P. Hall, M. P. Mingos, A. C. Wheeler, J. Chem. Soc. Dalton Trans. 1986, 687-692.
- [21] S. Gambarotta, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Chem. Soc. Chem. Commun. 1983, 1304–1306.
- [22] For a pentanuclear cluster [Au₅(C₆H₄PPh₂)₄]OTf with two *ipso*carbon-digold interactions, see: M. A. Bennett, L. L. Welling, A. C. Willis, *Inorg. Chem.* **1997**, *36*, 5670–5672.
- [23] J.-H. Jia, J.-X. Liang, Z. Lei, Z.-X. Cao, Q.-M. Wang, Chem. Commun. 2011, 47, 4739–4741.
- [24] a) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas, A. M. Echavarren, *Angew. Chem.* 2004, *116*, 2456–2460; *Angew. Chem. Int. Ed.* 2004, *43*, 2402–2406; b) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren, *Chem. Eur. J.* 2006, *12*, 1677–1693.
- [25] See the Supporting Information for further experiments.
- [26] a) C. Nieto-Oberhuber, P. Pérez-Galán, E. Herrero-Gómez, T. Lauterbach, C. Rodríguez, S. López, C. Bour, A. Rosellón, D. J. Cárdenas, A. M. Echavarren, J. Am. Chem. Soc. 2008, 130, 269–279.

www.angewandte.org