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Abstract: A rapid entry to the polyol framework of the styryllac-
tone family of natural products is reported. The key steps are two
highly diastereoselective boron-mediated aldol reactions of a chiral
dihydroxyacetone equivalent followed by a 1,3-anti or 1,3-syn-se-
lective reduction. In addition, Evans–Tishchenko reduction of the
cyclic aldol products effected an equilibration to the 1,2-syn aldol
product before 1,3-anti selective reduction.
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Chiral dihydroxyacetone derivatives have proved to be
excellent building blocks for polyhydroxylated natural
product synthesis.1 Recently, we described the application
of bis-aldol methodology to �-silyldioxanone 1 resulting
in a diastereo- and enantioselective entry to differentially
protected higher order ketopolyols (Scheme 1).2 Having
established the feasibility of this approach we turned to-
wards natural product synthesis. The styryllactone family
is typified by mono- or bicyclic tetrahydrofuran ring sys-
tems, densely decorated with oxygenated stereocentres,
often exhibiting useful levels of antitumour activity.3–5

Gonioheptolide A (2)6 is an unusual member of this fam-
ily of natural products, in that the usual lactone moiety has
been converted to the corresponding methyl ester. Never-
theless, it displays moderate antitumour activity against a
variety of human tumour cell lines and we decided to ap-
ply our extended methodology to its total synthesis. To-
wards this goal we first investigated the enantio- and
diastereoselective synthesis of an open-chain polyol pre-
cursor as proof of concept.

The retrosynthetic plan for the synthesis of these 1,2-styr-
yl polyols hinges on the use of a single auxiliary stereo-
genic centre to build up five contiguous oxygenated
stereocentres (Scheme 2). Our initial disconnections of
gonioheptolide A were to mask the ester as a protected al-
cohol and to disconnect the tetrahydrofuran ring. In the
forward sense this would correspond to the attack of an
oxyanion at the benzylic position on a tosylate leaving
group, followed by adjustment of the oxidation level.

We considered the thus required linear hexaol to be readi-
ly accessible via a 1,3-anti or 1,3-syn selective reduction
of a suitably protected hydroxyketone. The stereochemis-
try of these hydroxyketones would then be induced
through our recently developed asymmetric bis-aldol
methodology from �-silyldioxanone 1, in which the boron
enolates of �-chiral dioxanones reacted in a very selective
1,2- and 1,3-anti fashion with a variety of aldehydes.2

In this paper we report the development of an efficient
route to the required 1,2-polyol framework of goniohep-
tolide A via two asymmetric aldol reactions and a directed
ketone reduction. A critical factor in this study proved to
be the selection of a suitable diastereoselective reducing
agent.

A challenging aspect of polyol synthesis is to minimise
the number of protecting group manipulations. In this re-
spect the Evans–Tishchenko reduction7 was considered
the perfect choice for the directed reduction as it would in-
troduce a benzoate at the benzylic position. Cleavage of
the ester followed by cyclisation of the resulting anion
onto the tosylate could then be carried out in one synthetic
operation.

�-Silyloxyketone 38 was prepared in three steps from the
�-silylketone 19 in 65% overall yield (Scheme 3). Reac-
tion of the corresponding boron enolate with benzalde-
hyde gave the diastereopure hydroxyketone 4 in good
yield (84%). Next we turned to introducing the fifth and
final stereocentre. Evans–Tishchenko reduction of 4 un-
der the standard conditions gave hydroxybenzoate 5 in
95% yield (Scheme 3). The relative stereochemistry could
not be proven by NMR due to significant signal overlap.
Subsequent desilylation, however, gave crystalline triol 6
(Figure). Single crystal X-ray analysis (Scheme 3) proved
the structure to be the 1,2-syn-1,3-anti-diastereoisomer
and not the 1,2-anti-1,3-anti-diastereoisomer as re-
quired.10
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Figure X-ray structure of 6.

The diastereomeric result of the Evans–Tishchenko re-
duction is the result of a Sm-catalysed equilibration pro-
cess as previously reported for the Tishchenko reaction of
cyclohexanone and benzaldehyde.11–13 Further proof of
this dissociative mechanism was provided by reduction of
hydroxyketone 72 (Scheme 4). The only observed product

was the phenyl substituted derivative 8 in which methallyl
aldehyde had dissociated and the resulting (postulated)
Sm enolate was trapped with excess PhCHO. The stereo-
chemistry was assigned by derivatisation as the bis-ace-
tal 9.

