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Abstract—Chiral ansa-ethylene-bis(indenyl)-metal complexes, EBI–MX2, are useful pre-catalysts for a wide variety of reactions,
including hydrogenations, hydrosilylations, and polymerization reactions. In order to immobilize these complexes onto hetero-
geneous supports, a new methodology was developed to introduce functional anchors to the ethylene-bis(indenyl) ligand, EBI. This
was accomplished by selective alkylation of indene to form toluene-4-sulfonic acid 2-(3H-inden-1-yl)-ethyl ester, which was then
used to alkylate 6-bromoindene. The selective introduction of an aryl bromide then undergoes coupling reactions with aryl borates
via the Suzuki coupling to efficiently introduce an alkenyl or alcohol, functional anchor in a simple four step synthesis.
� 2005 Published by Elsevier Ltd.
Chiral ansa-ethylene-bis(tetrahydroindenyl)–metal com-
plexes (EBTHI–MX2), first introduced by Brintzinger
and co-workers,1 are highly active catalysts for enantio-
selective reactions, including reductions of olefins, ke-
tones, and imines, as well as various polymerization
reactions.2 Since these organometallic complexes are
homogeneous, they are less attractive for industrial use
than heterogeneous catalysts. Thus, the focus of this
work is to develop a strategy for immobilizing
EBTHI–MX2 catalysts onto heterogeneous supports.

We recently reported the preparation of an EBTHI
ligand containing a carbon tether from the cyclohexane
backbone3 and now expand this concept to the more sta-
ble ethylene-bis(indenyl) ligand, EBI. The synthetic
pathway presented herein describes the first successful
approach for introducing functional anchors into the
EBI ligand and offers a methodology for incorporating
a diverse range of functional anchors.
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As shown in Scheme 1, our initial approach was the
coupling of 5-bromo-indanone, 1, with 4-(hydroxy-
methyl)phenylboronic acid, 2, to form 5-(4 0-
hydroxymethyl-phenyl)-indan-1-one, 3, in 98% yield,
using heterogeneous Pd/C as the catalyst and a isopro-
pyl–water solvent mixture.4 Reduction of indanone, 3,
to the indenyl derivative, 4, was accomplished using
standard reduction chemistry5. The terminal alcohol
was then protected with either the TIPS, (triisopropylsi-
lane) 5, or MOM, (methoxymethyl ether) 6 protecting
group.6 Reversing the coupling and reduction sequences
had little impact on the reaction yields as shown for the
preparation of 6-(4 0-vinylphenyl)-1H-indene and 6-[4 0-
(hydroxymethyl)phenyl]-1H-indene, 9 and 4, respec-
tively. However, indanone reduction of 1 to form
bromoindene, yielded not only the desired 6-bromoind-
ene, 7, but also small amounts of its 5-isomers, 8.7 Inter-
estingly, none of the indene derivatives, 4, 5, 6, or 9 were
successfully alkylated upon addition to toluene-4-sul-
fonic acid 2-(3H-inden-1 0-yl)-ethyl ester, 11, 3-(2 0-
bromoethyl)-1H-indene, 12, or 3-(2 0-chloroethyl)-1H-
indene, 13, even after numerous modifications of the
alkylation procedure.8 However, alkylation of 7 with
either, 11, 12, or 13 did afford 6-bromo-3-[2 0-(3H-in-
den-100-yl)-ethyl]-1H-indene, 14, in moderate yields
(59%), with 11 offering the best results and easiest sepa-
ration.9 In addition, compared to the indenyllithium,
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Scheme 1. Synthetic pathway of functionalized ethylene-bis(indenyl) ligands.
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lithiated 7 was found to be extremely sensitive to mois-
ture contamination.

Next, coupling 14 with different aryl borates, 2 and 10,
was found to be highly dependent on the reaction condi-
tions and the catalyst. Poor solubility of 14 in an aque-
ous solvent system limited the applicability of the
heterogeneous Pd/C catalyst and did not afford the de-
sired coupling product. Use of palladium acetate, the
ligandless Suzuki coupling catalyst, was also unsuccess-
ful.10 However, the tetrakis(triphenylphosphine)palla-
dium [Pd(PPh3)4] catalyst afforded favorable yields
(40–70%) for the preparation of the 1-[2 0-(3H-inden-
100-yl)ethyl]-5-(4000-vinylphenyl)-3H-indene (15) and 1-
[2 0-(3H-inden-100-yl)ethyl]-5-[4000-(hydroxymethyl) phe-
nyl]-3H-indene (16), EBI-derivatives.11 While a THF/
MeOH solvent mixture led to a successful coupling,
when the solvent was replaced with toluene, a common
coupling solvent, the reaction did not afford the desired
product. Both EBI-derivatives, 15 and 16, represent
different functional anchors suitable for immobilizing
organic molecules onto heterogeneous supports.
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Scheme 2. Selective mono-alkylation of indene.
The investigation of a selectively mono-alkylated indene
intermediate was a critical prerequisite for our synthetic
efforts toward introducing a functional anchor to the
EBI ligand. An overview of the alkylation reactions
are shown in Scheme 2.12 Indene, 17, was first lithiated
using published procedures13, followed by addition to
1,2-di-nucleophilic-ethane, (ethylene glycol di-tosylate,
19, 1,2-dibromoethane, 20, or 1-chloro-2-bromoethane,
21). Small variations in the reaction conditions lead to
significant variations in product distributions. Regard-
less of the starting material, in addition to the desired
mono-alkylated product, observed by-products included
the spiro-product, 22, as well as double alkylation
product, EBI, 23.

