



Tetrahedron Letters 44 (2003) 8995-8998

TETRAHEDRON LETTERS

## Novel synthesis of pyridazino[4,5-*b*][1,4]oxazin-3,8-diones<sup> $\Rightarrow$ </sup>

Su-Dong Cho,<sup>a</sup> Sang-Yong Song,<sup>a</sup> Yong-Dae Park,<sup>c</sup> Jeum-Jong Kim,<sup>c</sup> Woo-Hong Joo,<sup>a</sup> Motoo Shiro,<sup>d</sup> J. R. Falck,<sup>b</sup> Dong-Soo Shin<sup>a,\*</sup> and Yong-Jin Yoon<sup>c,\*</sup>

<sup>a</sup>Departments of Chemistry & Biology, Changwon National University, Changwon 641-773, South Korea

<sup>b</sup>Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

<sup>e</sup>Department of Chemistry & Research Institute of Natural Science, Gyeongsang National University, Chinju 660-701,

South Korea

<sup>d</sup>Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan

Received 25 September 2003; accepted 30 September 2003

**Abstract**—A novel and effective synthesis of pyridazino[4,5-b][1,4]oxazin-3,8-diones via Smiles rearrangement is presented. Treatment of *N*-substituted 2-chloro(or hydroxy)acetamide, 2-tetrahydropyranyl-4-chloro-5-hydroxy(or chloro)pyridazin-3-one and cesium carbonate in refluxing acetonitrile was afforded the corresponding pyridazino[4,5-b][1,4]oxazin-3,8-diones in excellent yield.

© 2003 Elsevier Ltd. All rights reserved.

Heterocycle fused-[1,4]oxazines have attracted considerable interest owing to their biological activities.<sup>1-3</sup> Synthesis of some heterocycle fused-[1,4]oxazines has been reported.<sup>4</sup> In the course of studying the inhibitors of multi-drug resistant (MDR) pumps, we came upon a need for pyridazino[4,5-b][1.4]oxazin-3,8-di ones. However, to the best of our knowledge, synthesis of pyridazino[4,5-b][1,4]oxazin-3,8-dione system has not been reported. Therefore, we attempted to synthesize pyridazino[4,5-*b*][1,4]oxazin-3,8-dione derivatives According to the methods published to date,<sup>4</sup> heterocycle fused-[1,4]oxazines such as benzo[1,4]oxazine or pyrido[3,2-b][1,4]oxazine are formed by direct cyclization of 2-haloacetyl halide or ethyl 2-halopropionate with 2-aminophenol or 2-amino-3-hydroxypyridine. If 4-amino-5-hydroxypyridazin-3-one derivative is reacted with 2-haloacetyl halide according to reported methods, pyridazino[4,5-b][1,4]oxazin-3,5-dione 4 instead of 3 should be obtained because both NH<sub>2</sub> and OH groups are present in pyridazinone. In this case, pyridazino[4,5b][1,4]oxazin-3,8-dione system can not be formed. However, the cyclization of 4-chloro-5-hydroxypyridazin-3-one with N-substituted 2-chloroacetamide 1 via

Keywords: pyrodazino[4,5-b][1,4]oxazine; Smiles rearrangement.

0040-4039/\$ - see front matter  $\ensuremath{\mathbb{C}}$  2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.09.216

Smiles rearrangement would form the desired compound **3**. Therefore, we attempted to synthesize pyridazino[4,5-*b*][1,4]oxazin-3,8-diones **3** by a novel approach utilizing Smiles rearrangement.<sup>5</sup> Since the pyridazine ring must have an electron-deficient carbon in order for Smiles rearrangement to occur on the pyridazine ring, we chose 2-haloacetamide **1** and 2-tetrahydropyranyl-4-chloro-5-hydroxypyridazin-3-one (**2**) as the starting materials. We herein report an efficient, one-pot method for the syntheses of **3** via Smiles rearrangement using **1** (or **5**) and **2** (or **6**) (Scheme 1).

We easily prepared N-substituted acetamides 1 in quantitative yield by addition of the appropriate amine to 2-chloroacetyl chloride in  $CH_2Cl_2$ , and N-substituted



Scheme 1. Reagents and conditions: (i)  $Cs_2CO_3$ ,  $CH_3CN$ , reflux; (ii)  $K_2CO_3$ , DMF, rt.

