

SCIENCE

Bioorganic & Medicinal Chemistry Letters 13 (2003) 519–524

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Sordaricin Antifungal Agents

Claude A. Quesnelle,^{a,*} Patrice Gill,^a Marco Dodier,^a Denis St. Laurent,^b Michael Serrano-Wu,^b Anne Marinier,^a Alain Martel,^a Charles E. Mazzucco,^b Terry M. Stickle,^b John F. Barrett,^b Dolatrai M. Vyas^b and Balu N. Balasubramanian^b

^aBristol-Myers Squibb Pharmaceutical Research Institute, 100, boul. de l'Industrie, Candiac, Québec, Canada J5R 1J1 ^bBristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA

Received 12 September 2002; accepted 3 October 2002

Abstract—Compounds based on sordaricin were prepared via organometallic addition onto a fully protected sordaricin aldehyde. The fungal growth inhibition profiles for these compounds were established and the results are presented here. The synthesis of homologated sordaricin as well as ether and ester derivatives is presented, and structural rearrangement products upon oxidation. These compounds were evaluated as agents to inhibit fungal growth. © 2002 Elsevier Science Ltd. All rights reserved.

© 2002 Elsevier Science Etd. All fights festived.

The incidence of infections caused by opportunistic fungal pathogens has increased dramatically, especially among immunocompromised patient populations. As such, the search for effective antifungal agents with novel modes of action remains a high priority in antiinfective drug discovery. Protein synthesis has become an attractive target for antifungal chemotherapy as a result of discernible differences between fungal and mammalian translational pathways.

5

The natural product sordarin,¹ its aglycone sordaricin, and its semi-synthetic derivatives have been discovered to selectively inhibit fungal protein synthesis by interfering with the translational complex containing co-factor Elongation Factor 2 (EF-2).^{2,3} Several scientific reports⁴ disclose the involvement of EF-2 in the fungal pathway. Despite the extensive EF-2 sequence homology among all eukaryotic genomes, the sordarins appear to specifically impair the fungal protein synthesis machinery by blocking translocation through binding with high affinity to the EF-2/ribosome complex.⁵ Consequently, fueled by the novelty of this mode of action and the ready availability of sordarin via fermentation, the search for a potent and selective antifungal agent was undertaken.

Replacement of the sugar moiety with simpler aliphatic sidechains has been the primary focus of much research effort, and it was shown that addition of lipophilic side chains imparted products with excellent fungal growth inhibition properties.⁶ We now wish to report our effort on the synthesis and biological activity of sordaricin derivatives bearing alkyl chains linked directly to the sordaricin framework, and where the hydroxymethyl moiety has been homologated. Moreover, a structural rearrangement product from attempted oxidation of the homologated alcohol is also presented.

The required starting material was obtained from sordarin in four steps (Scheme 1). Once the aldehyde 3 was obtained, the next step involved organometallic addition providing the alcohols 4 and 5 (Scheme 2). For compound 4, the required organolithium reagents were conveniently prepared from the corresponding organobromides or iodides according to literature methods.⁷ Alternatively, deprotonation of the terminal acetylene afforded the alkynyl lithium reagent which led to 5.⁸ As

^{*}Corresponding author. Tel.: +1-450-444-6121; fax: +1-450-444-4166; e-mail: claude.quesnelle@bms.com

Scheme 1. Preparation of sordaricin aldehyde 3.

can be seen in Table 1, the yields for these reactions are generally modest and the desired products isolated cleanly.

Deprotection of the alcohols 4 and 5 was accomplished by hydrolysis of the acetal (HCl/MeOH) followed by hydrogenation of the benzyl ester $(Pd(OH)_2/H_2)$ in respectable yields (Table 1). Alcohols 6 and 8 were thus obtained and submitted for biological evaluation. In a parallel route, alcohols 4 and 5 were also subjected to oxidation conditions (Swern or Dess-Martin periodinane). The obtained fully protected ketones were then subjected to the afore mentioned deprotection conditions to provide the desired ketones ready for biological evaluation. In terms of yields, for the series leading to 7 the oxidation and deprotection sequence provided the compounds in good to excellent yields. However, for the acetylene analogues 9, the yields of pure material were poor. Notwithstanding, the products were isolated and submitted.

The starting material for the preparation of the homologated analogue of sordaricin was the aldehyde 10, prepared analogously to 3.⁹ The aldehyde was treated with the Tebbe reagent to provide the relatively unstable vinylic product 11 (Scheme 3). Hydroboration provided the desired homologated alcohol 12. Hydrolysis of the acetal afforded 13.

