An NBD fluorophore-based sensitive and selective fluorescent probe for zinc ion[†]

Wei Jiang,^a Qingquan Fu,^a Hongyou Fan^b and Wei Wang^{*a}

Received (in Austin, TX, USA) 13th August 2007, Accepted 24th October 2007 First published as an Advance Article on the web 9th November 2007 DOI: 10.1039/b712377a

A novel NBD-derived fluorescent probe for Zn^{2+} is described; the probe features ready availability, good water solubility, high sensitivity and selectivity, and ability to quantify the concentration of Zn^{2+} .

Zinc ion (Zn^{2+}) , the second most abundant transition metal in the human body, plays myriad roles in numerous cellular functions such as the regulation of gene expression, apoptosis, co-factors in metalloenzyme catalysis, and neurotransmission in biological systems.¹ Deregulation of Zn²⁺ is implicated in several diseases including Alzheimer's disease,² prostate cancer,³ and diabetes.⁴ Accordingly, the development of Zn²⁺-specific molecular probes has been of considerable interest in the areas of chemical and biological sciences.

An ideal Zn²⁺ chemical probe with potential for biological applications should possess: 1) good water solubility, 2) the capability to quantitatively determine Zn^{2+} concentration, 3) long excitation wavelength to avoid cell damage, 4) high stability, 5) high selectivity and sensitivity toward Zn²⁺, and 6) easy preparation. The development of fluorescent chemosensors for probing Zn²⁺ has been an active topic as a result of operational simplicity and high sensitivity. However, the search for readily accessible fluorescent Zn2+ probes with good water solubility and high specificity is still a challenging task. It is a particular challenge to develop a chemosensor which makes it possible to determine the concentration of Zn²⁺ and to discriminate Zn²⁺ from Cd²⁺ owing to their closely related properties. Fluorescent probes for sensing Zn²⁺, based on various fluorophores such as quinoline,⁵ bipyridyl,⁶ dansyl,7 ferrocene,8 fluorescein,9 anthracene,10 benzofuran and benzoxazole,¹¹ naphthalimide¹² and cyanine¹³ have been reported. The bipyridyl,⁶ dansyl,⁷ ferrocene,⁸ anthracene¹⁰ and naphthalimide¹² based probes have poor water solubility. Generally a mixture of organic solvent and water is used, thus limiting their biological applications. The widely used quinoline⁵ and fluorescein⁹ derived chemosensors provide good solubility; however, their selectivity for Zn²⁺ and Cd²⁺ is not clear. Moreover, the syntheses are not trivial. However, to the best of our knowledge, a 7-nitrobenz-2-oxa-1,3-diazole (NBD) derived fluorescent Zn²⁺ chemical probe has not been described, despite the fact that it has been widely used in molecular imaging in biological systems.¹⁴ Moreover, some of these reported fluorescent probes suffer from

problems such as poor water solubility, inadequate selectivity, insufficient sensitivity and the lack of ability to quantitatively measure Zn^{2+} . In this communication, we wish to report a newly designed NBD based fluorescent probe for Zn2+ based on the photoinduced electron transfer (PET) mechanism. The probe displays high selectivity and sensitivity toward Zn²⁺ ion and good water solubility, demonstrating its potential for biological imaging. More importantly, the chemosensor allows easy quantification of Zn^{2+} concentration.

The PET mechanism has been widely exploited for molecular sensing.¹⁵ In the design of PET fluorescent sensors for Zn^{2+} , the critical issue is that Zn^{2+} binding to the sensor should generate a detectable signal so that the binding event can be monitored conveniently. We envisioned that chelation of Zn^{2+} with compounds 1 or 2 would cause the fluorescence intensity to increase as a result of blocking PET of the nitrogen atoms. Accordingly, the newly designed NBD fluorescent probes for Zn²⁺ are composed of two essential components: an NBD moiety as a reporter and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or N,N-bis(pyridin-2-ylmethyl)amine (BPA) as chelators for Zn^{2+} (Fig. 1). TPEN and BPA are the chelators of choice since they display high specificity for binding to Zn²⁺ over other metal cations, and favorable kinetic and thermodynamic properties which result in quick formation of a stable Zn²⁺ complex.^{9c-f,13} Furthermore, they are readily incorporated into a fluorophore. The two moieties are directly tethered together through a robust C-N bond without a linker (Fig. 1).

Sensors 1 and 2 were synthesized in a straightforward manner (see ESI[†]). The investigation of the fluorescence properties of probes 1 and 2 reveals that free 1 exhibits very weak fluorescence (Fig. 2), while 2 displays a strong signal (Fig. S1 in ESI[†]). Upon addition of Zn^{2+} , the fluorescence intensity of probe 1 is enhanced significantly in a concentration dependent manner (Fig. 2). Moreover, when ≥ 1.0 equiv. of Zn^{2+} is added, the maximum

strongly fluorescent

Fig. 1 Design of NBD-derived fluorescent probes for Zn^{2+} .

