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ABSTRACT

The epidemiological correlation between osteoporosis and cardiovascular disease is independent of age, but
the basis for this correlation is unknown. We previously found that atherogenic oxidized lipids inhibit
osteoblastic differentiation in vitro and ex vivo, suggesting that an atherogenic diet may contribute to both
diseases. In this study, effects of an atherogenic high-fat diet versus control chow diet on bone were tested in
two strains of mice with genetically different susceptibility to atherosclerosis and lipid oxidation. After 4
months and 7 months on the diets, mineral content and density were measured in excised femurs and lumbar
vertebrae using peripheral quantitative computed tomographic (pQCT) scanning. In addition, expression of
osteocalcin in marrow isolated from the mice after 4 months on the diets was examined. After 7 months,
femoral mineral content in C57BL/6 atherosclerosis-susceptible mice on the high-fat diet was 43% lower
(0.736 0.09 mg vs. 1.286 0.42 mg;p 5 0.008), and mineral density was 15% lower compared with mice on
the chow diet. Smaller deficits were observed after 4 months. Vertebral mineral content also was lower in the
fat-fed C57BL/6 mice. These changes in the atherosclerosis-resistant, C3H/HeJ mice were smaller and mostly
not significant. Osteocalcin expression was reduced in the marrow of high fat-fed C57BL/6 mice. These
findings suggest that an atherogenic diet inhibits bone formation by blocking differentiation of osteoblast
progenitor cells. (J Bone Miner Res 2001;16:182–188)
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INTRODUCTION

EPIDEMIOLOGICAL EVIDENCE links osteoporosis with car-
diovascular disease, independently of age.(1,2) Osteopo-

rosis and the subsequent 1 million fractures in the United
States each year(3) results from a combination of increased
bone resorption and decreased bone formation. Low
bone mineral density (BMD) is associated closely with
cardiovascular disease mortality,(4–6) cardiovascular
calcification,(7–9) atherosclerosis,(10,11) and high lipid
levels.(10–13) Such correlations raise the possibility of a
common underlying factor or mechanism.

We previously found that minimally oxidized low-density
lipoprotein (MM-LDL), and other bioactive oxidized lipids
that promote atherogenesis and are increased in atheroscle-
rotic lesions,(14–19) also inhibit osteoblastic differentiation
of bone- and marrow-derived preosteoblasts in vitro.(20,21)

Preosteoblasts harvested from the marrow of mice fed a
high-fat, atherogenic diet showed significantly less osteo-
blastic differentiation.(21) Others have shown a paucity of
cells committed to the bone lineage in osteoporotic bone
marrow and with aging.(22,23) These links between lipids,
vascular disease, and bone suggest the novel hypothesis that
oxidized lipids are the biological link.
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In this study, effects of a high-fat atherogenic diet versus
control chow diet on bone mineral content (BMC) and
BMD were tested in two strains of mice with genetically
different susceptibility to oxidized lipids and atherogenesis.
In 1985, Paigen et al. showed differences in the suscepti-
bility of two inbred strains of mice to development of
hyperlipidemia and atherosclerotic lesions when fed an
atherogenic diet(24,25); C3H/HeJ were identified as a resis-
tant strain and C57BL/6 as a sensitive strain. Several years
later, Liao et al. reported the induction of inflammatory
genes by an atherogenic diet in the C57BL/6 but not in the
C3H/HeJ strain,(26) and Navab et al.(27) and Shih et al.(28)

found differences in the antioxidant defense systems be-
tween the susceptible and resistant mouse strains. In the
present study, we have compared the susceptibility and
resistance of these two strains of mice to the effects of
high-fat diet-induced hyperlipidemia on bone. We report
that in the atherosclerosis-susceptible C57BL/6 mice, BMC
and BMD were significantly lowered by the high-fat diet
versus chow diet. These changes were smaller in the
atherosclerosis-resistant C3H/HeJ mice. In addition, mar-
row cells from the high-fat–fed C57BL/6 mice showed
reduced osteocalcin expression.