<sup>\*</sup> Supplementary data associated with this article can be found at doi:10.1016/j.tetlet.2003.09.216

<sup>\*</sup> Corresponding authors. Tel.: 082-055-751-6019; fax: 082-055-761-0244; e-mail: yjyoon@nongae.gsnu.ac.kr

2-hydroxyacetamides **5** was obtained by condensing the amine with ethyl glycolate in neat condition. On the other hand, 2-tetrahydropyranylpyridazin-3-ones  $2^6$  and  $6^7$  were synthesized from commercially available 4,5-dichloropyridazin-3-one via one step (for **6**) or three steps (for **2**).

Firstly, the treatment of N-substituted acetamides 1g with 4-chloro-5-hydroxypyridazin-3-one derivative 2 in the presence of excess  $Cs_2CO_3$  in refluxing acetonitrile for 43 h afforded only 3g in 59% yield,<sup>8</sup> but this reaction could not progress at room temperature. On the other hand, we attempted the cyclization of 5g with 6 for establishing the mechanism of the cyclization. Reaction of 2-tetrahydropyranyl-4,5-dichloropyridazin-3-one (6) with 5g in the presence of potassium carbonate in DMF at room temperature for 2 h gave the corresponding 7g instead of 3g in 95% yield.<sup>8</sup> According to the literature,<sup>9</sup> the reactivity of the carbon at 5-position for 4,5-dichloro-2-substituted-pyridazin-3one is also higher than the carbon at 4-position. Treatment of 7g with cesium carbonate in refluxing acetonitrile also afforded 3g in excellent yield.<sup>8</sup> One-pot reaction of 5g with 6 without purification of 7g also gave 3g in 91% yield (entry 7). The structure of 7g was confirmed by X-ray analysis (Fig. 1).<sup>10</sup>



Figure 1. ORTEP plots for X-ray crystal structures of cyclized 3g and 7g of intermediate.

| Entry | R                | Time(h)<br>A / B <sup>b</sup> | 3          | <b>3</b> , Yield(%) <sup>a</sup><br>A / B <sup>b</sup> |
|-------|------------------|-------------------------------|------------|--------------------------------------------------------|
| 1     | H <sub>3</sub> C | 49 / 4                        | 3a         | 65 / 92                                                |
| 2     | $\frown$         | 42 / 5                        | 3b         | 53 / 93                                                |
| 3     | $\bigcirc$       | 72 / 5                        | 3c         | 62 / 94                                                |
| 4     | 23               | 60 / 4                        | 3d         | 68 / 92                                                |
| 5     | $\Diamond$       | 48 / 3                        | 3e         | 55 / 94                                                |
| 6     | ()               | 48 / 4                        | 3f         | 67 / 94                                                |
| 7     | MeO<br>MeO       | 43 / 4                        | 3g         | 59 / 91                                                |
| 8     | $\sim$           | 52 / 5                        | 3h         | 61 / 92°                                               |
| 9     | $\sim$           | 60 / 9                        | <b>3</b> i | 33 / 88 <sup>d</sup>                                   |
| 10    |                  | 83 / 10                       | 3j         | 27 / 58                                                |

<sup>a</sup> Isolated yield of the Method A based on **1**. Isolated overall yield of the Method B based on **5**.

<sup>b</sup> A: Method A, B: Method B

 $[a]_{aa}^{23} + 105.46(c 1.10, CH_2Cl_2)$ 

<sup>d</sup>  $[a]^{23}_{D}$  -42.69(c 2.6, CH<sub>2</sub>Cl<sub>2</sub>)

We also investigated the base and solvent effects on the synthesis of **3g** in methods A and B. According to our observation, cesium carbonate (or rubidium carbonate)/  $CH_3CN$  was the most effective system. Whereas, when some other bases such as  $Li_2CO_3$ ,  $Na_2CO_3$ ,  $K_2CO_3$ , and  $Ag_2CO_3$  were used in cyclization step, the yield of **3** was lower than cesium carbonate. On the other hand, the reaction of **1** with **2** in the presence of a strong base such as NaH, NaOH, KO'Bu gave an unexpectedly only 1,4-disubstituted-piperazine-2,5-dione instead of **3**.