Alkylation was found to be possible only with the conditions shown in Scheme 4, that is using the alkylation agent as the solvent with silver oxide as the base. These, as opposed to typical NaH/RX conditions, prevented the undesired side product derived from lactonization. Esterification was found to be efficacious using the pyridinium iodide activating agent. After either functionalization, the ester was hydrolyzed with TBAF to provide the desired compounds ready for biological evaluation.

In an attempt to oxidize 12 to its corresponding aldehyde, an interesting rearrangement was observed. Treatment of 12 with the Dess-Martin periodinane did not provide the desired aldehyde but rather a novel and unexpected structurally rearranged compound (Scheme 5). Employing one equivalent of Dess-Martin reagent, the alcohol 14 was obtained as a single diastereomer while using excess reagent provided the ketone 15, both in excellent yields.¹⁰ As observed in the ¹H NMR spectra for these compounds, key structural changes were the disappearance of the signals for the olefinic hydrogen of the endocyclic double bond (found at 5.84 ppm as a doublet in 12) and the isopropyl moiety (found at 3.12 ppm (hept, 1H), 1.24 ppm (d, 3H), 1.12 ppm (d, 3H) in 12) and the appearance of two new singlets at 1.76 ppm and 1.75 ppm for 14, and at 1.75 and 1.68 ppm for 15. This reactivity of the double bond is precedented,¹¹ although the conditions for this transformation were more rigorous than those employed in this present example.

The reaction has the appearance of being an uncatalyzed intramolecular aldehyde ene reaction. It is believed that after the initial oxidation to the aldehyde **16**, the compound is perfectly juxtaposed for the ene

Scheme 2. (a) HCl/MeOH/rt; (b) Pd(OH)₂/H₂/EtOH: (c) DMSO/(COCl)₂/Et₃N/CH₂Cl₂/-78 °C or Dess-Martin periodinane/CH₂Cl₂/rt.

Compd	Structure	Product, yield (%)			Structure	Product, yield (%)		
		4	6	7		5	8	9
a	, 5 ²	59	92	50	5	97	71	24
b	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	61	81	46	to the second seco	83	34	14
c	A.25	80	32	55	A A A A A A A A A A A A A A A A A A A	86	31	13
d	~ ⁵⁵ () 14	90	50	41	she for	86	81	7
e	5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	64	71	39	see a	83	40	9
f	and the second s	82	65	31	See See	100	27	8
g	, o ^c	83	73	48				

Table 1. Yields for compounds prepared

reaction (Scheme 6). A rapid reaction ensued and the alcohol product 14 is thusly obtained as a single diastereomer. A type I^{12} concerted reaction pathway may be envisioned for this novel transformation process.

Scheme 3. Preparation of homosordaricin.

Scheme 4. Alkylation or acylation and deprotection.

With one equivalent of the oxidant only the alcohol 14, and not the ketone 15, is obtained and all the starting material is consumed. Consequently, it can be inferred that any subsequent oxidation of 14 to 15 is much slower than the initial formation of 14. However, with excess oxidant, the alcohol 14 is oxidized to the ketone 15.^{13,14}

Compounds prepared were subjected to biological evaluation and the minimum inhibitory concentration $(MIC_{90})^{15}$ results tabulated (Tables 2 and 3).

Scheme 5. Cyclization of homologated sordaricin.

Scheme 6. Proposed stereochemistry.

 Table 2. In vitro activity of alcoholic (6,8) and ketonic (7,9) derivatives

Compd	R	MIC ^a (μg/mL)	$C{C_{50}}^b \; (\mu g/mL)$	T.I.°		
C. albicans C. glabrata							
6a 7a	, , , , , , , , , , , , , , , , , , ,	16 >128	64 1	na ^d 2.5	<0.02		
6b	²⁵ ~~~~~	4	32	2.4	0.6		
7b		0.25	4	1.5	6		
6c	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	32	1.2	1.2		
7c		0.5	>128	2.5	5		
6d 7d	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>128 >128	>128 >128	na na	-		
6e	~ ⁵ ~	2	8	3.1	1.6		
7e		0.5	1	1.8	3.6		
6f	,-, ² ,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-	0.5	16	1.5	3		
7f		0.5	>128	1.8	3.6		
6g 7g	,	>128 16	>128	na na	-		
8a 9a	store (128 >128	128 >128	na 1.4	<0.01		
8b	and the second s	8	32	18.3	2.3		
9b		< 0.06	0.5	3.3	> 55		
8c	store of the second sec	1	8	15.8	15.8		
9c		<0.06	0.25	1.4	>23.3		
8d 9d	sure of the second s	0.25 >128	8 16	na >12	0.09		
8e	- see	1	16	14.2	14.2		
9e		<0.06	0.125	0.9	>15		
8f	and a state of the	0.25	4	10.7	42.8		
9f		<0.06	0.5	1.4	>23.3		

^aMIC value defined as the lowest drug concentration required to inhibit 90–100% visible growth relative to controls.

