Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

Electropy of the Additional Construction of the Additional Con

2-Phenylimidazo[1,2-b]pyridazine derivatives highly active against *Haemonchus* contortus

Abdelselam Ali^a, Teresa Cablewski^a, Craig L. Francis^{a,*}, Ashit K. Ganguly^b, Roger M. Sargent^c, David G. Sawutz^b, Kevin N. Winzenberg^a

^a CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC 3168, Australia

^b Merck Research Laboratories, Merck & Co., 2015 Galloping Hill Road, Kenilworth, NJ 07033-1300, USA

^c Intervet Australia Pty Ltd, 26 Artisan Road, Seven Hills, NSW 2147, Australia

ARTICLE INFO

Article history: Received 1 April 2011 Revised 24 May 2011 Accepted 25 May 2011 Available online 1 June 2011

Keywords: Imidazo[1,2-b]pyridazine Anthelmintic Haemonchus contortus

ABSTRACT

A series of 2-phenylimidazo[1,2-*b*]pyridazine derivatives were synthesized and evaluated for their in vitro anthelmintic activity against *Haemonchus contortus*. The most active compounds had in vitro LD₉₉ values of 30 nM, which is comparable to that of the benchmark commercial nematocide, Ivermectin. © 2011 Elsevier Ltd. All rights reserved.

In many parts of the world the viability of small-ruminant production is under threat because of growing resistance to the limited number of current drugs used to treat infection by endoparasites, for example control of *Haemonchus contortus* in sheep.¹ Two recently introduced anthelmintics, Monepantel² and Derquantel,³ are welcome, but new drugs are still urgently needed.⁴

In the course of our search for new anthelmintics based upon high-throughput screening of compounds in the commercial NemaTox *H. contortus* (McMaster strain) larval development assay,⁵ we obtained the hit compound, 2-(3,4-methylenedioxyphenyl)-6-propoxy-imidazo[1,2-*b*]pyridazine $1^{6.7}$ (Fig. 1) which afforded an LD₉₉ comparable to the commercial nematocide Levamisole (Table 1).

Importantly, compound **1** maintained activity against resistant strains of *H. contortus*: $LD_{99} = 0.94 \ \mu\text{M}$ for the benzimidazole-resistant VRSG⁸ strain, $LD_{99} = 0.67 \ \mu\text{M}$ for the benzimidazole- and Levamisole-resistant Lawes strain, and $LD_{99} = 1.85 \ \mu\text{M}$ for the lvermectin-resistant CAVR⁹ strain. Furthermore, compound **1** showed good activity against the McMaster strains of *Trichostrongylus colubriformis*, $LD_{99} = 0.67 \ \mu\text{M}$, and *Ostertagia circumcincta*, $LD_{99} = 0.33 \ \mu\text{M}$.

Exploration of SAR associated with compound **1** was aided by well-established synthetic routes to the imidazo[1,2-b]pyridazine template.¹⁰ As outlined in Scheme 1, key steps in the preparation of compounds of this type involved reaction of 3-amino-6-chloro-

pyridazine 2^{11} with a sodium alkoxide⁴ or a sodium alkanethiolate salt¹² to give 3-amino-6-alkoxypyridazines **3** and 3-amino-6-alkylthio-pyridazines **4**, respectively. Reaction of these aminopyridazines with 2-bromoethanones **5** afforded the target 6-substituted imidazo[1,2-*b*]pyridazines **6** and **7**. Analogous reactions of **3** and **4** with 2-bromopropan-1-ones **8** provided the 3-methyl derivatives **9** and **10**.

The C-6 amino derivatives **13a–d** were obtained by heating 6-chloroimidazo[1,2-*b*]pyridazine **12**, prepared⁶ from **2** and 2-bromo-1-[4-(2-methoxyethoxy)phenyl]-ethanone **11**,¹³ with the appropriate amine.^{14,15} The 6-*n*-butyl substituted compound **14** was obtained from **12** by a Ni-catalyzed coupling reaction with *n*-BuMgBr. The 6-aryl substituted derivatives **15** were prepared via Suzuki-coupling of aryl boronic acids with **12** using a published procedure.^{16,17}

Compounds **6** and **7** were brominated with NBS in chloroform¹⁸ to produce 3-bromo-substituted imidazo[1,2-*b*]pyridazine derivatives **16**. We also prepared 3-chloro derivatives **17** and 3-iodo derivatives **18**¹⁷ using similar chemistry. The 3-iodo compounds were converted to the corresponding 3-cyanoimidazo[1,2-*b*]pyridazines **19** by treatment with cuprous cyanide in hot DMF.¹⁹

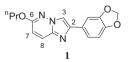
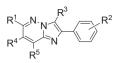


Figure 1.