Altogether these results suggest that oxidized lipids ad-
versely affect bone by inhibiting osteoblastic differentia-
tion. If applicable to humans, these studies may result in
new therapeutic approaches to osteoporosis.

MATERIALS AND METHODS

Mice and diets

At 1 month of age, male C57BL/6 (atherosclerosis-
susceptible strain) and C3H/HeJ (atherosclerosis-resistant
strain) mice (The Jackson Laboratory, Bar Harbor, ME, USA)
were placed on either a control chow diet (National Institutes
of Health [NIH]-31 Mouse/Rat Diet 7013 containing 6% fat)
or a high-fat (atherogenic) diet (Teklad TD90221; Harlan Tek-
lad, Madison, WI, USA; including 1.25% cholesterol, 15.8%
fat, and 0.5% cholate). This atherogenic diet has been found to
cause significant hypercholesterolemia in C57BL/6 mice.(24,25)

Femurs and lumbar vertebrae were harvested from 8 animals
after 4 months and 14 animals after 7 months. The bones were
cleared of soft tissue and fixed in 95% ethanol.

Quantitative computed tomographic scanning

Peripheral quantitative computed tomographic (pQCT)
scans were performed on individual bones (left femur, L4
vertebrae) from each mouse. Scanning was done with a
STRATEC XCT 960M unit (Norland Medical Instruments,
Ft. Atkinson, WI, USA) specifically configured for small
bone specimens. Mineral thresholds were set at 1.30 for
low-density bone and 2.00 for high-density bone. These
thresholds excluded mouse fat, water, muscle, and tendon
from true bone. Daily calibration was performed with a
manufacturer-supplied phantom (hydroxyapatite in Lucite)
of defined density. Calibration with a set of known hydroxy-
apatite standards (0.05–1000.0 mg/mm3) yielded a correla-
tion of 0.998 with XCT 960M estimation of volumetric

density. Estimates of measurement precision of mineral and
volume of femurs and vertebrae were obtained from the
middiaphyseal shaft of a B6C3H-F1 femur and from the
midbody scans of a B6C3H-F1 L5 vertebra. Six replicate
measurements for each bone yielded average values of 1.6,
2.1, and 2.8% for femoral density, mineral, and volume,
respectively, and 3.2, 5.9, and 4.7% for L5 vertebral density,
mineral, and volume, respectively.

Femurs were scanned full length at 2-mm intervals with a
resolution of 0.100 mm/voxel, yielding eight 1-mm-thick
cross-sections representing eight axial levels of the femur.
Vertebrae were scanned full length at 0.7-mm intervals with
the same resolution, yielding three to four 1-mm-thick
cross-sections. The center-most scan (based on image mor-
phology) or the mean of two scans sharing the center
position was selected for data analyses.

Marrow isolation

After 4 months on the diets, mouse marrow cells were
isolated from both femurs from 2 animals in each group as
previously described.(21,29,30)Marrow from both femurs was
pooled for each animal and RNA was isolated and analyzed
separately by reverse-transcriptase polymerase chain reac-
tion (RT-PCR). RNA was isolated as previously described
using the RNA isolation kit from Stratagene (La Jolla, CA,
USA).(28)

RT-PCR

RNA in 3-mg quantities was reverse-transcribed, and PCR
was performed using primers as described previously.(31)Ther-
mal cycling was carried out for 21 cycles (glyceraldehyde-3-
phosphate dehydrogenase [GAPDH]) or 34 cycles (osteocal-
cin) at 60°C annealing temperature for both GAPDH and
osteocalcin. Amplified fragments were isolated on a 6% poly-
acrylamide gel (29:1 acrylamide to bis-acrylamide), and the
autoradiographs were scanned with an AGFA ARCUS II scan-
ner and semiquantitated with NIH Image software, version
1.59, public domain program (National Institutes of Health,
Bethesda, MD, USA).