^bCC₅₀ value measured against Hep2 cells.

^cIn vitro therapeutic index (CC₅₀ cytotoxicity/MIC C. albicans).

^dActivation observed, IC₅₀ could not be determined.

As can be gleaned from Table 2, in the alkyl series, analogues **6b**,**c**,**e**,**f** were roughly equipotent versus *Candida albicans* to their corresponding ketones (**7b**,**c**,**e**,**f**). The outliers included **6a** which was more potent over the ketone **7a** and **6g** being less potent than the ketone. For *Candida glabrata*, there does not appear to be a clear preference for the alcohols over the ketones as the MIC's varied considerably and no clear SAR can be observed. Generally for all strains tested, there seems to be a preference of medium length alkyl over shorter or longer chains (**6**,**7b**, **6**,**7c** vs **6**,**7d**, **6**,**7a**). This compares with what was observed in the literature.⁶ Also, fully reduced cyclic substituents were more potent than the aromatic analogues (**6**,**7f** vs **6**,**7g**), perhaps suggesting a large hydrophobic pocket. Moreover, these compounds

were shown to be toxic, exhibiting low potency values and therefore poor therapeutic indices.

The alkyne series showed clearer SAR with the ketones 8 invariably being more potent than the alcohols 9. except for the tert-butyl analogue 8,9a which were inactive and alcohol 8d being more potent than the ketone 9d. Potencies for the ketones 9b,c,e,f versus C. albicans were excellent ($< 0.06 \ \mu g/mL$). A potential explanation could be that the restraining effect of the alkynyl moiety orients the appended groups more favorably into the postulated large hydrophobic pocket. Also, these derivatives were more potent versus C. glabrata over their corresponding alcohols. In addition, these acetylene analogues generally exhibited less cytotoxicity over the alkyl derivatives. More specifically, the alcohols had higher CC_{50} values over the ketones which resulted in roughly equal therapeutic indices.

All derivatives also showed negligible activity against other fungi (*Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus* and *Aspergillus flavus*).

Notwithstanding the excellent activity of some of these compounds, their CYP inhibition profiles were less than satisfactory. The least inhibitory compound was **7d**, unsurprisingly a very lypophilic long chain analogue and unfortunately one of the least active antifungals (CYP3A4 IC₅₀ = 19 μ M). Alcohol and ketone analogues displayed similar inhibitory profiles (e.g., CYP3A4 IC₅₀ **6c** = 9.3 μ M, **7c** = 4.1 μ M) except for acetylenic alcohol derivatives **8** which were potent CYP2D6 inhibitors over their corresponding ketones **9** (e.g., CYP2D6 IC₅₀ **8f** = <0.046 μ M, **9f** = 15 μ M).

In the homologated sordaricin series, the parent compound (17) was found to be as inactive as sordaricin. However, when alkylated to give 18, modest activity was obtained. This compares favorably well with nonhomologated analogues.¹⁶ This was, however, the sole alkylated compound prepared and therefore a thorough study into this class is still necessary. The remainder of the compounds prepared (19-70) were esters. The carboxylic acids 22, 62, 66 were not active. Benzoates as well as the heteroaromatic analogues for the most part displayed minimal activity. Functionality with polar moieties had a detrimental effect on potency. Only compounds bearing non-polar, lypophilic functionalities showed any promise. For example, the most potent analogues against C. albicans were 19, 21 and 39, further supporting the theory of a large hydrophobic pocket. These also proved to be the most potent against C. glabrata with the vast majority of the remaining compounds being inactive.

Interesting patterns appeared. For example, 4-ketopentanoate 23 was more potent than close analogues 22 and 24 bearing polar groups. Carbamates with free N– H's (27, 28, and 29) were inactive while 41 was the sole exception. Amines were also inactive (25, 31, 32, 57, and 61), except for 36. Furthermore, the sulfonamide 56 was also inactive.