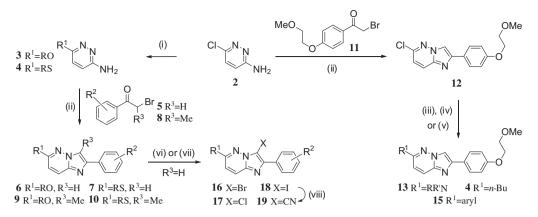

^{*} Corresponding author. Tel.: +61 3 9545 2222.

E-mail address: craig.francis@csiro.au (C.L. Francis).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2011.05.096

4161

Table 1 In vitro anthelmintic activity of 2-phenylimidazo[1,2-b]pyridazines 1, 6, 7, 9, 10, 13–22, 24 against H. contortus


Compound	R^1	R ²	R ³	R^4	R ⁵	LD ₉₉ ª (μΜ
1	n-PrO	3,4-Methylenedioxy	Н	Н	Н	0.77
6a	n-PrO	Н	Н	Н	Н	na
5b	n-PrO	4-Cl	Н	Н	Н	13.03
ic	<i>n</i> -PrO	3-OMe	Н	Н	Н	0.81
id	n-PrO	3,4-diOMe	Н	Н	Н	4.15
ie ie	n-PrO	3,4-Ethylenedioxy	H	H	H	2.60
ic if	n-PrO	4-OCH ₂ CH ₂ OMe	Н	Н	H	0.29
ig	n-PrO	4-OCH ₂ CH ₂ OEt	н	Н	Н	0.32
ih	n-PrO	3-OMe-4-OCH ₂ CH ₂ OMe	Н	H	Н	2.27
bi	EtO		Н	Н	Н	1.30
		4-OCH ₂ CH ₂ OMe				
ij	n-BuO	4-OCH ₂ CH ₂ OMe	Н	Н	Н	0.64
5k	Cyclopropylmethoxy	4-OCH ₂ CH ₂ OMe	Н	Н	Н	0.11
51	Cyclopropylmethoxy	4-OCH ₂ CH ₂ OEt	Н	Н	Н	0.11
im	Cyclopropylmethoxy	4-OEt	Н	Н	Н	0.09
in	Cyclopropylmethoxy	4-CF ₃	Н	Н	Н	na
бо	Cyclopropylmethoxy	2,4-diCl	Н	Н	Н	na
ip	Cyclopropylmethoxy	4-Et	Н	Н	Н	0.27
iq	Cyclopentyloxy	4-OCH ₂ CH ₂ OMe	Н	Н	Н	5.31
5r	i-PrO	4-OCH ₂ CH ₂ OMe	Н	Н	Н	4.96
is	MeOCH ₂ CH ₂ O	4-OCH ₂ CH ₂ OMe	Н	Н	Н	17.47
7a	n-PrS	4-OEt	Н	Н	Н	1.21
7b	n-PrS	3-OMe	Н	Н	Н	2.10
7c	n-PrS	4-OCH ₂ CH ₂ OMe	Н	Н	Н	2.36
'd	n-PrS	3-OMe-4-OCH ₂ CH ₂ OMe	Н	Н	Н	2.17
/u /e	n-BuS	4-OCH ₂ CH ₂ OMe	Н	Н	H	0.26
			Н			
7f	n-BuS	4-OCH ₂ CH ₂ OEt		Н	H	0.59
/g	<i>i</i> -PrS	4-OCH ₂ CH ₂ OMe	Н	Н	Н	0.59
7h	i-BuS	4-OCH ₂ CH ₂ OMe	Н	Н	Н	0.87
7i	n-BuS	4-CF ₃	Н	Н	Н	na
′j	n-PrS	2,4-diCl	Н	Н	Н	na
la	n-PrO	4-OCH ₂ CH ₂ OMe	Me	Н	Н	0.32
)b	<i>n</i> -PrO	3-OCH ₂ CH ₂ OMe	Me	Н	Н	5.49
)c	i-PrO	3-OCH ₂ CH ₂ OMe	Me	Н	Н	14.65
10	i-PrS	3-OCH ₂ CH ₂ OMe	Me	Н	Н	19.58
3a	Pyrrolidino	4-OCH ₂ CH ₂ OMe	Н	Н	Н	9.60
3b	<i>n</i> -PrNH	4-OCH ₂ CH ₂ OMe	Н	Н	Н	2.11
3c	n-Bu(Me)N	4-OCH ₂ CH ₂ OMe	Н	Н	Н	2.29
4	n-Bu	4-OCH ₂ CH ₂ OMe	Н	Н	Н	1.92
15a	Ph	4-OCH ₂ CH ₂ OMe	Н	Н	Н	8.11
5b	3-Thienyl	4-OCH ₂ CH ₂ OMe	Н	Н	Н	1.96
150 16a	n-PrO	4-OCH ₂ CH ₂ OMe	Br	Н	Н	0.03
		2 2	Br	Н	Н	
6b	Cyclopropylmethoxy	$4-OCH_2CH_2OMe$				0.10
16c	n-PrS	3-OMe-4-OCH ₂ CH ₂ OMe	Br	Н	Н	1.66
7a	<i>n</i> -PrO	4-OCH ₂ CH ₂ OMe	Cl	Н	Н	0.06
l7b	BnO	4-OCH ₂ CH ₂ OMe	Cl	Н	Н	na
18a	n-PrO	4-OCH ₂ CH ₂ OMe	Ι	Н	Н	0.03
8b	n-PrO	3-OMe-4-OCH ₂ CH ₂ OMe	Ι	Н	Н	10.35
9a	n-PrO	4-OCH ₂ CH ₂ OMe	CN	Н	Н	0.11
9b	<i>n</i> -PrO	3-OMe-4-OCH ₂ CH ₂ OMe	CN	Н	Н	na
20a	<i>n</i> -PrO	4-OCH ₂ CH ₂ OMe	Н	Me	Н	0.32
20b	<i>n</i> -PrO	4-OEt	Н	Me	Н	0.60
21a	<i>n</i> -PrO	4-OCH ₂ CH ₂ OMe	Н	Fused	Phenyl	0.91
21b	n-PrO	4-OEt	Н	Fused	Phenyl	1.80
22	n-PrO	4-OCH ₂ CH ₂ OMe	Ph	Н	Н	9.29
24	Н	4-OCH ₂ CH ₂ OMe	Н	Н	Н	na
Levamisole	11	+ OCH2CH2OWIC			11	0.66-2.00
vermectin						0.006-0.0