Therefore, compound **3** was synthesized by using methods A and B. The results are summarized in Table 1. Some pyridazino[4,5-b][1.4]oxazin-3,8-diones **3** was synthesized from **5** and **6** by method B in excellent yield except for entry 10, whereas cyclization of **1** with **2** gave **3** in 27–68% yield. Consequently, method B is more favourable for the synthesis of **3**.

The cyclizations using methods A and B occurred via three steps; that is, the intermediate 7 was formed in the first step, the intermediate 7 was rearranged to 8 in second step, and then, anion 8 was cyclized in the final step to 3 (Scheme 2).

**Table 1.** Yield of pyridazino[4,5-*b*][1,4]oxazin-3-ones **3** by methods A and B



## Scheme 2.

In summary, our method of obtaining pyridazino[4,5b][1,4]oxazin-3,8-diones **3** via Smiles rearrangement is convenient and practical. Our approach using Smiles rearrangement may also be very useful for the synthesis of heterocycle fused-[1,4]oxazine such as pyrido[2,3b][1,4]oxazine. Further work including the application, chemical transformation, and biological activity is under way in our laboratory.

## Acknowledgements

This work was supported by Korea Research Foundation Grant (KRF-2002-C00008).

## References

- (a) Savelon, L.; Bizot-Espiard, J. G.; Caignard, D. H.; Pfeiffer, B.; Renard, P.; Viaud, M. C.; Guillaumet, G. Bioorg. Med. Chem. 1998, 6, 133; (b) Arrault, A.; Touzeau, F.; Guillaumet, G.; Léger, J.-M.; Jarry, C.; Mérour, J.-Y. Tetrahedron 2002, 58, 8145; (c) Kikelj, D.; Suhadolc, E.; Urleb, U.; Zbontar, U. J. Heterocycl. Chem. 1993, 30, 597; (d) Clauson-Kaas, N.; Heide, H.; Olsen, G. Acta Chem. Scand. 1969, 23, 2322; (e) Matsumoto, Y.; Tsuzuki, R.; Matsuhisa, A.; Masuda, N.; Yamagiwa, Y.; Yanagisawa, I.; Shibanuma, T.; Nohira, H. Chem. Pharm. Bull. 1999, 47, 971; (f) Weber, M.; Erker, T. Monatshefte fur Chemie 2002, 133, 1205.
- 2. Erker, T. Monatshefte fur Chemie 1998, 129, 679.
- Buckman, B.; Mohan, R.; Koovakkat, S.; Liang, A.; Trinh, L.; Morrissey, M. M. *Bioorg. Med. Chem. Lett.* 1998, 8, 2235.
- 4. (a) Breznik, M.; Mrcina, A.; Kikelj, D. Tetrahedron: Asymmetry 1998, 9, 1115; (b) Yavari, I.; Adib, M.; Hojabri, L. Tetrahedron 2002, 58, 6895; (c) Arrault, A.; Touzeau, F.; Guillaumet, G.; Léger, J.-M.; Jarry, C.; Mérour, J.-Y. Tetrahedron 2002, 58, 8145; (d) Kikelj, D.; Suhadolc, E.; Urleb, U.; Zbontar, U. J. Heterocyclic Chem. 1993, 30, 597; (e) Clauson-Kaas, N.; Heide, H.; Olsen, G. Acta Chem. Scand. 1969, 23, 2322; (f) Matsumoto, Y.; Tsuzuki, R.; Matsuhisa, A.; Masuda, N.; Yamagiwa, Y.; Yanagisawa, I.; Shibanuma, T.; Nohira, H. Chem. Pharm. Bull. 1999, 47, 971; (g) Weber, M.; Erker, T. Monatshefte fur Chemie 2002, 133, 1205; (h) Erker, T. Monatshefte fur Chemie 1998, 129, 679; (i) Buckman, B.; Mohan, R.; Koovakkat, S.; Liang, A.; Trinh, L.; Morrissey, M. M. Bioorg. Med. Chem. Lett. 1998, 8, 2235.
- 5. Bunnett, J. F.; Zahler, R. E. Chem. Rev. 1951, 49, 362.