Table 3.MIC data for compounds prepared

Cmp	d R	MIC ^a	Compd	R	MIC ^a	Compd	R	MIC ^a	Compd	l R	MIC ^a
17	Н	> 128/ > 128	3 31	NH NH	$na^{b}/>128$	45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4/>128	58	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8/128
18		2/64	32	NH O	> 128/ > 128	3 46	CN O	8/>128	59		>128/>128
19	o	< 0.06/8	33	o o	2/64	47	ск О	1/>128	60	s o	> 128/ > 128
20	o	0.5/16	34	o O D D D D	2/64	48	r,∼,⊂, F O	4/>128	61	MeN V O	> 128/ > 128
21	o	< 0.06/4	35	o SMe	0.5/>128	49	CI O	4/>128	62		н >128/>128
22	о о о	< 128/ > 128	3 36	∽ O	1/>128	50	ر المراجع المراجع من مراجع المراجع	> 128/ > 128	63	,∠↓ N	16/>128
23	°⊂ o	8/>128	37	o contraction of the second se	0.5/8	51	∼, o	2/>128	64	CI N O	4/>128
24	°⊂ o	> 128/ > 128	3 38	r o	0.125/4	52		128/>128	65	o Br N	4/>128
25	n company company company n company n company n company n company n company	> 128/ > 128	3 39	~~↓ o	< 0.06/8	53		128/>128	66		н > 128/ > 128
26	r,⊂ o o	0.5/32	40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	32/>128	54		2/>128	67	~~~~~ o	> 128/ > 128
27		64/>128	41	S N N O	4/>128	55	SMe O	2/>128	68	N O	4/>128
28		32/>128	42		> 128/> 128	3 56	SO ₂ NH	128/>128	69	N O	> 128/> 128
29	N H O	128/>128	43	o oto	16/128	57	N N O	> 128/ > 128	3 70		>128/>128
30	S S	8/>128	44	S N O C	8/>128						

^aMIC value defined as the lowest drug concentration required to inhibit 90–100% visible growth relative to controls. Data tabulated as *C. albicans/ C. glabrata.*

^bCompound was active, MIC unable to be determined.

Changing the *para*-halogens on benzoates (48–51) showed little effect on potency as little change (except for bromine 50) of potency was observed.

Another trend was that the most favorable ring size was a six-membered, unsubstituted fully reduced cycloalkane (39>38>37) while the benzoate 40 exhibited a marked decrease in potency.

The deprotected analogues of pentacyclic derivatives 14 and 15, when tested for fungal growth inhibition, were all inactive.

In summary, several compounds have been prepared that proved to be potent antifungal agents against *Candida* strains. Acetylenic ketones were the most potent, displayed modest therapeutic indices but, like all the derivatives tested, modest CYP inhibition profiles. Moreover, this study demonstrates the clear necessity of non-polar, medium sized functionality in this portion of the molecule. Potencies decrease as polar functionality is introduced as is the case with increasing size.

Acknowledgements

The authors would like to thank Dr. Thomas Tully and colleagues for supplying sordarin and Henry Wong for providing key synthetic intermediates. The authors would also like to thank Dr. Tony Shaw for his invaluable assistance with NMR structural elucidation of compounds 14 and 15.

References and Notes

1. Hauser, D.; Sigg, H. P. Helv. Chim. Acta 1971, 54, 1178.

2. (a) Dominguez, J. M.; Martin, J. J. Antimicrob. Agents Chemother. 1998, 42, 2274. (b) Capa, L.; Mendoza, A.; Lavandra, J. L.; Gomez de Las Heras, F.; Garcia-Bustos, J. F. Antimicrob. Agents Chemother. 1998, 42, 2279. (c) Justice, M. C.; Hsu, M. J.; Tse, B.; Ku, T.; Balkovec, J.; Schmatz, D.; Nielsen, J. J. Biol. Chem. 1998, 273, 3148.

3. (a) Odds, F. C. *Exp. Opin. Ther. Pat.* **2001**, *11*, 283. (b) Ziegelbauer, K.; Spaltmann, F. *Drugs Future* **2000**, *25*, 63. (c) Gargolla-Viola, D. *Curr. Opin. Anti-infective Invest. Drugs* **1999**, *1*, 297. (d) Herreros, E.; Almela, M. J.; Lozano, S.; Gomez de las Heras, F.; Gargallo-Viola, D. *Antimicrob. Agents Chemother.* **2001**, *45*, 3132 and references cited therein. 4. Rambelli, F.; Brigotti, M.; Zamboni, M.; Denaro, M.; Montanaro, L.; Sperti, S. *Biochem. J.* **1989**, *259*, 307.

5. Dominguez, J. M.; Gomez-Lorenzo, M. G.; Martin, J. J. J. Biol. Chem. 1999, 274, 22423.

6. Balkovec, J. M.; Tse, B. Sordarin Derivatives, WO 9815178, 1998.

7. Gilman, H.; Beel, J. A.; Brannen, C. G.; Bullock, M. W.; Dunn, G. E.; Miller, L. S. *J. Am. Chem. Soc.* **1949**, *71*, 1499. Bailey, W. F.; Punzalan, E. R. *J. Org. Chem.* **1990**, *55*, 5404.