^a na = not active (LD₉₉ >15 μ g/mL).

The 7-methyl compounds **20** (Fig. 2) were synthesized by reaction of 3-amino-5-methyl-6-propoxypyridazine (prepared from 3-amino-6-chloro-5-methylpyridazine²⁰) with the appropriate 2-bromo-1-(4-alkoxyphenyl)ethanone. Analogous chemistry with 1-amino-4-chlorophthalazine²⁰ gave compounds **21** (Fig. 2).

The 3-phenyl derivative **22** (Fig. 2) was obtained from the corresponding 3-iodo compound **18a** by a Suzuki-coupling reaction.^{16,17}

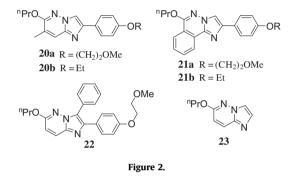
The results from the screening of compound **1** and a range of examples of compounds of type **6**, **7**, **9**, **10**, **13–22**, and **24** in the

Scheme 1. Reagents and conditions: (i) ROH, Na, 130 °C or RSH, NaOH, H₂O, 130 °C; (ii) NaHCO₃, EtOH, reflux; (iii) R⁴R⁵NH, heat; (iv) *n*-BuMgBr, cat. [Ph₂P(CH₂)₃PPh₂·NiCl₂], THF, rt; (v) R¹B(OH)₂, cat. Pd(PPh₃)₄, NaOH, DME, H₂O, 75 °C; (vi) NBS or NCS, CHCl₃, reflux; (vii) NIS, CH₃CN, rt; (viii) CuCN, DMF, 100 °C.

NemaTox *H. contortus* larval development assay are shown in Table 1. Removal of the 3,4-methylenedioxyphenyl substituent at position 2 in **1** led to loss of activity, since compound **23** (Fig. 2), prepared from reaction of 3-amino-6-propoxypyridazine⁶ and bromoacetaldehyde diethyl acetal,²¹ was inactive. Replacement of the 3,4-methylenedioxyphenyl substituent by unsubstituted phenyl (compound **6a**) or 4-chlorophenyl (**6b**) or 4-trifluoromethylphenyl (**6n**) likewise led to striking loss of activity, indicating that an electron-rich C-2 phenyl substituent was desirable. Removal of the propoxy substituent at position 6 led to dramatic loss of activity (compound **24**, Table 1).