Scheme 4 Reagents and conditions: (a) SmI2, PhCHO, THF, 0 ºC.
(b) K2CO3, MeOH. (c) DMP, CSA (cat.), CH2Cl2.

These reduction products are formally derived from a syn-
selective aldol reaction between a cyclic ketone and an al-
dehyde. If this reaction could be generalised for a range of
aldehydes, it offers a route to natural products containing
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cyclic substructures previously unattainable by contem-
porary aldol methodology.

To forward the total synthesis it was decided to exploit the
symmetry of the dioxanone system and reverse the order
of the aldol reactions, thus requiring a 1,3-syn reduction to
install the fifth stereocentre. Furthermore, preliminary ex-
periments on 5 had not been successful in deprotecting the
acetal without significant 2º OTBS deprotection as well.14

In view of this the tri-iso-propylsilyl (TIPS) group was
chosen as a more acid stable alternative. 

The second generation synthesis started with hydroxyke-
tone 1015 prepared in 59% yield from �-silyldioxanone 1
(Scheme 5). TIPS protection with TIPSOTf and 2,6-luti-
dine returned 11 quantitatively although with a significant
amount of �-epimerisation (de = 73%). The resulting syn/
anti mixture could not be separated by HPLC. In an at-
tempt to effect the aldol reaction and reduction in one-pot
Paterson’s conditions were used.16 Thus, the aldol re-
action between the boron enolate of ketone 11 and 3-
(tert-butyl-diphenyl-silanyloxy)-propionaldehyde17 was
quenched at –78 ºC with LiBH4. Subsequent oxidative
(H2O2) work up and chromatography yielded a near 1:1
inseparable mixture of the 1,3-syn diol 14 and its trans
isomer, together with the corresponding minor diastereoi-
somers, in quantitative yield. NMR analysis of this mix-
ture revealed that the aldol reaction itself proceeded with
complete diastereoselection as expected. Upon benzyla-
tion the two major diastereomers could be separated by
chromatography to give 1,3-syn 15 and 1,3-trans 16 in
35% and 33% yield, respectively. A range of boron hy-
dride sources was then screened on both enantiomers of
ketone 13.18 Me4NBH(OAc)3,

19 which had shown syn se-
lectivity in the reduction of a 4-(hydroxybenzyl)-1,3-di-
oxan-5-one,20 proved unreactive. L-Selectride®, which
had proven selective in earlier dioxanone work1e,g and
BH3�SMe2

21 proved only poorly syn selective (yields 67–
78%; 0–17% reduction de). Our breakthrough came with
Zn(BH4)2

22 which, in a small scale trial experiment, deliv-
ered the syn-diol 1428 in 71% yield and excellent 85% re-
duction de. On scale up (6 mmol) the syn-diol 14 was
afforded in 52% ds (74% reduction de) and excellent yield
(87% over 2 steps from ketone 13). Separation of the dia-
stereoisomers was again possible after benzylation (not
shown). In contrast to the usual Zn(BH4)2 mediated reduc-
tions it was necessary to warm the reaction to room tem-
perature to ensure complete reduction. Furthermore,
simply quenching the reaction with the minimum quantity
of water, filtration of the resulting suspension through
Celite® and a subsequent base wash was found to be the
optimal work up procedure.

Interestingly, Evans’ catechol borane/Rh(I) system23 re-
turned 73% of the anti diol 17 in 72% reduction de
(Scheme 6). The stereochemistry was proven by derivati-
sation as the bis-acetal 18. The diastereoselectivity of re-
duction of a variety of 4,6-disubstituted 1,3-dioxan-5-
ones has been investigated both theoretically and experi-
mentally.24–26 We tentatively assign the anti selectivity to

an intermolecular hydride delivery via the corresponding
boron chelate.27 The syn products are the result of pseudo-
axial attack of hydride. It is likely that the increase in se-
lectivity in the case of Zn(BH4)2 is a result of chelation to
one or more of the dioxanone oxygen atoms, especially as
Zn(BH4)2 is well known to favour 5-ring over 6-ring che-
lates. Further work is clearly needed to clarify the exact
nature of reduction in these dioxanone systems.

Scheme 6 Reagents and conditions: (a) Catechol borane,
(Ph3P)3RhCl (cat.), THF, –10 ºC. (b) DMP, CSA (cat.), CH2Cl2.