^aDepartment of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA. E-mail: wwang@unm.edu; Fax: (+1) 505 277 2609; Tel: (+1) 505 277 0756 ^bCeramic Processing and Inorganic Materials Department, 01815, Sandia National Laboratories, Albuquerque, NM 87185, USA * Electronic supplementary information (ESI) available: Experimental and NMR data. See DOI: 10.1039/b712377a

Fig. 2 Emission spectra ($\lambda_{ex} = 470$ nm) of probe 1 (10⁻⁵ M) after addition of a range of amounts of Zn²⁺ (0–1.4 × 10⁻⁵ M) at room temperature in PBS buffer (pH 7.3).

fluorescence intensity is reached. The intensity is increased by more than 25-fold. This indicates the probe is highly sensitive to Zn^{2+} with a K_d of 4.6 μ M (see ESI†). Furthermore, as expected, the sensor 1 forms a 1 : 1 complex with Zn^{2+} (see ESI†).

More significantly, a linear relationship between the fluorescence intensity of probe 1 and the concentration of Zn^{2+} is observed (Fig. 3). Therefore the sensor could be used for the quantitative determination of the concentration of Zn^{2+} . In contrast, no fluorescence alternation for sensor 2 is observed (Fig. S1 in ESI⁺). This indicates that the "N¹" in probe 1 is critical in the PET (Fig. 1).

The above studies prompt us to select chemical probe 1 for further evaluation aimed at determining its selectivity. The fluorescence titration of 1 with various metal ions exhibits high selectivity to Zn^{2+} (Fig. 4). Metal ions which possess a broad spectrum of biological activities and functions in living cells, such as Na⁺, K⁺, Mg²⁺, Ca²⁺, Mn²⁺, Fe²⁺, and Fe³⁺, do not give rise to any responses under the same conditions. Most heavy transition metal ions, including Cd²⁺, Ni²⁺, and Co²⁺, also show no interference. Hg²⁺ induces very limited fluorescence enhancement, while Cu²⁺ quenches fluorescence.

In conclusion, a novel NBD-derived water-soluble fluorescent chemical probe has been designed and synthesized, and it displays high selectivity and sensitivity for Zn^{2+} in a neutral buffer aqueous solution. In the presence of Zn^{2+} , significant fluorescence

Fig. 3 Plot of the concentration of Zn^{2+} vs. $\Delta I/I_0$, where $\Delta I = I - I_0$, I: the fluorescence intensity of probe 1 (10^{-5} M) with addition of Zn^{2+} and I_0 : the fluorescence intensity of probe 1 without Zn^{2+} at λ_{em} : 550 nm.

Fig. 4 The selectivity of probe **1** toward Zn^{2+} and other metal ions. In these experiments, the fluorescence measurement was taken at $\lambda_{ex} = 470$ nm from 10^{-5} M of probe **1** in a PBS buffer (pH 7.3) at room temperature and in the absence and presence of 1.0 equiv. of a metal ion. The fluorescence intensity at $\lambda_{em} = 550$ nm is used for plotting *versus* an analyte.

enhancement is achieved. Since the concentration of Zn^{2+} in a biological system, for example, in synaptic vesicles, is reported to be in the micro- to millimolar range, ¹⁶ the probe 1, which displays a sensitivity in the micro-range, can be used for the imaging of Zn^{2+} . Moreover, the magnitude of the fluorescence intensity increase corresponds nearly linearly to the concentration of Zn^{2+} , indicating that the sensor could be used for the quantitative measurement of Zn^{2+} concentrations.

Financial support for this work provided by the Department of Chemistry & Chemical Biology and the Research Allocation Committee, the University of New Mexico, NIH-INBRE (P20 RR016480), and the Sandia University Research Program (SURP) is gratefully acknowledged.