Replacement of the potentially metabolically- and chemicallylabile methylenedioxy moiety of compound **1** by 3,4-dimethoxy substitution (**6d**) or an ethylenedioxy moiety (**6e**) resulted in weaker activity; however, replacement of the methylenedioxy moiety by non-classical isosteric alkoxyethoxy substituents^{22,23} (compounds **6f** and **6g**) or an ethoxy group (**6m**) led to a significant improvement in activity.

Further improvement in activity was observed when the propoxy substituent at C-6 was replaced by a cyclopropylmethoxy group (**6k**). Shortening or lengthening the C-6 alkoxy group resulted in lesser activity (**6i**, **6j**) and incorporation of secondary alkoxy groups (**6q**, **6r**) led to poor activity. The activity of the 6-alkylthio-imidazo[1,2-*b*]pyridazines **7** followed a similar trend (though generally slightly less potent) to that of the 6-alkoxy analogues.


The relatively good activity of the 3-methyl imidazo[1,2-b] pyridazine derivative **9a** compared with analogues **9b**, **9c** and **10** indicated that having the 2-methoxyethoxy substituent at the 4-position of the C-2 phenyl moiety generally resulted in better activity than when the substituent is at the 3-position.

The 6-amino derivatives **13** showed reasonable activity (though less potent than the 6-alkoxy or 6-alkylthio compounds), with the *n*-propylamino derivative **13b** being the most active.

The 6-butyl compound **14**, the direct C-linked analogue of the highly active propoxy derivative **6f**, showed good activity against *H. contortus*, as did the 6-(3-thienyl) substituted derivative **15b**. The 6-phenyl analogue **15a** was much less potent, suggesting that the presence of the heteroatom may be significant.

Compounds **20** and **21** also showed good activity with the 7methyl compounds **20** being superior to the corresponding phthalazine derivatives **21**, indicating that in order to maintain high activity, minimal steric bulk should be incorporated at positions 7 and 8 of the imidazo[1,2-*b*]pyridazine core.

The 3-substituted imidazo[1,2-b]pyridazine derivatives **16–19** showed very potent activity. The LD₉₉ value of 30 nM for each of

the 3-bromo compound **16a** and the 3-iodo derivative **18a** is comparable to the level of activity associated with the Ivermectin class of commercial endoparasiticides.

The 3-cyano derivative **19a** also showed good activity while the activity of 3-phenyl derivative **22** was relatively poor. The results from compounds **16–19** and **22** indicate that for strong activity the 3-substituent should be electron-withdrawing and not too large.

In conclusion, we have discovered a class of compounds that are highly active in a *H. contortus* larval development assay. For high activity, 6-*n*-propoxy or 6-cyclopropylmethoxy, and 2-(4-[2-methoxyethoxy])phenyl substituents appear preferable: see (in Table 1) compounds **6f**, **6k**, **9a**, **16a**, **16b**, **17a**, **18a** and **20a**, which show a level of activity superior to Levamisole. The potent activity of the 3-halo derivatives **16a** and **18a** is comparable to that of the benchmark commercial product, the macrocyclic lactone lvermectin.

There remains scope for further exploration of the imidazo[1,2b]pyridazine template which may lead to compounds useful for treatment of helminth infections in animals.

Acknowledgments

We thank Marianne Bliese (CSIRO) for technical assistance with chemistry and Andrew Smith (Intervet Australia Pty Ltd) for management of biological screening.

Supplementary data

Supplementary data (representative synthetic procedures and spectral data) associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2011.05.096.