- Cho, S.-D.; Choi, W.-Y.; Yoon, Y.-J. J. Heterocyclic Chem. 1996, 33, 1579.
- (a) Bryant, R. D.; Kunng, F.-A.; South, M. S. J. Heterocyclic Chem. 1995, 32, 1473; (b) Park, J. W.; Kweon, D. H.; Kang, Y. J.; Lee, W. S.; Cho, S. D.; Yoon, Y.-J. J. Heterocylic Chem. 2000, 37, 5.
- 8. Typical experimental procedure of cyclization:

**Method A**—To a 100 mL flask equipped with a magnetic stirrer was added *N*-substituted 2-chloroacetamide **1g** (28.5 mmol), 4-chloro-5-hydroxypyridazin-3-one **2** (31.3 mmol), and Cs<sub>2</sub>CO<sub>3</sub> (65.5 mmol) in acetonitrile (200 mL). The mixture was refluxed for 43 h, the solvent was removed under reduced pressure, and CH<sub>2</sub>Cl<sub>2</sub>/H<sub>2</sub>O was added to the residue. After separating the organic layer, the aqueous layer was also extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layer was dried over anhydrous MgSO<sub>4</sub> and evaporated in vacuo. The crude product was purified by flash column chromatography using EtOAc/*n*-hexane (1:2, v/v) as eluent to afford only **3g** in 59% yields.

Method B—To a 100 mL flask equipped with a magnetic stirrer was added N-substituted 2-hydroxyacetamides 5g (11.4 mmol), 2-tetrahydropyranylpyridazin-3-one 6 (12.0 mmol), and K<sub>2</sub>CO<sub>3</sub> (25.1 mmol) in DMF (60 mL). The mixture was stirred for 2 h, the solvent was removed under reduced pressure, and CH<sub>2</sub>Cl<sub>2</sub>/H<sub>2</sub>O was added to the residue. After separating the organic layer, the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layer was dried over anhydrous MgSO4 and evaporated in vacuo. The crude product was purified by flash column chromatography using EtOAc/n-hexane (1:2, v/v) as eluent to afford only 7g in 95% yields. And then, a mixture of isolated N-substituted 2-[5-chloro-6oxo-1-(tetrahydropyran-2-yl)-1,6-dihydropyridazin-4-yloxy]acetamide 7g (10.0 mmol) and  $Cs_2CO_3$  (11.0 mmol) in acetonitrile (30 mL) was refluxed for 2 h. After stirring for 30 min at room temperature, the mixture was filtered to give residue. The residue was poured into dichloromethane (80 mL), and the organic layer was washed with water (50 mL). The organic layer was dried over anhydrous MgSO<sub>4</sub>. The solvent was removed under reduced pressure, the crude 3g was purified by silica gel column chromatography using EtOAc/n-hexane (1:3, v/v) as eluent to afford only 3g in 96% yields.; 7g: mp 149-150°C; IR (KBr) 3375, 3068, 2940, 1665, 1609, 1516, 1091 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (s, 1H), 6.73-6.82 (m, 3H), 6.63 (bs, D<sub>2</sub>O exch., 1H), 6.06 (dd, J=1.72, 10.26 Hz, 1H), 4.66 (s, 2H), 4.11 (d, J=6.4 Hz, 1H), 3.87 (s, 3H), 3.75 (s, 3H), 3.62–3.64 (q, J=6.5 Hz, 2H), 2.81–2.85 (t, J = 6.7 Hz, 2H), 1.21–2.18 (m, 7H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  165.78, 157.82, 152.53, 149.12, 130.29, 126.82, 120.63, 111.48, 111.22, 83.90, 68.88, 68.31, 55.87, 55.80, 40.23, 34.89, 28.85, 27.77, 22.66; (m/z) 452. Anal. calcd for C<sub>21</sub>H<sub>26</sub>ClN<sub>3</sub>O<sub>6</sub> (451.91): C, 55.81; H, 5.80; N, 9.30. Found: C, 55.78; H, 5.77; N, 9.28; 3g: mp 134-135°C; IR (KBr) 3015, 2978, 2935, 1700, 1639, 1020 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (s, 1H), 6.70–6.81 (m, 3H), 6.09 (dd, J=2.44, 10.82 Hz, 1H), 4.76 (s, 2H), 4.30-4.39 (m, 1H), 4.11 (m, 1H), 4.04 (m, 2H), 3.86 (s, 3H), 3.77 (s, 3H), 2.88 (t, J = 6.5 Hz, 2H), 1.18–2.17 (m, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  161.76, 154.95, 149.06, 148.05, 136.83, 129.09, 127.20, 124.74, 120.70, 111.63, 82.74,