Lipoprotein preparation and oxidation

Human LDL was isolated by density-gradient centrifuga-
tion of serum and stored in phosphate-buffered 0.15 M NaCl
containing 0.01% EDTA. MM-LDL was prepared by iron
oxidation of human LDL as previously described.(20) Min-
imal oxidation of LDL resulted in a 2- to 3-fold increase in
conjugated dienes and 2–3 nmol of thiobarbituric acid re-
active substances per milligram of cholesterol after dialysis.
The concentrations of lipoproteins used in this study are
reported in micrograms of protein. The pre- and postoxida-
tion lipopolysaccharide levels in these lipoprotein prepara-
tions were,30 pg/ml.

Statistical analysis

Differences in BMC and BMD were assessed using Stu-
dent’s two-tailedt-test, allowing for unequal variances and
unequal sample sizes where appropriate.
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RESULTS

Femoral BMC and BMD

After 4 months, femoral BMD was significantly lower in
fat-fed C57BL/6 mice at three of the eight levels scanned (p ,
0.04; from 0.4886 0.038 mg/mm3 to 0.4236 0.043 mg/
mm3). All three levels were in the middiaphyseal region where
variance caused by anatomic complexity is minimized. BMC
was not significantly different between the two groups.

After 7 months, femoral BMC was significantly lower in
fat-fed C57BL/6 mice compared with control chow-fed
mice at all eight levels scanned. Mean mineral content was
lowered 43% (from 1.286 0.42 mg to 0.736 0.09 mg;p #
0.002; Table 1) on the high-fat diet. Changes in mineral
content were most significant (p # 0.0003) at the four
middiaphyseal levels (scans 3–6). Femoral mineral density
was also significantly lower in fat-fed C57BL/6 mice com-
pared with chow-fed mice at six of eight levels, with a
14.5% mean difference (from 0.4886 0.066 mg/mm3 to
0.4196 0.035 mg/mm3; p 5 0.03; Table 1).

In C3H/HeJ mice, which are resistant to the atherogenic
effects of a high-fat diet and lipid oxidation products,(24,25)

the high-fat diet had less effect on bone mineralization.
After 4 months on the diet, C3H/HeJ mice showed no
significant difference in femoral BMC at any of the eight
levels examined (data not shown); BMD was significantly
lower at one of eight scanned sites (p 5 0.01).

After 7 months on the diet, the fat-fed C3H/HeJ mice had
significantly (p # 0.01) lower BMC compared with chow-
fed mice at only three of eight levels (Table 2). However,
the overall mean difference for all eight levels did not reach
statistical significance (p 5 0.59). There also was no sig-
nificant effect of the high-fat diet on femoral mineral den-
sity (p 5 0.26; Table 2).

Lumbar vertebral mineral content and mineral density

At 4 months, there was no significant difference between
chow and high-fat diet groups in either vertebral mineral
content or density in either mouse strains. However, at 7

TABLE 2. QCT BONE PARAMETERS FORFEMURS FROM C3H/HeJ MICE AFTER 7 MONTHS ON A

CONTROL CHOW OR HIGH-FAT DIET

Slice

Mineral content (mg)
Chow versus

high fat Mineral density (mg/mm3)
Chow versus

high fat

Chow High fat p Chow High fat p

1 2.736 0.79 2.006 0.84 0.12 0.5966 0.06 0.5426 0.06 0.11
2 1.606 0.24 1.266 0.15 0.01 0.5106 0.06 0.4266 0.06 0.016
3 1.726 0.16 1.406 0.13 0.002 0.8006 0.03 0.7206 0.05 0.005
4 1.886 0.24 1.666 0.16 0.07 0.8836 0.07 0.9096 0.03 0.39
5 2.016 0.18 1.736 0.16 0.009 0.8536 0.03 0.8466 0.02 0.63
6 2.286 0.27 2.066 0.14 0.09 0.9226 0.06 0.9116 0.02 0.68
7 2.016 0.41 1.956 0.15 0.75 0.6946 0.11 0.8076 0.09 0.05
8 1.476 0.40 1.556 0.21 0.67 0.6126 0.07 0.5626 0.04 0.15

Mean6 SD 1.966 0.40 1.706 0.29 0.59 0.7346 0.15 0.7156 0.19 0.26

Scans were performed at 8 longitudinal axis positions (slices) for each femur with 1 being most proximal and 8 most distal. Values
of BMC and BMD are expressed as mean6 SD over all animals in each diet group.