Scheme 5 Reagents and conditions: (a) TIPSOTf, 2,6-lutidine,
CH2Cl2, –78 to 0 ºC, quant. (de = 73%). (b) Cy2BCl, Et3N, Et2O, –78
ºC to 0 ºC, then TBDPSO(CH2)2CHO, Et2O, –78 to –24 ºC. (c) LiBH4,
THF/Et2O, –78 ºC, quant. (d) NaHMDS, BnBr, TBAI (cat.), THF, 0
ºC to r.t., 15 35%, 16 33% (from 11 via 12). (e) Zn(BH4)2, Et2O, –78
ºC to r.t., 87% (from 11).
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In summary, the combination of diastereoselective aldol
reactions of our chiral dihydroxyacetone equivalent and
diastereoselective reductions offer a competitive route to
the open-chain polyol precursors of styryllactone deriva-
tives. The symmetry of the dioxanone system proved par-
ticularly useful in allowing a reversal of the order of aldol
reactions. By choice of reducing agent either 1,3-syn and
1,3-anti selectivity was attainable. We also discovered
that the Evans–Tishchenko reduction applied to diox-
anone systems gives the formal products of a 1,2-syn se-
lective aldol reaction and a 1,3-anti selective reduction,
proving to be an entry to usually unattainable reaction
products. To conclude, the development of an enantio-
and diastereoselective synthesis of the required 1,2-polyol
framework of gonioheptolide A (2) has opened the way to
a total synthesis which will be reported in due course.
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phosphate buffer (pH 7, 36 mL) and MeOH (36 mL) and 
cooled to 0 ºC. Aq H2O2 solution (30%, 18 mL) was added 
dropwise and the mixture stirred vigorously for a further 1 h. 
The mixture was poured into phosphate buffer (pH 7, 120 
mL) and extracted with CH2Cl2 (4 � 100 mL). The combined 
organic portions were washed with H2O (50 mL), dried 
(Na2SO4), filtered and concentrated in vacuo to give a 
colourless oil. Purification by chromatography on silica gel 
(gradient elution: 19:1 � 8:1 pentane:Et2O) gave the title 
compound 13 (4.94 g, de = 74%) heavily contaminated with 
aldehyde. An analytical sample (de = 74%) was afforded by 
further chromatography; [�]25

D +58.9 (c 1.0 in CHCl3); IR 
(thin film): 3543, 3071, 3050, 3032, 2942, 2891, 2866, 1739, 
1472, 1464, 1428, 1383, 1219, 1169, 1112, 1068, 1030 cm–

1; 1H NMR (400 MHz, CDCl3): � = 0.96–1.08 (m, 30 H, CH 
TIPS, CH3 TIPS and TBDPS), 1.33 (s, 3 H, CH3 acetal), 1.41 
(s, 3 H, CH3 acetal), 1.66–1.74 (m, 1 H, CHaHb), 1.75–1.82 
(m, 1 H, CHaHb), 3.15 (d, 1 H, J = 3.3 Hz, (CHOH), 3.72 (dd, 
1 H, J = 5.9, 1.0 Hz, H-4), 3.74–3.88 (m, 1 H, 
CH2OTBDPS), 4.06–4.12 (m, 1 H, CHOH), 4.46 (dd, 
J = 2.8, 1.0 Hz, 1 H, H-6), 5.28 (d, J = 2.8 Hz, 1 H, 
(CH(OTIPS)), 7.20–7.67 (m, 15 H, Ar-H); 13C NMR (100 
MHz, CDCl3): � = 12.5 (SiCH(CH3)2), 18.1, 18.2 
(SiCH(CH3)2), 19.4 (SiC(CH3)3), 24.0, 24.3 (CH3 acetal), 