68.87, 67.40, 55.84, 55.79, 42.73, 33.64, 28.95, 24.80, 22.67; (m/z) 415. Anal. calcd for C<sub>21</sub>H<sub>25</sub>N<sub>3</sub>O<sub>6</sub> (415.45): C, 60.71; H, 6.07; N, 10.11; Found: C, 60.73; H, 6.08; N, 10.09.

One-pot method for synthesis of 3: A mixture of N-substituted 2-hydroxyacetamides 5g (11.4 mmol), 2-tetrahydropyranylpyridazin-3-one 6 (12.0 mmol), and K<sub>2</sub>CO<sub>3</sub> (25.1 mmol) in acetonitrile (60 mL) was refluxed until 5g disappeared. After cooling to room temperature, the mixture was filtered. To the resulting filtrate was added cesium carbonate (11.4 mmol). The reaction mixture was refluxed until the intermediate disappeared. After cooling to room temperature, the mixture was filtered to give residue. The residue was poured into dichloromethane (80 mL), and the organic layer was then washed with water (50 mL). The organic layer was dried over anhydrous MgSO<sub>4</sub>. The solvent was evaporated under reduced pressure, the crude 3g was purified by silica gel column chromatography using EtOAc/n-hexane (1:3, v/v) as eluent to afford only 3.

- 9. Lyga, K. J. Heterocyclic Chem. 1988, 25, 1757.
- 10. Crystal data for 3g:  $C_{21}H_{25}N_3O_6$ ,  $F_W = 415.45$ , monoclinic, space group  $P2_1/n$  (No. 14), a = 16.03(2), b =8.37(1), c = 16.75(2) Å,  $\beta = 120.0(1)^{\circ}$ , U = 1946(5) Å<sup>3</sup>; Z = 4,  $D_{calcd} = 1.418 \text{ g/cm}^3$ ,  $F_{000} = 880.00$ ,  $\mu(MoK\alpha) = 1.05$ cm<sup>-1</sup>, -180°C. Data were collected on a Rigaku RAXIS-RAPID Imaging Plate diffractometer using  $2\theta \max 60.1^{\circ}$ with graphite monochromated MoKa radiation ( $\lambda =$ 0.71075 Å). Of 5565 reflections collected, 5565 reflections with  $I \ge 3.00\sigma(I)$  were used in the solution. Structure refined to R = 0.081 and  $R_w = 0.081$ . Crystal data for 7g:  $C_{21}H_{26}ClN_3O_6$ ,  $F_W = 451.91$ , monoclinic, space group  $P2_1/n$  (No. 14), a=11.889(1), b=8.8066(7), c=20.114(2)Å,  $b = 90.916(5)^{\circ}$ , V = 2105.7(3) Å<sup>3</sup>, Z = 4,  $D_{calcd} = 1.425$  $g/cm^3$ ,  $F_{000} = 952.00$ ,  $\mu(CuK\alpha)$ : 19.94 cm<sup>-1</sup>, -180°C. Data were collected on a Rigaku RAXIS-RAPID Imaging Plate diffractometer using  $2\theta$  max 136.5° with graphite monochromated CuK $\alpha$  radiation ( $\lambda = 1.54186$  Å). Of 3695 reflections collected, 3694 reflections with  $I \ge$  $3.00\sigma(I)$  were used in the solution. Structure refined to R = 0.112 and  $R_w = 0.182$ .