TABLE 1. QCT BONE PARAMETERS FORFEMURS FROM C57BL/6 MICE AFTER 7 MONTHS ON A

CONTROL CHOW OR HIGH-FAT DIET

Slice

Mineral content (mg)
Chow versus

high fat Mineral density (mg/mm3)
Chow versus

high fat

Chow High fat p Chow High fat p

1 2.296 0.82 0.746 0.19 0.002 0.5026 0.05 0.4416 0.04 0.01
2 1.056 0.21 0.536 0.20 0.001 0.3656 0.05 0.3556 0.05 0.70
3 1.026 0.08 0.776 0.10 0.0001 0.4476 0.05 0.4006 0.06 0.02
4 0.996 0.07 0.726 0.06 0.0003 0.4406 0.02 0.3916 0.02 0.05
5 1.196 0.14 0.786 0.07 ,0.0001 0.5206 0.04 0.4106 0.03 0.01
6 1.266 0.12 0.866 0.10 ,0.0001 0.5736 0.04 0.4656 0.05 ,0.0001
7 1.326 0.16 0.756 0.19 0.0008 0.5156 0.05 0.4166 0.04 0.1
8 1.136 0.43 0.716 0.31 0.001 0.5386 0.03 0.4766 0.05 0.01

Mean6 SD 1.286 0.42 0.736 0.09 0.008 0.4886 0.07 0.4196 0.04 0.03

Scans were performed at 8 longitudinal axis positions (slices) for each femur with 1 being most proximal and 8 most distal. Values
of BMC and BMD are expressed as mean6 SD over all animals in each diet group.
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months, vertebral mineral content was significantly lower in
the C57BL/6 fat-fed mice (Table 3). Total mineral content
of the central section or sections was lower by a mean of
35% (from 1.26 0.1 mg to 0.776 0.1 mg;p , 0.001),
primarily because of changes in high-density cortical bone
(i.e., a 72% decrease). Total mineral density decreased 7%
on the high-fat diet, but this change was not statistically
significant. In C3H/HeJ mice, a 7% decrease in total mineral
content was found, as well as a 29% decrease in cortical
mineral content. These changes did not reach statistical
significance. Total mineral density of vertebrae from C3H/
HeJ mice decreased 12.5% on the high-fat diet (from
0.2486 0.03 to 0.2176 0.01 mg/mm3; p 5 0.03).

Gene expression in marrow cells

After 4 months on the high-fat or chow diets, the marrow
isolated from 2 C57BL/6 mice on each diet was analyzed
for the expression of three markers of osteoblastic differen-
tiation: alkaline phosphatase, bone sialoprotein, and osteo-
calcin. All three markers were expressed by the marrow
cells. Of the three, only osteocalcin expression was affected
by diet, showing a 35% reduction with the high-fat diet
when normalized to GAPDH values (Fig. 1).