References and notes

- 7. Winzenberg, K. N.; Francis, C. L.; Sawutz, D. G.; Ganguly, A. U.S. Patent
- 1. (a) Wolstenholme, A. J.; Fairweather, I.; Prichard, R.; Von Samson-Himmelstjerna, G.; Sangster, N. C. Trends Parasitol. 2004, 20, 469; (b) Várady, M.; Čudeková, P.; Čorba, J. Vet. Parasitol. 2007, 149, 104; (c) Ghisi, M.; Kaminsky, R.; Mäser, P. Vet. Parasitol. 2007, 144, 313.
- (a) Kaminsky, R.; Ducray, P.; Jung, M.; Clover, R.; Rufener, L.; Bouvier, J.; 2 Schorderet Weber, S.; Wenger, A.; Wieland-Berghausen, S.; Goebel, T.; Gauvry, N.; Pautrat, F.; Skripsky, T.; Froelich, O.; Komoin-Oka, C.; Westlund, B.; Sluder, A.; Mäser, P. *Nature* **2008**, 452, 176; (b) Ducray, P.; Gauvry, N.; Pautrat, F.; Goebel, T.; Fruechtel, J.; Desaules, Y.; Schorderet Weber, S.; Bouvier, J.; Wagner, T.; Froelich, O.; Kaminsky, R. Bioorg. Med. Chem. Lett. 2008, 18, 2935.
- 3. Little, P. R.; Hodge, A.; Watson, T. G.; Seed, J. A.; Maeder, S. J. N. Z. Vet. J. 2010, 58, 121
- (a) Besier, B. Trends Parasitol. 2007, 23, 21; (b) Tyrrell, K.; Le Jambre, L. F. Vet. 4. Parasitol. 2010. 168. 278: (c) Beech. R.: Levitt. N.: Cambos. M.: Zhou. S.: Forrester, S. G. Mol. Biochem. Parasitol. 2010, 171, 74.
- 5. The in vitro nematocide assays were carried out by Jennifer Gill and Ernest Lacey at Microbial Screening Technologies Pty Ltd. H. contortus LD₉₉ values were determined using the larval development assay described in: Gill, J. H.; Redwin, J. M.; Van Wyk, J. A.; Lacey, E. Int. J. Parasitol. 1995, 25, 463.
 Harrison, P. W.; Barlin, G. B.; Davies, L. P.; Ireland, S. J.; Mátyus, P.; Wong, M. G.
- Eur. J. Med. Chem. 1996, 31, 651.

- 7,759,349, 2010; Chem. Abstr., 2005, 143, 153390. 8 Hogarth-Scott, R. S.; Kelly, J. D.; Whitlock, H. V.; Ng, B. K. Y.; Thompson, H. G.;
- James, R. E.; Mears, F. A. Res. Vet. Sci. 1976, 21, 232. q Le Jambre, L. F.; Gill, J. H.; Lenane, I. J.; Lacey, E. Int. J. Parasitol. 1995, 25, 691.
- 10. Barlin, G. B. J. Heterocycl. Chem. 1998, 35, 1205.
- 11. Boger, D. L.; Coleman, R. S. J. Org. Chem. 1984, 49, 2240. 12. Barlin, G. B.; Ireland, S. J. Aust. J. Chem. 1987, 40, 1491.
- 13. Ostermayer, F.; Zimmermann, M.; Fuhrer, W. British Patent GB2065645, 1981 (EP0030030, Chem. Abstr., 1981, 95, 168821d).
- Werbel, L. M.; Zamora, M. L. J. Heterocycl. Chem. 1965, 2, 287. 14
- Yoneda, F.; Ohtaka, T.; Nitta, Y. Chem. Pharm. Bull. 1964, 12, 1351. 15.
- 16. Enguehard, C.; Hervet, M.; Allouchi, H.; Debouzy, J.-C.; Leger, J.-M.; Gueffier, A. Synthesis 2001, 595.
- 17. Enguehard, C.; Renou, J.-L.; Collot, V.; Hervet, M.; Rault, S.; Gueffier, A. J. Org. Chem. 2000, 65, 6572.
- 18 Kobe, J.; Stanovnik, B.; Tišler, M. Tetrahedron 1968, 24, 239.
- 19 Torgova, S. I.; Abolin, A. G.; Roitman, K. B.; Karamysheva, L. A.; Ivaschenko, A. V. J. Org. Chem. USSR (Engl. Transl.) 1988, 24, 179.
- 20. Barlin, G. B. Aust. J. Chem. 1986, 39, 1803.
- 21. Stanovnik, B.; Tišler, M. Tetrahedron 1967, 23, 387.
- Yamauchi, S.; Taniguchi, E. Agric. Biol. Chem. 1991, 55, 3075. 22.
- 23. Matsuno, K.; Ushiki, J.; Seishi, T.; Ichimura, M.; Giese, N. A.; Yu, J.-C.; Takahashi, S.; Oda, S.; Nomoto, Y. J. Med. Chem. 2003, 46, 4910.