27.1 (SiC(CH3)3), 34.6 (CH2), 61.6 (CH2OTBDPS), 68.6 
(CHOH), 74.4 (CH(OTIPS)), 76.1 (C-4); 80.0 (C-6), 101.5 
(acetal C), 127.7, 127.8, 127.9, 128.0, 129.9, 130.0, (Ar-C), 
133.7, 133.8 (Ar-C, ipso), 135.8 (Ar-C), 140.2 (Ar-C, ipso), 
209.5 (C=O); MS (CI): m/z (%)= 350(4), 349(16), 313(56), 
263(100), 235(62), 175(13); HRMS (EI): m/z calcd for 
C19H29O4Si [M+ – C22H31O2Si]: 349.1835. Found: 349.1835. 
Anal. Calcd for C40H60O6Si (705.08): C, 69.84; H, 8.85. 
Found: C, 69.29; H, 8.60.
To a stirred suspension of NaBH4 (2.70 g, 70 mmol, 2.0 
equiv) in anhyd Et2O (210 mL) under an Ar atmosphere, at 
r.t., was added a solution of ZnCl2 in Et2O (Aldrich, 1.0 M, 
35 mL, 35 mmol, 1.0 equiv) via syringe. The resulting white 
suspension was stirred for a further 2 d before allowing the 
precipitate to settle. The resulting clear supernatant solution 
of Zn(BH4)2 in Et2O (ca. 0.14 M) was cooled to –78 ºC.
To a stirred solution of the crude ketone 13 (4.21 g, ca 5.97 
mmol, 1.0 equiv) at –78 ºC, under an Ar atmosphere, was 
added the chilled supernatant solution of Zn(BH4)2 in Et2O 
(ca 240 mL, ca 34 mmol, 5.6 equiv), via double-ended 
needle over 45 min. The reaction mixture was warmed very 
slowly to r.t. The reaction mixture was quenched after 24 h 
with H2O until effervescence ceased (ca 5 mL) and stirred 
vigorously for 1 h. The resulting white suspension was 
filtered through Celite® and the filter-cake washed 
thoroughly with Et2O (400 mL). The combined filtrates were 
washed with sat. aq NaHCO3 solution and the aq portion 
back-extracted with Et2O (200 mL). The combined organic 
portions were dried (Na2SO4), filtered and concentrated in 
vacuo to give a cloudy colourless oil. Purification by 
chromatography on silica gel (gradient elution: 6:1 � 1:1 
pentane:Et2O gave the title compound 14 (3.67 g, 87%, 52% 
ds, 74% de for reduction). On smaller scales a reduction de 
of 85% could be achieved; IR (thin film): 3472, 3071, 3050, 
3031, 2943, 2892, 2866, 1471, 1463, 1428, 1380, 1224, 
1198, 1172, 1112, 1069, 1029 cm–1; 1H NMR (400 MHz, 
CDCl3): � = 0.95–1.10 (m, 30 H, CH TIPS, CH3 TIPS and 
TBDPS), 1.21 (s, 3 H, CH3 acetal), 1.39 (s, 3 H, CH3 acetal), 
1.70–1.81 (m, 2 H, CH2), 3.14 (d, 1 H, J = 2.5 Hz, CHOH), 
3.59 (ap t, 1 H, J = 5.5 Hz, H-4), 3.70 (dd, J = 4.7, 3.0 Hz, 1 
H, H-6), 3.78–3.90 (m, 2 H, CH2OTBDPS), 3.92–3.97 (m, 1 
H, CHOH), 4.09–4.13 (m, 1 H, H-5), 4.45 (d, 1 H, J = 3.6 
Hz, 5-OH), 5.16 (d, 1 H, J = 4.7 Hz, CH(OTIPS)), 7.24–7.46 
(m, 10 H, Ar-H), 7.63–7.67 (m, 5 H, Ar-H); 13C NMR (100 
MHz, CDCl3): � = 12.7 (SiCH(CH3)2), 18.2 (� 2) 
(SiCH(CH3)2, 19.4 (SiC(CH3)3), 24.1, 25.5 (CH3 acetal), 
27.2 (SiC(CH3)3), 34.5 (CH2), 63.2 (CH2OTBDPS), 69.7 (C-
5), 72.4 (CHOH), 73.8 (C-6), 77.7 (CH(OTIPS)), 78.6 (C-4), 
101.3 (acetal C), 127.1, 127.9 (� 2), 128.3 (� 2), 130.0 (Ar-
C), 133.2, 133.3 (Ar-C, ipso), 135.7, 135.8 (Ar-C)], 141.3 
(Ar-C, ipso); MS (CI): m/z (%) = 709(9) [MH+ + 1], 534(54), 
476(41), 458(29), 235(10), 175(100), 163(15); HRMS (EI): 
m/z calcd for C38H55O6Si2 [M

+ – C3H7]: 663.3537. Found: 
663.3534.

(29) Prepared from the hydroboration of freshly distilled 
cyclohexene with monochloroborane dimethyl sulfide 
complex (Aldrich). For a procedure see: Cowden, C. J.; 
Paterson, I. In Organic Reactions, Vol. 51; Paquette, L. A., 
Ed.; Wiley: New York, 1997, 1.
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