DISCUSSION

The present study is the first to show that 7-month treat-
ment with an atherogenic high-fat diet lowers BMD and
BMC in vivo in atherosclerosis-susceptible C57BL/6 mice,
with much smaller effects in the atherosclerosis-resistant
C3H/HeJ mice. The atherogenic diet resulted in a signifi-
cantly lower femoral mineral content and femoral mineral
density in the C57BL/6 mice. Smaller changes were seen in
the C3H/HeJ mice. The differential effects of the athero-
genic diet on bones in the two strains of mice are similar to
the effects of that diet on the development of atherosclero-
sis. Previous reports showed differences in genetically
determined factors in response to diet-induced hyperlipid-
emia and lipid oxidation in these mouse strains to be the

underlying reason for their degree of susceptibility to ath-
erosclerosis. These differences include: (1) the level of
induction of inflammatory genes such as monocyte chemo-
tactic protein-1, colony-stimulating factors, heme oxygen-
ase, and serum amyloid A and activation of nuclear factor
kB (NFkB) transcription factor in response to atherogenic
diet(26,27,32)and (2) the ability of high-density lipoprotein
(HDL) to protect against the effects of atherogenic diet,
because of variability in the level of antioxidant enzyme
paraoxonase.(28) The latter difference is important in light of
the observation that the protective effect of HDL appears to
correlate inversely with atherosclerosis,(33) and a direct cor-
relation between HDL levels and BMD in fat-fed mice has
been shown (T. Drake, University of California, Los Ange-
les [UCLA], Department of Pathology, personal communi-
cation, 1999). It is intriguing to speculate that similar ge-
netically regulated factors, involved with defense against
atherogenic oxidized lipids, also determine susceptibility to
osteoporosis.

Because femoral mineral content was more substantially
changed by the atherogenic diet than mineral density, the
effect may be caused by quantitatively less bone formation

FIG. 1. Effects of a high-fat diet on osteocalcin expres-
sion in marrow cells. One-month-old C57BL/6 mice were
placed on a high-fat or chow diet for 4 months. The animals
were killed and femoral marrow was isolated from each
mouse and used to isolate total RNA. RT-PCR analysis
showed an expected size band of 360 base pairs (bp).
Expression of GAPDH was used for normalization. Each
lane represents RNA isolated from an individual mouse.

TABLE 3. QCT BONE PARAMETERS FORL4 VERTEBRAE FROMC57BL/6 AND C3H/HeJ MICE AFTER 7 MONTHS

ON A CONTROL CHOW OR HIGH-FAT DIET

Total bone Cortical bone

Mineral content (mg) Mineral density (mg/mm3) Mineral content (mg) Mineral density (mg/mm3)

Chow High fat Chow High fat Chow High fat Chow High fat

C57BL/6
1.206 0.10 0.776 0.10 0.2296 0.02 0.2126 0.03 0.3176 0.08 0.0886 0.05 0.4556 0.01 0.4456 0.01
p ,0.001 0.30 ,0.001 0.09

C3H/HeJ
1.416 0.35 1.316 0.14 0.2486 0.03 0.2176 0.01 0.6246 0.25 0.4456 0.13 0.4816 0.02 0.4746 0.01
p 0.49 0.03 0.12 0.48

Values are for the central slice or slices for each of the L4 vertebrae and are expressed as mean6 SD over all animals in each diet
group.
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and/or shorter bones in the high-fat–fed mice. Although we
did not measure femoral size after 7 months in this study, in
a separate study, we found no significant change in the
femoral or tibial length between chow-fed versus high-fat–
fed C57BL/6 mice after 4 months on the diet ( F. Parhami,
unpublished observations, 1999). Because our previous in
vitro and in vivo studies showed inhibition of osteoblastic
differentiation and bone formation by marrow stromal cells
isolated from C57BL/6 mice on the high-fat diet versus
chow diet, we speculate that bone formation is inhibited by
the atherogenic diet. More direct future studies will further
validate this speculation. It is important to note that the mice
used in the present study were in their growing stage when
peak bone mass is achieved. Inhibition of bone formation
during growth stage also would have adverse consequences
by reducing peak bone mass. The reducing effects of the
dietary fat on BMC and BMD would translate into a reduc-
tion in this important determinant of bone strength.