Notes and references

- (a) B. L. Vallee and K. H. Falchuk, *Physiol. Rev.*, 1993, **73**, 79; (b)
 J. R. F. de Silva and R. J. P. Williams, in *The Biological Chemistry of Elements: The Inorganic Chemistry of Life*, Oxford University Press, New York, 2001; (c) R. J. P. Williams and J. J. R. F. de Silva, *Coord. Chem. Rev.*, 2000, **200–202**, 247.
- 2 A. I. Bush, Trends Neurosci., 2003, 26, 207.
- 3 M. B. Sorensen, M. Stoltenberg, S. Juhl, G. Danscher and E. Ernst, *Prostate*, 1997, **31**, 125.
- 4 A. B. Chausmer, J. Am. Coll. Nutr., 1998, 17, 109.
- 5 (a) E. Kimura and S. Aoki, *BioMetals*, 2001, 14, 191; (b) C. J. Fahrni and T. V. O'Halloran, *J. Am. Chem. Soc.*, 1999, 121, 11448; (c) M. S. Nasir, C. J. Fahrni, D. A. Suhy, K. J. Kolodsick, C. P. Singer and T. V. O'Halloran, *JBIC*, *J. Biol. Inorg. Chem.*, 1999, 4, 775; (d) M. D. Shults, D. A. Pearce and B. Imperiali, *J. Am. Chem. Soc.*, 2003, 125, 10591; (e) M. Royzen, A. Durandin, V. G. Young, Jr., N. E. Geacintov and J. W. Canary, *J. Am. Chem. Soc.*, 2006, 128, 3854; (f) Y. Liu, N. Zhang, Y. Chen and L.-H. Wang, *Org. Lett.*, 2007, 9, 315.
- 6 (a) A. Ajayaghosh, P. Carol and S. Sreejith, J. Am. Chem. Soc., 2005, 127, 14962; (b) X. Peng, Y. Xu, S. Sun, Y. Wiu and J. Fan, Org. Biomol. Chem., 2007, 5, 226.
- 7 (a) T. Koike, T. Watanabe, S. Aoki, E. Kimura and M. Shiro, J. Am. Chem. Soc., 1996, 118, 12696; (b) R. B. Thompson, B. P. Maliwal, V. L. Feliccia, C. A. Fierke and K. McCall, Anal. Chem., 1998, 70, 4717; (c) L. Prodi, F. Bolletta, M. Montalti and N. Zaccheroni, Eur. J. Inorg. Chem., 1999, 455.
- 8 F. Zapata, A. Caballero, A. Espinosa, A. Tarraga and P. Molina, Org. Lett., 2007, 9, 2385.

- 9 (a) H. A. Godwin and J. M. Berg, J. Am. Chem. Soc., 1996, 118, 6514; (b) D. Elbaum, S. K. Nair, M. W. Patchan, R. B. Thompson and D. W. Christianson, J. Am. Chem. Soc., 1996, 118, 8381; (c) S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien and S. J. Lippard, J. Am. Chem. Soc., 2001, 123, 7831; (d) T. Hirano, K. Kikuchi, Y. Urano and T. Nagano, J. Am. Chem. Soc., 2002, 124, 6555; (e) S. C. Burdette, C. J. Frederickson, W. Bu and S. J. Lippard, J. Am. Chem. Soc., 2003, 125, 1778; (f) C. C. Woodroofe and S. J. Lippard, J. Am. Chem. Soc., 2003, 125, 11458.
- 10 (a) E. U. Akkaya, M. E. Huston and A. W. Czarnik, J. Am. Chem. Soc., 1990, **112**, 3590; (b) G. Hennrich, H. Sonnenschein and U. Resch-Genger, J. Am. Chem. Soc., 1999, **121**, 5073.
- 11 (a) S. Maruyama, K. Kikuchi, T. Hirano, Y. Urano and T. Nagano, J. Am. Chem. Soc., 2002, **124**, 10650; (b) M. M. Henary and C. J. Fahrni, J. Phys. Chem. A, 2002, **106**, 5210; (c) A. Ohshima, A. Mototake and T. Arai, *Tetrahedron Lett.*, 2004, **45**, 9377; (d)

M. Taki, J. L. Wolford and T. V. O'Halloran, J. Am. Chem. Soc., 2004, 126, 712.

- 12 Z. Xu, X. Qian, J. Cui and R. Zhang, Tetrahedron, 2006, 62, 10117.
- 13 K. Kiyose, H. Kojima, Y. Urano and T. Nagano, J. Am. Chem. Soc., 2006, **128**, 6548.
- 14 Handbook of Fluorescent Probes and Research Products, ed. R. P. Haugland, Molecular Probes, Inc., Eugene, OR, 2002.
- 15 (a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Uhuxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, *Chem. Rev.*, 1997, 97, 1515; (b) F. W. Scheller, F. Schubert and J. Fedrowitz, *Frontiers in Biosensorics I. Fundamental Aspects*, Birkhauser Verlag, Berlin, 1997; (c) F. W. Scheller, F. Schubert and J. Fedrowitz, *Frontiers in Biosensorics II. Practical Applications*, Birkhauser Verlag, Berlin, 1997; (d) W. Wang, S. Gao and B. Wang, *Curr. Org. Chem.*, 2002, 6, 1285.
- 16 Y. Li, C. J. Hough, C. J. Frederickson and J. M. Sarvey, J. Neurosci., 2001, 21, 8015.

Save valuable time searching for that elusive piece of vital chemical information.

Let us do it for you at the Library and Information Centre of the RSC.

We are your chemical information support, providing:

- Chemical enquiry helpdesk
- Remote access chemical information resources
- Speedy response
- Expert chemical information specialist staff

Tap into the foremost source of chemical knowledge in Europe and send your enquiries to

www.rsc.org/library

library@rsc.org

12120515

RSCPublishing