8. Freshly prepared alkynyl lithium reagents were prepared by treatment of the appropriate alkyne with *s*-BuLi in THF or Et_2O at -78 °C and were used directly.

9. Serrano-Wu, M. H.; St Laurent, D. R.; Mazzucco, C. E.; Stickle, T. M.; Barrett, J. F.; Vyas, D. M.; Balasubramanian, B. N. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 943.

10. Experimental conditions: For alcohol 14: To a solution of 12 (920 mg, 1.88 mmol) in CH₂Cl₂ (40 mL) was added Dess-Martin periodinane (797 mg, 1.88 mmol) and the contents stirred at room temperature overnight. NaHCO₃ (10 mL, aq satd) and Na₂S₂O₃ (10 mL, 1 M) were added and stirred vigorously for 30 min. The reaction was diluted with CH₂Cl₂, the organic phase separated and dried (MgSO₄), filtered, concentrated and the residue purified by flash chromatography (4:1 hexane/EtOAc) to afford the product (770 mg, 84%) as a colourless oil: ¹H NMR (C₆D₆, 400 MHz) δ 4.91 (s, 1H), 4.33–4.17 (m, 3H), 3.71 (m, 1H), 3.66 (ddd, 1H, J=12.1, 12.1, 5.8 Hz), 3.46 (m, 1H), 3.40-3.29 (m, 2H), 2.79 (dd, 1H, J = 2.5, 1.5 Hz), 2.13 (dd, 1H, J = 14.2, 4.3 Hz), 2.07–1.88 (m, 4H), 1.76 (s, 3H), 1.75 (s, 3H), 1.53-1.40 (m, 2H), 1.33-1.22 (m, 3H), 1.13-1.03 (m, 2H), 0.98 (d, 3H, J=6.8 Hz), -0.15 (s, 9H). For ketone 15: To a solution of 12 (266 mg, 0.542 mmol) in CH₂Cl₂ (10 mL) was added Dess-Martin periodinane (518 mg, 1.221 mmol) and the contents stirred at room temperature for 2 h. NaHCO₃ (4 mL, aq satd) and Na₂S₂O₃ (4 mL, 1M) were added and stirred vigorously for 30 min. The reaction was diluted with CH2Cl2, the organic phase separated and dried (MgSO₄), filtered, concentrated and the residue purified by flash chromatography (4:1 hexane/EtOAc) to afford the product (242 mg, 92%) as a white foam: ¹H NMR (C_6D_6 , 400 MHz) δ 5.00 (s, 1H), 4.24 (m, 1H), 4.11 (m, 1H), 3.66 (m, 1H), 3.44 (m, 1H), 3.38–3.27 (m, 3H), 3.15 (d, 1H, J=18.4 Hz), 3.09 (s, 1H), 2.06-1.61 (m, 11H), 1.75 (s, 3H), 1.68 (s, 3H), 1.46–1.21 (m, 7H), 0.91 (d, 3H, J=7.1 Hz), -0.14 (s, 9H).

11. Arigoni, D.; Vasella, A.; Sharpless, K. B.; Jensen, H. P. J. Amer. Chem. Soc. 1973, 95, 7917.

12. Snider, B. B. In *Comprehensive Organic Synthesis*; Trost, B. M. Ed., Pergamon Press: New York, 1991; Vol. 2, p 527.

13. However, upon oxidation of 12 under Swern conditions, the ketone 15 is the only product isolated. Under the proposed Swern oxidation mechanism, the initially formed activated alcohol becomes oxidized upon addition of the base and therefore 14 is formed, even at -78° C. Interestingly, the rate of the following step appears much quicker than with the Dess-Martin reagent as the alcohol 14 is transformed to ketone 15 even at this low temperature before the reagent is destroyed. This dichotomy in the rates for the second step may be due to the greater steric encumbrance of the Dess-Martin periodinane over that of the activated DMSO for the Swern oxidation.

14. Alternatively, the reaction may be envisioned to proceed via initial acetate (from the Dess–Martin reagent) abstraction of the seemingly non-acidic allylic proton.

15. MICs were determined according to NCCLS standards against fungal strains obtained from the American Type Culture Collection.

16. Tse, B.; Balkovec, J. M.; Blazey, C. M.; Hsu, M. J.; Nielsen, J.; Schmatz, D. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2269.