The present results also suggest that increased dietary
lipids interfere with osteoblast maturation in vivo, based on
dietary inhibition of osteocalcin messenger RNA (mRNA)
expression. Although the effect of the high-fat diet on the
expression of osteocalcin alone is not sufficient to draw
definitive conclusions about differentiation of osteoblasts,
this inhibition is consistent with previous ex vivo evidence
that exposure to a high-fat diet reduced marrow preosteo-
blastic maturation in culture,(21) as well as in vitro evidence
that lipid and lipoprotein oxidation products inhibit osteo-
blast differentiation and function.(20,21)Previous studies us-
ing the same atherogenic diet in C57BL/6 mice have shown
2- to 3-fold increases in cholesterol levels after 3–4 weeks
on this diet, as well as a significant drop in the HDL
levels.(24,25)We therefore speculate that the adverse effects
of the high-fat diet on bone in the C57BL/6 mice are caused
by dyslipidemia and subsequent increases in lipid oxidation.
The diet-induced hyperlipidemia in circulation further trans-
lates into increased lipid accumulation in highly vascular
tissues and the artery wall because of the diffusion of
lipoproteins across the vascular endothelium. Once apart
from the protective, antioxidant environment of serum,
these lipoprotein particles are oxidized further into biolog-
ically active forms responsible for inflammatory processes
in atherosclerosis and vascular calcification.(19,20) Because
bone and marrow are both vascularized, circulating lipids
can access both sites of active bone remodeling where
osteoprogenitor cells are present: (1) the subendothelial
space of the osteons and (2) the marrow stroma at the
trabecular surface or endosteum. Lipid accumulation(34) and
monocyte accumulation and plaquing(35) have been ob-
served in the vessels of osteons in osteoporotic and aging
bone. The presence of circulating lipoproteins in the marrow
is expected because marrow is a site for clearance of chy-
lomicrons and chylomicron remnants derived from dietary
fat,(36) and dietary fat has been found to alter the lipid profile
in the marrow.(37) Thus, lipid oxidation products may un-
derlie the paradoxical association of cardiovascular disease
with osteoporosis.

The findings in the present report are consistent with a
preliminary report showing a significant correlation be-
tween dietary cholesterol intake and vertebral bone loss in

women,(38) as well as with population studies showing an
association of cholesterol levels with osteoporosis in wo-
men(13) and, preliminarily, in men.(39) Recent evidence
suggests that 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase inhibitors (statins), lipid-lowering
agents commonly used to treat cardiovascular disease, have
potent positive effects on bone formation in rodents,(40)

and statin therapy in humans correlates with reduced
osteoporosis.(41–45)Although the mechanism is proposed to
be a direct stimulation of osteoblasts, an equally likely
mechanism is an indirect effect through lipid-lowering,
given that the dominant site of action of these agents, in
both humans and rodents,(46) is in the liver where statins are
mostly cleared from circulation.

Evidence suggests that the atherogenic nature of the high-
fat diet is essential for effects on bone. Wohl et al. previ-
ously showed a minimal effect on BMC of a noncholesterol,
8% fat diet in adult roosters.(47) Because cholesterol feeding
is necessary to induce atherosclerosis in roosters,(48) this
finding suggests that a nonatherogenic high-fat diet is not
sufficient to induce bone changes.

Collectively, these observations suggest the adverse ef-
fects of lipids on bone. The possibility that lipid oxidation
products are the biologically active factors linking a high-fat
diet with reduced bone formation is supported by the finding
of substantially reduced effects in mice that are resistant to
the effects of oxidized lipids and by the anabolic effects of
the antioxidant vitamin E on bone.(49) Because cardiovas-
cular disease is the highest risk cause of death for patients
with osteoporotic fracture(4,5) and low BMD is associated
with mortality independent of fractures,(50) elucidation of
common lipid- and lipid oxidation–mediated mechanisms
has great importance for identifying new preventive mea-
sures for both osteoporosis and cardiovascular disease. The
possibility that high lipid levels are a common underlying
factor in atherosclerosis and bone loss may explain the
epidemiological evidence for correlation between cardio-
vascular disease and osteoporosis.
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