Alkylation results were most favorable when the inden-
yllithium, 18, was slowly added to the nucleophile.
Reversing the addition sequence resulted in significantly
lower yields of the mono-alkylated products and higher
yields of undesired side products 22 and 23. Addition of
18 to 19 afforded two isolated products: 11, (45%) and
22 (30%). This sequence of addition eliminated the for-
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mation of 23 as well as the less stable isomer, 24 which is
believed to rapidly convert into the spiro-alkylation
product, 22.

Addition of indenyllithium, 18, to either 20 or 21 affor-
ded predominately two mono-alkylation isomers, 12 and
13 (70/80%) and 25 and 26 (30/20%) and less than 1% of
23. Mono-alkylation isomers were easily identified by
1H NMR. Although 13 and 26 were readily separated
using flash chromatography, 12 and 25 were unable to
be separated. At this time, the mechanism that results
in the formation of isomers remains unclear, however,
when a catalytic (Cp2ZrCl2 as the catalyst) pathway
was employed a single isomer, 26, was observed
(20%).14 When greater than 10 Mequiv of the alkylating
agent was used, 23 was no longer observed, and decreas-
ing the addition rate minimized the formation of 22.
Lastly, 12 and 13, were found to be much less stable
then 11, even when stored at low temperature.

Yields and properties of all obtained compounds are
presented in Table 1.

In conclusion, the four-step synthetic methodology de-
scribed above offers a favorable and convenient strategy
for introducing functional anchors into the EBI ligand.
The use of Suzuki coupling further expands the scope
of this pathway, due to the broad reactivity of aryl bro-
mides with alkenylborates. Ligand development repre-
sents the first step in the engineering of heterogeneous
catalysts. The next step is the introduction of an active
metal species (Ti or Zr) to the functionalized EBI ligand,
followed by immobilization of the active catalytic
complex onto a heterogeneous support. Using terminal
alkenes, immobilization can be accomplished by hydro-
silylation reactions with silica or silica-containing mate-
rials having surface Si–H groups. Furthermore,
hydroxyl-terminated complexes can be anchored using
an esterification reaction procedure. In both cases, it is
necessary to pre-treat the various heterogeneous
surfaces (i.e., silica or alumina) before immobilizing
the complexes.
Table 1. Indene derivatives15

# Product Eluent (Rf) Yield, %

3 Yellow crystals16 — 98

4 Yellowish solid Hexane/EE, 1:2 (0.25) 90 (from 3)

95 (from 7)

5 Light yellow oil Hexane (0.3) 93

6 Yellow oil Hexane/EE, 5:2 (0.5) 82

7 Yellowish oil7 Hexane/EE, 100:1 (0.6) 90

9 White solid Hexane/EE, 50:1 (0.35) 80

11 Dark reddish oil Hexane/EE, 5:2 (0.35) 45

12 Colorless oil Hexane (0.65) 75

13 Light yellow oil Hexane (0.6) 80

14 Light yellow oil Hexane/EE, 100:1 (0.25) 59

15 Yellow crystals Hexane/EE, 50:1 (0.35) 71

16 Orange-yellow oil Hexane/EE, 5:2 (0.55) 78

22 Yellowish oil17 Hexane/EE, 100:1 (0.4) Variable

23 Yellowish oil13 Hexane/EE, 50:1 (0.3) Variable

25 Yellowish oil Hexane/EE, 50:1 (0.35) Variable

26 Colorless oil Hexane/EE, 50:1 (0.35) Variable
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6.93 (d, 1H), 6.6 (d, 1H), 3.78 (t, 1H), 3.45 (t, 2H), 2.52–2.4
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31.6. 1-(2 0-Chloroethyl)-1H-indene (26). 1H NMR (d,
CDCl3): d 7.45 (d, 1H), 7.4 (d, 1H), 7.35–7.2 (m, 2H),
6.85 (d, 1H), 6.55 (d, 1H), 3.7 (t, 1H), 3.6 (t, 2H), 2.4–2.27
(m, 1H), 2.15–2.0 (m, 1H).
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