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Abstract: We report herein, an efficient synthetic method for the
preparation of a 5-alkoxy-(3R)-hydroxy-2,3-dihydrospiro[indene-
1,4¢-piperidines] scaffold using a regioselective intermolecular
reaction and a stereoselective reduction as key steps. Compound 2,
based on this scaffold, showed moderate in vitro binding affinity for
purified human renin. 
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Structural motifs that are commonly found in several se-
ries of inhibitors or ligands against different drug targets,
are known as privileged structures.1 2,3-Dihydrospiro[in-
dene-1,4¢-piperidine] (1) is one of these privileged struc-
tures for the broad class of seven-transmembrane G-
protein coupled receptor ligands (Figure 1).2 In recent
years, small molecule renin inhibitors having novel 4-phe-
nylpiperidine moieties as the central scaffold have been
reported.3 Based on this information, we designed and
prepared several 2,3-dihydrospiro[indene-1,4¢-piperi-
dine]-based compounds as replacements for the piperi-
dine. As a result, the 3,5-disubstituted derivative of 1,
compound 2, displayed moderate binding affinity
(IC50 = 33 nM) to human renin.4 This result indicated that
derivatives having suitable substituents at the 3- and 5-
positions of 1 could become new molecule leads for renin
inhibitors.

Figure 1

In this paper, we report an efficient synthetic method for
the preparation of 3,5-disubstituted (R)-3 derivatives us-
ing easily available indanones as starting materials. Re-
garding the synthesis of the central spiro-piperidine unit,

a few synthetic approaches have been reported.5 These
routes utilize Friedel–Crafts acylation toward (4-phe-
nylpiperidin-4-yl)acetic acid analogues, and intermolecu-
lar cyclizaion of indene with dialkyl halides. However,
some problems remain, such as the generation of regioiso-
mers and the multi-step nature of the reactions. The key
features of our strategy are regioselective construction of
a spiro-piperidine ring at the 1-position of silyl enol ether
4, and stereoselective reduction at the 3-position of ketone
5 (Scheme 1). We planned to utilize 4 and N-Boc dichlo-
ride 6 for the preparation of 5, and a Corey–Bakshi–
Shibata (CBS) reduction6 for the preparation of (R)-3.

Scheme 1

The preparation of 5 is described in Scheme 2. Commer-
cially available 6-hydroxy-1-indanone (7) was alkylated
with 1-[(3-bromopropoxy)methyl]-2-methoxybenzene
(8) in the presence of potassium carbonate and treated
with a catalytic amount of potassium iodide to afford 6-
alkoxy-1-indanone 9 in 90% yield. The reaction of 9 with
tert-butyldimethylsilyl chloride (TBSCl) and 1,8-diazabi-
cyclo[5.4.0]undec-7-ene (DBU) gave 4 in 98% yield. The
first key reaction, regioselective construction of the spiro-
piperidine ring, was achieved by the following procedure.
Deprotonation of 4 with lithium hexamethyldisilazide
(LHMDS) at –78 °C and the subsequent reaction of the
lithium salt with 6 at 0 °C, afforded spiro-piperidine 10 in
65% yield. In this reaction, no other regioisomers were
observed. Other bases, such as potassium hexamethyldi-
silazide (KHMDS) and lithium diisopropylamide (LDA),
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resulted in poor yields. Spiro-piperidine 10 was easily
converted into 5 by treatment with tetrabutylammonium
fluoride (TBAF) in 85% yield. Alternatively, conversion
of 10 into 5 was accomplished by adding aqueous hydro-
gen chloride to the reaction mixture.

Scheme 2

Next, we focused our efforts on the second key reaction,
the CBS reduction of 5. Asymmetric reduction to afford
alcohol (S)-3 using (R)-2-methyl-CBS-oxazaborolidine as
a catalyst, was investigated under various conditions
(temperature, solvent, and amount of catalyst and reduc-
ing agent), and the results are summarized in Table 1. Ini-
tially, we obtained (S)-3 with 70% ee7 in 86% yield (entry
1). Using 0.1 equivalent of catalyst led to improved results
(89% ee, entry 2), but lowering the reaction temperature
(–30 °C) decreased the enantioselectivity (83% ee, entry
3). To our delight, the highest ee was achieved when the
reduction was carried out at 20 °C (94% ee, entry 4). We
assumed that the coordination of the catalyst–BH3 com-
plex with 5 would be the determining step for the enantio-
selectivity. Because the coordination would be slower at
low temperature, the non-catalyzed reduction of 5 with
BH3–THF would lead to a drop in the ee value. Other
asymmetric reductions using (+)-B-chlorodiiso-
pinocampheylborane8 did not proceed.

Under conditions similar to those given in entry 4, ketone
5 was reduced with (S)-2-methyl-CBS-oxazaborolidine to
afford (R)-3 with 98% ee in 90% yield (Scheme 3).
Deprotonation of 3 with KHMDS, followed by alkylation
of the resulting alkoxide with 4-(bromomethyl)-1-meth-
oxy-2-(3-methoxypropoxy)benzene (11), afforded benzyl
ether 12 in 61% yield. In the final step, the removal of the
Boc group with trimethylsilyl iodide (TMSI) gave the de-
sired compound 2 in 69% yield. This synthetic strategy
was also proven to be effective in the preparation of other
5-substituted spiro[(2-indanone)-1,4¢-piperidines] (14a

and 14b) that possess electron-withdrawing or electron-
donating substituents (Scheme 4). We believe that this
synthetic method will also be applicable to the preparation
of 6-substituted 3-hydroxy-2,3-dihydrospiro[indene-1,4¢-
piperidines] by using the corresponding 5-substituted 1-
indanones as starting materials.

Scheme 3
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Table 1 CBS Reduction of 5 Catalyzed by (R)-2-Methyl-CBS-
oxazaborolidine with BH3–THF

Entry BH3 
(equiv)

Catalyst 
(equiv)

Temp 
(°C)

Yield 
(%)

ee 
(%) of (S)-3

1 0.6 0.05 –10 86 70

2 0.6 0.1 –10 92 89

3 0.6 0.1 –30 88 83

4 0.6 0.1 20 86 94
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In conclusion, we have achieved the development of an
efficient synthetic method for the preparation of (R)-3.9 In
this method, its regio- and stereoselectivity were almost
completely controlled and the total yield was satisfactory,
whereas the yield of the spiro annulation reaction (4 to 9)
was moderate. With a practical synthetic route to (R)-3 in
hand, further chemical modifications aimed at exploring
novel renin inhibitors using (R)-3 as a key intermediate
are under way. The results of this work will be published
elsewhere. 
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